
LTE Toolbox™
Reference

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

LTE Toolbox™ Reference
© COPYRIGHT 2013–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2013 Online only Revised for Version 1.0 (Release 2013b)
March 2014 Online only Revised for Version 1.1 (Release 2014a)
October 2014 Online only Revised for Version 1.2 (Release 2014b)
March 2015 Online only Revised for Version 2.0 (Release 2015a)
September 2015 Online only Revised for Version 2.1 (Release 2015b)
March 2016 Online only Revised for Version 2.2 (Release 2016a)
September 2016 Online only Revised for Version 2.3 (Release 2016b)
March 2017 Online only Revised for Version 2.4 (Release 2017a)
September 2017 Online only Revised for Version 2.5 (Release 2017b)
March 2018 Online only Revised for Version 2.6 (Release 2018a)
September 2018 Online only Revised for Version 3.0 (Release 2018b)
March 2019 Online only Revised for Version 3.1 (Release 2019a)
September 2019 Online only Revised for Version 3.2 (Release 2019b)
March 2020 Online only Revised for Version 3.3 (Release 2020a)
September 2020 Online only Revised for Version 3.4 (Release 2020b)
March 2021 Online only Revised for Version 3.5 (Release 2021a)
September 2021 Online only Revised for Version 3.6 (Release 2021b)
March 2022 Online only Revised for Version 3.7 (Release 2022a)
September 2022 Online only Revised for Version 3.8 (Release 2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Blocks
1

Functions
2

Apps
3

System Objects
4

Resource Grid and Block Diagrams
5

Downlink Physical Channels Grid . 5-2

Downlink Physical Signals Grid . 5-4

Uplink Physical Channels and Signals Grid . 5-6

DCI Processing Functions . 5-9

UCI Processing Functions . 5-11

PDCCH Processing Functions . 5-13

PUCCH Format 1 Processing Functions . 5-15

PUCCH Format 2 Processing Functions . 5-17

PUCCH Format 3 Processing Functions . 5-19

DL-SCH Processing Functions . 5-20

iii

Contents

UL-SCH Processing Functions . 5-22

PDSCH Processing Functions . 5-24

PUSCH Processing Functions . 5-26

CFI Processing Functions . 5-28

PCFICH Processing Functions . 5-29

PRACH Processing Functions . 5-31

BCH Processing Functions . 5-32

PBCH Processing Functions . 5-33

PHICH Processing Functions . 5-34

Downlink Receiver Functions . 5-35

Uplink Receiver Functions . 5-36

OFDM Modulation and Propagation Channel Models 5-38

SC-FDMA Modulation and Propagation Channel Models 5-39

Selected Bibliography
A

iv Contents

Blocks

1

Waveform From Wireless Waveform Generator App
Wireless waveform source exported to Simulink
Library: None

Description
The Waveform From Wireless Waveform Generator App block is generated using the Wireless
Waveform Generator app. You can use the generated block as a wireless waveform source in a
Simulink® model.

Note The actual block name and output waveform depend on the waveform that you configure in the
app before generating the block.

For an overview of the waveform types that you can export to Simulink using the LTE Toolbox
software, see the LTE Waveform Generator app.

To generate a block:

1 On the app toolstrip, in the Waveform Type section, click the waveform that you want to
configure and export to Simulink.

2 Set the parameters of the selected waveform.
3 On the app toolstrip, in the Export section, click Export and select Export to Simulink.

The Code tab of the Mask Editor window contains the MATLAB® code that the block executes to
output the configured waveform. To access read-only block parameters and waveform configuration
parameters, use the UserData common block property, which is a structure with these fields.

• WaveformConfig — Waveform configuration parameters
• WaveformLength — Waveform length
• Fs — Waveform sample rate

For more information on how to use the generated block, see “Generate Wireless Waveform in
Simulink Using App-Generated Block”.

Limitations
With the exception of blocks that are generated for 5G NR waveforms, blocks that are generated
using random user-defined signal data for the waveform do not support rapid accelerator mode. To
enable rapid accelerator mode in these blocks when you set the Bit-source app parameter to User-
defined, use pseudo-noise (PN) data as the data source.

1 Blocks

1-2

Ports
Output

wf — Time-domain wireless waveform
complex matrix

Time-domain wireless waveform, returned as a complex matrix. The number of matrix columns
corresponds to the number of transmit antennas. The waveform type you select in the app determines
the output waveform type. To access waveform configuration parameters, use the WaveformConfig
structure field of the UserData common block property.
Data Types: double

Parameters
Read-Only Waveform Parameters

The block automatically updates these parameters based on the waveform configuration in the Code
tab.

Waveform sample rate (Fs) — Waveform sample rate
numeric scalar

This parameter is read-only.

To access this parameter, use the Fs structure field of the UserData common block property. Units of
the Fs structure field are in Hz.

Waveform length — Waveform length
positive integer

This parameter is read-only.

To access this parameter, use the WaveformLength structure field of the UserData common block
property. Units of the WaveformLength structure field are in samples.

Simulation Parameters

These parameters control how the block outputs the waveform during simulation.

Samples per frame — Samples per frame
1 (default) | positive integer

This parameter specifies the number of samples to buffer into each output frame.

Form output after final data value by — Output values after last waveform sample
Cyclic repetition (default) | Setting to zero

This parameter specifies the output values after the block has output all available waveform samples.

• When you select Cyclic Repetition, the block repeats the waveform from the beginning after
reaching the last sample in the waveform.

• When you select Setting To Zero, the block generates zero-valued outputs for the duration of
the simulation after generating the last frame of the waveform.

 Waveform From Wireless Waveform Generator App

1-3

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Apps
LTE Waveform Generator

1 Blocks

1-4

Functions

2

displayChannel
Visualize and explore 3-D MIMO fading channel model characteristics

Syntax
fig = displayChannel(lte3D)
fig = displayChannel(lte3D,Name,Value)

Description
fig = displayChannel(lte3D) displays geometric and electromagnetic characteristics of the
specified 3-D multiple-input/multiple-output (MIMO) channel model at the transmitter and receiver
ends. The visualization includes the position, polarization, and directivity radiation pattern of the
antenna elements, cluster paths directions, and average path gains. Because all antenna elements are
equal, the visualization shows the radiation pattern of the first antenna element only and displays the
cluster paths directions centered also at the first antenna element. By adding customized data tips to
the visualization windows, you can explore antenna element, element pattern, and cluster paths
characteristics. The function also returns an array of figure objects that correspond to the displayed
visualization windows.

fig = displayChannel(lte3D,Name,Value) specifies visualization options of the displayed
channel characteristics by using one or more name-value pair arguments. For example,
'LinkEnd','Tx' specifies visualization at the transmitter end only.

Examples

Visualize Channel Characteristics

This example shows how to visualize 3-D channel characteristics and explore channel information
about the antenna element, element pattern, and cluster paths.

Define the channel configuration by using an lte3DChannel System object. Specify the delay profile
as CDL-D.

lte3D = lte3DChannel.makeCDL('CDL-D');

Configure the transmit array size as a vector of the form M N P Mg Ng = 4 3 2 1 2 , which specifies
two rectangular panels (Mg = 1 and Ng = 2) of a 4-by-3 antenna array (M = 4 and N = 3) and two
polarizations (P = 2). The total number of polarized elements in the array is
M × N × P × Mg × Ng = 48.

txSize = [4 3 2 1 2];
lte3D.TransmitAntennaArray.Size = txSize;

Configure the vertical and horizontal element spacing and the vertical and horizontal panel spacing,
in wavelength, as a vector of the form λv λh dgv dgh . Because panel spacing is measured from the
center of the panels, to avoid panel overlapping, set dgh to a value greater than one wavelength. To

2 Functions

2-2

ensure uniform antenna element spacing across vertically and horizontally separated panels,
configure panel spacings as dgv = λv × M and dgh = λh × N, respectively.

lambda_v = 0.5;
lambda_h = 0.5;
dg_v = lambda_v*txSize(1); % lambda_v * M
dg_h = lambda_h*txSize(2); % lambda_h * N
lte3D.TransmitAntennaArray.ElementSpacing = [lambda_v lambda_h dg_v dg_h];

Configure the mechanical orientation of the array as α β γ T = 0 15 0 T, which specifies 0 degrees
bearing, 15 degrees downtilt, and 0 degrees slant.

lte3D.TransmitAntennaArray.Orientation = [0 15 0]';

For an overview of all transmit antenna array properties, see the TransmitAntennaArray property
of the lte3DChannel System object.

Display the channel characteristics at the transmitter end.

figTx = displayChannel(lte3D,'LinkEnd','Tx');

The generated figure supports customized data tips. Add data tips in the current figure by enabling
the data cursor mode.

datacursormode on;

 displayChannel

2-3

With data cursor mode enabled, explore channel characteristics by adding data tips. To create a data
tip, click a data point. To create multiple data tips, press the Shift key while clicking the data points.

For example, this figure shows data tips added to the antenna element, element pattern, and cluster
paths at the transmitter end.

• Antenna element data tips include information about the position, polarization angle, and element
number of each antenna element. The element numbers indicate the order in which the channel
model maps input signals column-wise to antenna elements. For more details, see the
TransmitAntennaArray.Size property of the lte3DChannel System object.

• Element pattern data tips include the directivity corresponding to any azimuth and zenith angles.
• Cluster path data tips include the average path gain and azimuth and zenith angles of the cluster

path.

Visualize and explore channel characteristics at the receiver end. To customize the receive antenna
array, use the ReceiveAntennaArray property of the lte3DChannel System object. Then, display
the channel characteristics at the receiver end by calling the displayChannel function with the
'LinkEnd','Rx' name-value pair argument.

figRx = displayChannel(lte3D,'LinkEnd','Rx');

Explore channel information about the antenna element, element pattern, and cluster paths at the
receiver end by enabling data cursor mode for the current figure.

datacursormode on;

2 Functions

2-4

Input Arguments
lte3D — 3-D channel model
lte3DChannel System object™

3-D channel model, specified as an lte3DChannel System object. This object implements the link-
level MIMO fading channel specified in section 7.3 of TR 36.867 [1] with the optional cluster delay
line (CDL) profile from section 7.7.1 of TR 38.901 [2].

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'LinkEnd','Tx' specifies visualization for the transmitter end only.

LinkEnd — Link-level channel end
'Both' (default) | 'Tx' | 'Rx'

Link-level channel end, specified as the comma-separated pair consisting of 'LinkEnd' and one of
these values.

 displayChannel

2-5

• 'Both' — Display channel characteristics at both ends: the transmitter and receiver ends.
• 'Tx' — Display channel characteristics only at the transmitter end.
• 'Rx' — Display channel characteristics only at the receiver end.

Data Types: char | string

Polarization — Polarization angle of antenna elements
'on' (default) | 'off'

Polarization angle of antenna elements, specified as the comma-separated pair consisting of
'Polarization' and 'on' or 'off'. To display the polarization angle of the antenna elements,
specify this input as 'on'.
Data Types: char | string

ElementPattern — Directivity radiation pattern of antenna elements
'on' (default) | 'off'

Directivity radiation pattern of antenna, specified as the comma-separated pair consisting of
'ElementPattern' and 'on' or 'off'. To display the directivity radiation pattern of the antenna
elements, specify this input as 'on'.

Note In the specified channel model, lte3D, the antenna element pattern is the same for all antenna
elements. To orient the array with respect to the cluster paths, the function displays the element
pattern centered at the first element of the array.

Data Types: char | string

ClusterPaths — Direction and average gain of cluster paths
'on' (default) | 'off'

Direction and average gain of cluster paths, specified as the comma-separated pair consisting of
'ClusterPaths' and 'on' or 'off'. To display the direction and average gain of the cluster paths,
specify this input as 'on'.

Note In the specified channel model, lte3D, the cluster path directions are the same for all antenna
elements. To orient the array with respect to the cluster paths, the function displays the path
directions centered at the first element of the array.

Data Types: char | string

Output Arguments
fig — Visualization windows
1-by-2 array of figure objects

Visualization windows, returned as a 1-by-2 array of figure objects.

2 Functions

2-6

Version History
Introduced in R2020b

References
[1] 3GPP TR 36.873. “Study on 3D channel model for LTE.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

[2] 3GPP TR 38.901. “Study on channel model for frequencies from 0.5 to 100 GHz.” 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network. URL: https://
www.3gpp.org.

See Also
Functions
getPathFilters | info

Objects
lte3DChannel

 displayChannel

2-7

https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org

lteACKDecode
HARQ-ACK channel decoding

Syntax
out = lteACKDecode(chs,in)

Description
out = lteACKDecode(chs,in) performs block decoding on soft input data in, assumed to be
encoded using the procedure defined for HARQ-ACK in Section 5.2.2.6 of [1], for PUSCH channel
transmission configuration chs. The decoded output, out, is a vector of length OACK, the number of
uncoded HARQ-ACK bits transmitted.

Note If NBundled is 0, TDD ACK-NACK descrambling is disabled.

Multiple codewords can be parameterized by two different forms of the chs structure. Each
codeword can be defined by separate elements of a 1-by-2 structure array, or the codeword
parameters can be combined together in the fields of a single scalar, or 1-by-1, structure. Any scalar
field values apply to both codewords and a scalar chs.NLayers is the total number. See “UL-SCH
Parameterization” for further details.

The block decoding is performed separately on each soft input data codeword using a maximum
likelihood (ML) approach, assuming that in has been demodulated and equalized to best restore the
originally transmitted values.

The HARQ-ACK decoder performs different type of block decoding depending upon the number of
uncoded HARQ-ACK bits to be recovered (OACK). For OACK less than 3 bits, the decoder assumes the
bits are encoded using the procedure defined in TS 36.212 [1], Section 5.2.2.6.

For decoding between 3 and 11 HARQ-ACK bits, the decoder assumes the bits are block encoded
using the procedure defined in TS 36.212 [1], Section 5.2.2.6.4. For greater than 11 bits, the decoder
performs the inverse procedure described in TS 36.212 [1], Section 5.2.2.6.5.

Examples

Decode HARQ-ACK Channel

Show the block decoding of 3 coded HARQ-ACK information bits.

Create input and initialize channel structure. Encode bits and turn logical bits into soft data
compatible with log-likelihood ratio check. Use pskmod with an initial phase offset of π to align
mapping with LTE codebook.

Perform HARQ-ACK bit encoding and modulation.

in = [1;0;1];
chs = struct('Modulation','QPSK','QdACK',2,'OACK',length(in));

2 Functions

2-8

encodedBits = lteACKEncode(chs,in);
encodedBits = pskmod(double(encodedBits),2,pi());

Pass transmitted encoded bits through an AWGN channel with a 20 dB signal-to-noise ratio. Show a
scatterplot of the noisy received HARQ-ACK softbits.

rxBits = awgn(encodedBits,20);
scatterplot(rxBits)

Decode the received softbits. Compare the decoded bits with the input bits to show the bits have been
recovered with no error.

decodedBits = lteACKDecode(chs,rxBits)

decodedBits = 3x1 logical array

 1
 0
 1

isequal(in,decodedBits)

ans = logical
 1

 lteACKDecode

2-9

Input Arguments
chs — PUSCH-specific channel transmission configuration
scalar structure | structure array

PUSCH-specific channel transmission configuration, specified as a structure or a structure array,
which contains the following parameter fields.

Parameter Field Required or
Optional

Values Description

Modulation Required 'QPSK', '16QAM',
'64QAM', or '256QAM'

Modulation type, specified as a character
vector, cell array of character vectors, or string
array. If blocks, each cell is associated with a
transport block.

OACK Optional nonnegative scalar integer,
0 (default)

Number of uncoded HARQ-ACK bits.

The HARQ-ACK decoder performs different type
of block decoding depending upon the number
of uncoded HARQ-ACK bits to be recovered
(OACK). For OACK less than 3 bits, the decoder
assumes the bits are encoded using the
procedure defined in TS 36.212 [1], Section
5.2.2.6. For decoding between 3 and 11 HARQ-
ACK bits, the decoder assumes the bits are
block encoded using the procedure defined in
TS 36.212 [1], Section 5.2.2.6.4. For greater
than 11 bits, the decoder performs the inverse
procedure described in TS 36.212 [1], Section
5.2.2.6.5.

NLayers Optional 1 (default), 2, 3, 4 Number of transmission layers.
NBundled Optional 0 (default), 1, …, 9 TDD HARQ-ACK bundling scrambling sequence

index. When set to 0, the function disables the
TDD HARQ-ACK bundling scrambling.
Therefore, it is off by default.

in — Soft input data
numeric vector

Soft input data, specified as a numeric vector. The input data is assumed to be encoded using the
procedure defined for HARQ-ACK in TS 36.212 [1], Section 5.2.2.6.

Output Arguments
out — Decoded HARQ-ACK channel
numeric column vector

Decoded HARQ-ACK channel output, returned as an OACK-by-1 column vector.
Data Types: logical

2 Functions

2-10

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteACKEncode | lteRIDecode | lteCQIDecode | lteULSCHDeinterleave | lteULSCHDecode |
lteUCIDecode

 lteACKDecode

2-11

https://www.3gpp.org

lteACKEncode
HARQ-ACK channel encoding

Syntax
out = lteACKEncode(chs,in)

Description
out = lteACKEncode(chs,in) returns the coded HARQ-ACK information bits after performing
block coding defined for HARQ-ACK in TS 36.212 [1], Section 5.2.2.6 . The input argument, in, is a
vector or cell array containing up to 20 HARQ-ACK information bits. The output argument, out, is the
encoded bits in the same form.

Multiple codewords can be parameterized by two different forms of the chs structure. Each
codeword can be defined by separate elements of a 1-by-2 structure array, or the codeword
parameters can be combined together in the fields of a single scalar, or 1-by-1, structure. Any scalar
field values apply to both codewords and a scalar NLayers is the total number. See “UL-SCH
Parameterization” for further details.

Since the HARQ-ACK bits are carried on all defined codewords, a single input results in a cell array of
encoded outputs if multiple codewords are parameterized. This allows for easy integration with the
other toolbox functions.

The HARQ-ACK coder performs different types of block coding depending upon the number of HARQ-
ACK bits in vector in. If in consists of one element, it uses TS 36.212 [1], Table 5.2.2.6-1. If in
consists of two elements, it uses TS 36.212 [1], Table 5.2.2.6-2 [1] for encoding. The placeholder bits,
x and y in the referenced tables, are represented by –1 and –2, respectively.

Similarly, for between 3 and 11 bits, the HARQ-ACK encoding is performed as described in TS 36.212
[1], Section 5.2.2.6.4. For bits greater than 11, the encoding is performed as described in TS 36.212
[1], Section 5.2.2.6.5.

Examples

Encode HARQ-ACK Channel with one codeword

Encode a HARQ-ACK information bit for one codeword with 16QAM modulation.

ackbit = 1;
chs.Modulation = '16QAM';
chs.QdACK = 1;
out1 = lteACKEncode(chs,ackbit)

out1 = 4x1 int8 column vector

 1
 -2
 -1

2 Functions

2-12

 -1

Encode HARQ-ACK Channel with two codewords

Encode a HARQ-ACK information bit for two codewords with differing modulation schemes.

ackbit = 1;
chs.Modulation = {'16QAM' '64QAM'};
chs.NLayers = 2;
chs.QdACK = 1;
out2 = lteACKEncode(chs,ackbit)

out2=1×2 cell array
 {4x1 int8} {6x1 int8}

Input Arguments
chs — PUSCH-specific channel transmission configuration
scalar structure | structure array

PUSCH-specific channel transmission configuration, specified as a structure or a structure array,
which contains the following parameter fields.

Parameter Field Required
or Optional

Values Description

QdACK Required nonnegative scalar integer Number of coded HARQ-ACK symbols for ACK
or NACK (Q’_ACK)

Modulation Required 'QPSK', '16QAM', '64QAM',
or '256QAM'

Modulation type, specified as a character
vector, cell array of character vectors, or string
array. If blocks, each cell is associated with a
transport block.

NLayers Optional 1 (default), 2, 3, 4 Number of transmission layers, total or per
codeword

NBundled Optional 0 (default), 1, …, 9 TDD HARQ-ACK bundling scrambling
sequence index. When set to 0, the function
disables the TDD HARQ-ACK bundling
scrambling. Therefore, it is off by default.

in — HARQ-ACK information bits
logical vector of length 1 to 20 | cell array of logical vectors

HARQ-ACK information bits, specified as a logical vector or a cell array of logical vectors. Each
vector can have a length of up to 20 information bits.
Data Types: logical | double | cell

 lteACKEncode

2-13

Output Arguments
out — Encoded HARQ-ACK information bits
integer column vector | cell array of integer column vectors

Encoded HARQ-ACK information bits, returned as either an integer column vector or a cell array of
integer column vectors. The encoded bits are in the same form as the input bits. Therefore, if the
PUSCH-specific parameter structure, chs, defines multiple codewords, out is a cell array.
Data Types: int8 | cell

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteACKDecode | lteULSCHInterleave | lteRIEncode | lteCQIEncode | lteUCIEncode |
lteULSCH

2 Functions

2-14

https://www.3gpp.org

lteBCH
Broadcast channel

Syntax
codeblk = lteBCH(enb,trblk)
codeblk = lteBCH(trblk,outlen,cellrefp)

Description
codeblk = lteBCH(enb,trblk) returns a vector of BCH transport channel coded bits. The
encoding process includes CRC calculation and attachment, convolutional encoding, and rate
matching as defined in TS 36.212 [1], Section 5.3.1.

The rate matching internal to the coding results in many repetitions of the coded block. This
repetition is deliberate so that part of a received block can be successfully decoded in isolation.
Typically, the receiver can recover the BCH bits from the reception of just one frame (¼ of the
transmitted block), rather than waiting 40 ms (four frames) for the full block to be received.

codeblk = lteBCH(trblk,outlen,cellrefp) returns the vector rate-matched to the output
length outlen. The argument cellrefp controls the CRC port mask.

Examples

Encode BCH Information Bits

Generate the BCH coded vector of length 1920, corresponding to normal cyclic prefix.

enb = struct('CellRefP',1,'CyclicPrefix','Normal');
bchCoded = lteBCH(enb,ones(24,1));
bchCodedSize = size(bchCoded)

bchCodedSize = 1×2

 1920 1

Input Arguments
enb — eNodeB cell-wide settings
scalar structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

 lteBCH

2-15

Parameter Field Required or
Optional

Values Description

CellRefP Required 1, 2, 4 Number of cell-specific reference signal
(CRS) antenna ports

CyclicPrefix Optional 'Normal' (default),
'Extended'

Cyclic prefix length

trblk — Transport block
numeric vector

Transport block, specified as a numeric vector of length 24 bits. This argument represents the
transport block delivered to the BCH every 40 ms.

outlen — Output length
numeric scalar

Output length, specified as a numeric scalar.
Data Types: double

cellrefp — Number of cell-specific reference signal (CRS) antenna ports
0 | 1 | 2 | 4

Number of cell-specific reference signal (CRS) antenna ports, specified as 0, 1, 2, or 4. To turn the
CRC port mask off, set cellrefp to 0.

Output Arguments
codeblk — BCH transport channel coded bits
numeric column vector

BCH transport channel coded bits, returned as an integer column vector with 1920 bits for normal
cyclic prefix or 1728 bits for extended cyclic prefix.
Data Types: int8

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: http://www.3gpp.org.

See Also
lteBCHDecode | lteMIB | ltePBCH

2 Functions

2-16

https://www.3gpp.org

lteBCHDecode
Broadcast channel decoding

Syntax
[trblk,cellrefp] = lteBCHDecode(enb,softbits)

Description
[trblk,cellrefp] = lteBCHDecode(enb,softbits) returns a vector, trblk, of the decoded
information bits (24 bits). cellrefp is the number of cell-specific reference signal antenna ports
detected in the CRC mask for given input, softbits, and the structure, enb. This function performs
the inverse of the Broadcast Channel (BCH) processing described in TS 36.212 [1], Section 5.3.1.

Examples

Decode BCH-Encoded Block

Perform BCH coding of one transport block, and BCH decoding of part (one quarter) of the encoded
block. In a practical system, this approach would be used to attempt BCH decoding on the one
quarter part of the encoded block that is transmitted in the first subframe of each frame.

Create cell-wide configuration structure, initialized to RMC R.4. Perform BCH coding of one transport
block.

enb = lteRMCDL('R.4');
bchCoded = lteBCH(enb,ones(24,1));

Perform BCH decoding of one quarter of the transport block.

out = bchCoded(1:length(bchCoded)/4);
[bchDecoded,cellRefP] = lteBCHDecode(enb,out);
bchDecoded(1:10)

ans = 10x1 int8 column vector

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

 lteBCHDecode

2-17

Input Arguments
enb — eNodeB cell-wide settings
scalar structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required or
Optional

Values Description

CyclicPrefix Optional 'Normal' (default),
'Extended'

Cyclic prefix length

softbits — Soft bits to decode
numeric vector

Soft bits to decode, specified as a numeric vector. This vector can have any length.

The transport block size, 24, is relatively small when compared to the number of coded bits sent in
the BCH transmission, 1920 or 1728. For this reason, the rate matching internal to the BCH coding
results in many repetitions of the coded block. This decoder allows the input argument softbits to
be of any length because successful decoding of coded BCH blocks is often possible using a fraction
of the full coded block length.

Output Arguments
trblk — Decoded information bits
integer-valued column vector

Decoded information bits, returned as an integer-valued column vector of length 24.
Data Types: int8

cellrefp — Number of CRS antenna ports
0 | 1 | 2 | 4

Number of cell-specific reference signal (CRS) antenna ports detected, returned as 0, 1, 2, or 4. A
value of 0 indicates that the function detects a cyclic redundancy check (CRC) error during the
decoding process.
Data Types: uint32

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

2 Functions

2-18

https://www.3gpp.org

See Also
lteBCH | ltePBCHDecode

 lteBCHDecode

2-19

lteCFI
Control format indicator block encoding

Syntax
cw = lteCFI(enb)

Description
cw = lteCFI(enb) returns a 32-element vector, cw, that represents the rate 1/16 block encoding of
the control format indicator (CFI) value defined in the CFI field of the enb structure.

The value for CFI can be 1, 2, or 3. This value indicates the time span, in OFDM symbols, of the DCI
PDCCH transmission (the control region) in that downlink subframe. For bandwidths in which NDLRB
is greater than 10 RB, the span of the DCI in OFDM symbols is the same as the actual CFI value. If
NDLRB is less than or equal to 10 RB, the span is CFI+1 symbols.

Examples

Encode CFI Value

Generate the 32-element vector that represents block encoding of a CFI value of 2.

cw = lteCFI(struct('CFI',2));
cw(1:10)

ans = 10x1 int8 column vector

 1
 0
 1
 1
 0
 1
 1
 0
 1
 1

Input Arguments
enb — eNodeB cell-wide settings
scalar structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

2 Functions

2-20

Parameter Field Required or
Optional

Values Description

CFI Required 1, 2, or 3
Scalar or if the
CFI varies per
subframe, a
vector of length
10
(corresponding
to a frame).

Control format indicator (CFI) value. In TDD mode, CFI
varies per subframe for the RMCs ('R.0', 'R.5',
'R.6', 'R.6-27RB', 'R.12-9RB')

The value for CFI can be 1, 2, or 3. This value indicates
the time span, in OFDM symbols, of the DCI PDCCH
transmission (the control region) in that downlink
subframe. For bandwidths in which NDLRB is greater than
10 RB, the span of the DCI in OFDM symbols is the same
as the actual CFI value. If NDLRB is less than or equal to
10 RB, the span is CFI+1 symbols.

Output Arguments
cw — CFI codeword
integer column vector

CFI codeword, returned as an integer column vector of length 32. This vector represents the 1/16
block encoding of the CFI value defined in structure enb.
Data Types: int8

Version History
Introduced in R2014a

See Also
lteCFIDecode | ltePCFICH

 lteCFI

2-21

lteCFIDecode
Control format indicator block decoding

Syntax
cfi = lteCFIDecode(ibits)

Description
cfi = lteCFIDecode(ibits) performs the block decoding on soft input data ibits, assumed to
be encoded using procedure defined in TS 36.212 [1], Section 5.3.4.1. The output, cfi, is a scalar
representing the control format indicator (CFI) value resulted after performing block decoding on
input data. Strictly speaking, ibits should be a vector 32 bits long, as per encoded cfi. See the
lteCFI function reference for details. However, this function can decode any size segment of
encoded data.

The value for CFI can be 1, 2, or 3. This value indicates the time span, in OFDM symbols, of the DCI
PDCCH transmission (the control region) in that downlink subframe. For bandwidths in which NDLRB
is greater than 10 RB, the span of the DCI in OFDM symbols is the same as the actual CFI value. If
NDLRB is less than or equal to 10 RB, the span is CFI+1 symbols.

Examples

Decode CFI Block

Decode a noisy 32-element vector that represents the block encoding of the control format indicator
(CFI) value.

cw = double(lteCFI(struct('CFI',2)));
noisycw = cw + 0.4*randn(length(cw),1);
cfi = lteCFIDecode(noisycw)

cfi = int32
 2

Input Arguments
ibits — Soft input data
numeric vector

Soft input data, specified as a numeric vector of length 32. This input data is assumed to be encoded
using the procedure defined in TS 36.212 [1], Section 5.3.4.1.

Output Arguments
cfi — Control format indicator value
1 | 2 | 3

2 Functions

2-22

Control format indicator value, returned as a positive scalar integer. This integer represents the CFI
value resulting from performing block decoding on a vector of soft input data, ibits.

The value for CFI can be 1, 2, or 3. This value indicates the time span, in OFDM symbols, of the DCI
PDCCH transmission (the control region) in that downlink subframe. For bandwidths in which NDLRB
is greater than 10 RB, the span of the DCI in OFDM symbols is the same as the actual CFI value. If
NDLRB is less than or equal to 10 RB, the span is CFI+1 symbols.
Data Types: int32

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteCFI | ltePCFICHDecode

 lteCFIDecode

2-23

https://www.3gpp.org

lteCQIDecode
Channel quality information channel decoding

Syntax
out = lteCQIDecode(chs,in)

Description
out = lteCQIDecode(chs,in) performs the decoding on soft input data, in, assumed to be
encoded using the procedure defined for channel quality information (CQI) in TS 36.212, Sections
5.2.2.6 and 5.2.2.6.4 [1] for given channel transmission configuration, chs. The decoded output, out,
is a vector of length OCQI, the number of uncoded CQI bits transmitted.

Multiple codewords can be parameterized by two different forms of the chs structure. Each
codeword can be defined by separate elements of a 1-by-2 structure array, or the codeword
parameters can be combined together in the fields of a single scalar, or 1-by-1, structure. Any scalar
field values apply to both codewords and a scalar NLayers is the total number. See “UL-SCH
Parameterization” for further details.

The block decoding is performed separately on each soft input data using a maximum likelihood (ML)
approach, which assumes that in has been demodulated and equalized to best restore the original
transmitted values. The length of CQI bits defines the decoding process.

If the number of CQI bits, OCQI, is less than or equal to 11, a block decoding is performed to invert
the coding procedure defined in TS 36.212, Section 5.2.2.6.4 [1]. If OCQI is greater than 11, the CQI
bits are recovered by performing rate matching to OCQI, tail-biting Viterbi decoding, and 8-bit CRC
decoding.

Examples

Decode CQI bits

Decode encoded CQI bits.

Create input stream and initialize channel settings structures for encoding and decoding. Encode CQI
bits and turn logical bits into soft data. Decode the CQI bits.

cqi = [0; 1; 0; 1; 0; 1];

chsEnc.Modulation = 'QPSK';
chsEnc.QdCQI = 16;
chsEnc.NLayers = 1;

chsDec.NLayers = 1;
chsDec.OCQI = 6;

enc = lteCQIEncode(chsEnc,cqi);
enc = double(enc)-0.5;

rxCqi = lteCQIDecode(chsDec,enc)

2 Functions

2-24

rxCqi = 6x1 logical array

 0
 1
 0
 1
 0
 1

Input Arguments
chs — Channel-specific transmission configuration
scalar structure | structure array

Channel-specific transmission configuration, specified as a structure that can contain the following
parameter fields.

Parameter Field Required or
Optional

Values Description

OCQI Optional nonnegative scalar integer, 0
(default)

Number of uncoded channel quality
information (CQI) bits

NLayers Optional 1 (default), 2, 3, 4 Number of transmission layers.

in — Encoded soft input data
numeric vector

Encoded soft input data, specified as a numeric vector.

Output Arguments
out — Decoded output
logical column vector

Decoded output, returned as a logical column vector of length OCQI.
Data Types: logical

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteCQIEncode | lteACKDecode | lteRIDecode | lteUCIDecode | lteULSCHDecode

 lteCQIDecode

2-25

https://www.3gpp.org

lteCQIEncode
Channel quality information channel encoding

Syntax
out = lteCQIEncode(chs,in)

Description
out = lteCQIEncode(chs,in) returns the encoded channel quality information (CQI) bits after
performing channel coding defined for CQI in TS 36.212 [1], Sections 5.2.2.6 and 5.2.2.6.4. in should
be a vector or cell array containing the CQI bits and out is the encoded bits in the same form. out is
also cell array if the PUSCH-specific parameter structure, chs, defines multiple codewords.

Multiple codewords can be parameterized by two different forms of the chs structure. Each
codeword can be defined by separate elements of a 1-by-2 structure array, or the codeword
parameters can be combined together in the fields of a single scalar, or 1-by-1, structure. Any scalar
field values apply to both codewords and a scalar NLayers is the total number. See “UL-SCH
Parameterization” for further details.

While the CQI information bits are carried on one codeword only, a single input still results in a cell
array of encoded outputs if multiple codewords are parameterized. In this case, the QdCQI field
should contain a 0 in the position of the unused codeword. This allows for easy integration with the
other toolbox functions.

The CQI coder uses two different coding schemes depending upon the number of CQI bits to be
coded. If the number of CQI bits are less than or equal to 11, the channel coding of the CQI bits is
performed according to TS 36.212 [1], Section 5.2.2.6.4. For CQI bits greater than 11, the coding
process includes 8-bit CRC attachment, tail-biting convolutional coding and rate matching to the
output length deduced from parameters QdCQI and Modulation.

Examples

Encode CQI Bits for One Codeword

Generate the coded CQI bits for a single codeword.

Create input stream and initialize channel settings structure. Encode CQI bits.

in = [0; 1; 0; 1; 0; 1];
chs1.Modulation = '16QAM';
chs1.QdCQI = 4;
chs1.NLayers = 2;

codedCqi1 = lteCQIEncode(chs1,in)

codedCqi1 = 32x1 int8 column vector

 1
 1

2 Functions

2-26

 1
 1
 0
 1
 0
 1
 0
 1
 ⋮

Encode CQI Bits for Second of Two Codewords

Generate the coded CQI bits for two codewords with CQI on the second codeword.

Create input stream and initialize channel settings structure. Encode CQI bits. In this case the CQI is
on the second codeword. The output is a cell array where the first cell is empty.

in = [0; 1; 0; 1; 0; 1];
chs2.Modulation = {'16QAM' '16QAM'};
chs2.QdCQI = [0 4];
chs2.NLayers = 2;

codedCqi2 = lteCQIEncode(chs2,in)

codedCqi2=1×2 cell array
 {0x1 int8} {16x1 int8}

Input Arguments
chs — Channel-specific transmission configuration
scalar structure | structure array

Channel-specific transmission configuration, specified as a structure that can contain the following
parameter fields.

Parameter Field Required
or
Optional

Values Description

QdCQI Required nonnegative scalar integer Number of coded channel quality information
(CQI) symbols (Q’_CQI)

Modulation Required 'QPSK', '16QAM',
'64QAM', or '256QAM'

Modulation type, specified as a character
vector, cell array of character vectors, or string
array. If blocks, each cell is associated with a
transport block.

NLayers Optional 1 (default), 2, 3, 4 Number of transmission layers.

in — CQI input bits
numeric vector | cell array of numeric vectors

 lteCQIEncode

2-27

CQI input bits, specified as a numeric vector or a cell array of numeric vectors.

Output Arguments
out — Encoded CQI output bits
integer vector | cell array of integer vectors

Encoded CQI output bits, returned as an integer vector or a cell array of integer vectors. This
argument contains the coded CQI bits after performing channel coding.
Data Types: int8 | cell

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: http://www.3gpp.org.

See Also
lteCQIDecode | lteACKEncode | lteRIEncode | lteUCIEncode | lteULSCH

2 Functions

2-28

https://www.3gpp.org

lteCQISelect
PDSCH channel quality indication calculation

Syntax
[cqi,sinrs] = lteCQISelect(enb,chs,hest,noiseest)

Description
[cqi,sinrs] = lteCQISelect(enb,chs,hest,noiseest) calculates PDSCH CQI (Channel
Quality Indication) for cell-wide configuration enb, channel configuration chs, channel estimate
hest, and receiver noise variance noiseest. For more information, see “CQI Selection” on page 2-
35.

Examples

Calculate CQI

An empty resource grid for RMC R.13 is populated with cell-specific reference signals symbols. The
signal is filtered through the channel, demodulated and the corresponding channel is estimated along
with an estimate of noise power spectral density on the reference signal subcarriers. The estimates
are used for CQI calculation.

Populate an empty resource grid for RMC R.13 with cell-specific reference signal symbols and
modulate the waveform. Add noise to txWaveform. Configure an EPA fading channel and filter the
signal through this channel.

enb = lteRMCDL('R.13');
reGrid = lteResourceGrid(enb);
reGrid(lteCellRSIndices(enb)) = lteCellRS(enb);
[txWaveform,info] = lteOFDMModulate(enb,reGrid);

noise = 0.5*complex(randn(size(txWaveform)),randn(size(txWaveform)));
txWaveform_nz = txWaveform + noise;

chcfg.SamplingRate = info.SamplingRate;
chcfg.DelayProfile = 'EPA';
chcfg.NRxAnts = 4;
chcfg.DopplerFreq = 5;
chcfg.MIMOCorrelation = 'Low';
chcfg.InitTime = 0;
chcfg.Seed = 1;
rxWaveform = lteFadingChannel(chcfg,txWaveform_nz);

Demodulate the received signal. Perform downlink channel estimate and noise power spectral density
estimation on the demodulated signal. Use estimates of channel and noise power spectral density for
CQI calculation.

rxSubframe = lteOFDMDemodulate(enb,rxWaveform);

 lteCQISelect

2-29

cec.FreqWindow = 1;
cec.TimeWindow = 15;
cec.InterpType = 'cubic';
cec.PilotAverage = 'UserDefined';
cec.InterpWinSize = 1;
cec.InterpWindow = 'Centered';
[hest, noiseEst] = lteDLChannelEstimate(enb,cec,rxSubframe);

cqi = lteCQISelect(enb,enb.PDSCH,hest,noiseEst)

cqi = 5

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure. The structure contains the following parameter
fields.

Parameter
Field

Require
d or
Optiona
l

Values Description

NDLRB Required Scalar integer from 6 to
110

Number of downlink resource blocks (NRB
DL)

NCellID Required Integer from 0 to 503 Physical layer cell identity
CellRefP Required 1, 2, 4 Number of cell-specific reference signal (CRS)

antenna ports
CyclicPrefi
x

Optional 'Normal' (default),
'Extended'

Cyclic prefix length

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

The following parameters apply when DuplexMode is set to 'TDD'.
  
TDDConfig

Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration

  SSC Optional 0 (default), 1, 2, 3, 4, 5,
6, 7, 8, 9

Special subframe configuration (SSC)

The following parameters apply when DuplexMode is set to 'TDD' or chs.TxScheme is set to
'Port7-14'
  
NSubframe

Required 0 (default), nonnegative
scalar integer

Subframe number

The following parameters apply when chs.TxScheme is set to 'Port7-14'
  CSIRefP Required 1, 2, 4, 8 Array of number of CSI-RS antenna ports

2 Functions

2-30

Parameter
Field

Require
d or
Optiona
l

Values Description

  
CSIRSConfig

Required Scalar integer Array CSI-RS configuration indices. See TS
36.211, Table 6.10.5.2-1.

  
CSIRSperiod

Optional 'On' (default), 'Off',
Icsi-rs (0,...,154),
[Tcsi-rs Dcsi-rs].
You can also specify
values in a cell array of
configurations for each
resource.

CSI-RS subframe configurations for one or
more CSI-RS resources. Multiple CSI-RS
resources can be configured from a single
common subframe configuration or from a cell
array of configurations for each resource.

  NFrame Optional 0 (default), nonnegative
scalar integer

Frame number

chs — Channel-specific transmission configuration
structure | structure array

Channel-specific transmission configuration, specified as a structure or structure array. The structure
contains the following parameter fields:

Parameter
Field

Require
d or
Optiona
l

Values Description

NLayers Required Integer from 1 to 8 Number of transmission layers.
CSIMode Required 'PUCCH 1-0', 'PUCCH

1-1', 'PUSCH 1-2',
'PUSCH 3-0', 'PUSCH
3-1'

CSI reporting mode

 lteCQISelect

2-31

Parameter
Field

Require
d or
Optiona
l

Values Description

TxScheme Required 'Port0',
'TxDiversity', 'CDD',
'SpatialMux',
'MultiUser', 'Port5',
'Port7-8', 'Port8',
'Port7-14'.

PDSCH transmission scheme, specified as one
of the following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay

diversity scheme
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7,

when NLayers = 1. Dual
layer transmission, ports 7
and 8, when NLayers = 2.

'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer

transmission, ports 7–14

SINRs90pc Optional 15 element vector, or
function handle

A vector of 15 SINR values or a function handle
to a function of the form f(enb, chs) which
returns a vector of 15 SINR values, one for
each CQI index 1, ..., 15. These correspond to
the lowest SINR for which the throughput of
the PDSCH in the CQI/CSI reference resource,
for the given configuration and CQI index, is at
least 90%. Default is to internally select SINRs
based on configuration given in enb and chs,
assuming perfect channel estimation and either
MMSE equalization or transmit diversity
decoding (as appropriate for the transmission
scheme) at the receiver.

The following parameter applies for 'SpatialMux', 'MultiUser', 'Port5', 'Port7-8',
'Port8', 'Port7-14' transmission schemes.

2 Functions

2-32

Parameter
Field

Require
d or
Optiona
l

Values Description

  PMISet Required Integer vector with
element values from 0 to
15.

A vector of Precoder Matrix Indications. The
vector may contain either a single value
(corresponding to single PMI mode) or multiple
values (corresponding to multiple or subband
PMI mode). For the 'Port7-14' transmission
scheme with eight CSI-RS ports or for CSI
reporting with the alternative codebook for four
antennas, an additional first value indicates the
wideband codebook index, i1, and subsequent
values indicate the subband codebook indices,
i2, or the wideband codebook index, i2. Valid
value range depends on CellRefP, CSIRefP,
NLayers, TxScheme, and AltCodebook4Tx.
For more information about setting PMI
parameters, see ltePMIInfo.

The following parameter applies for 'Port7-14' transmission scheme with CSIRefP equal to 4, or
for 'Port7-8' or 'Port8' transmission scheme with CellRefP equal to 4.
  
AltCodebook
4Tx

Required 'Off' (default), 'On' If set to 'On', enables the alternative codebook
for CSI reporting with four antennas defined in
TS 36.213, Tables 7.2.4-0A to 7.2.4-0D. The
default is 'Off'.
(alternativeCodeBookEnabledFor4TX-r12)

Additionally, one of the following fields must be included. see note 1

  
NCodewords

Required 1, 2 Number of codewords

  
Modulation

Required 'QPSK', '16QAM',
'64QAM', '256QAM',
'1024QAM'

Modulation type, specified as a character
vector, cell array of character vectors, or string
array. If blocks, each cell is associated with a
transport block.

note 1 – Specify the number of codewords directly in the NCodewords field. Alternatively, if the
Modulation field is provided, the number of codewords is established from the number of
modulation formats. This value lets you establish the correct number of codewords using the
channel transmission configuration structure, chs, as provided to ltePDSCH function on the
transmit side. If present, the NCodewords field takes precedence.

hest — Channel estimate
multidimensional array

Channel estimate, specified as a K-by-L-by-NRxAnts-by-P array, where:

• K is the number of subcarriers.
• L is the number of OFDM symbols.
• NRxAnts is the number of receive antennas.
• P is the number of transmit antennas.

 lteCQISelect

2-33

Data Types: double

noiseest — Receiver noise variance
numeric scalar

Receiver noise variance, specified as a numeric scalar. noiseest is an estimate of the received noise
power spectral density.
Data Types: double

Output Arguments
cqi — Channel quality information
column vector

Channel quality information, returned as a column vector containing a channel quality information
report. Report contents depend on the CSI reporting mode.

Report Mode Reporting Contents
Single codeword:
'PUCCH 1-0' A single wideband CQI index
'PUSCH 3-0' A single wideband CQI index, followed by a subband

differential CQI offset level for each subband.
Two codewords:
'PUCCH 1-1' A single wideband CQI index for codeword 0, followed by a

spatial differential CQI offset level for codeword 1.
'PUSCH 1-2' A single wideband CQI index for codeword 0, followed by a

single wideband CQI index for codeword 1.
'PUSCH 3-1' A single wideband CQI index for codeword 0, followed by a

subband differential CQI offset level for each subband for
codeword 0, followed by a single wideband CQI index for
codeword 1, followed by a subband differential CQI offset
level for each subband for codeword 1.

Note CSI reporting modes, are separated into the modes that support one or two codewords, as
described by the standard. The CQI select function derives these code words from chs.NCodewords
or chs.Modulation.

sinrs — signal-to-interference plus noise ratios
matrix

Signal-to-interference plus noise ratios, in dB, returned as a matrix. Each column of the matrix
represents a single codeword. If subband CQI reporting is configured, the SINR for the wideband CQI
is in the first row, followed by the sinrs for the subband CQIs in subsequent rows. sinrs is an
optional output.

2 Functions

2-34

More About
CQI Selection

The function performs the CQI selection by first obtaining SINR (Signal to Interference and Noise
Ratio) estimates for a given configuration from ltePMISelect. Then the function performs a lookup
between those SINR estimates and the CQI index. The lookup tables are precomputed and stored in
this function. CQI selection is conditioned on the rank indicated by chs.NLayers, except for the
'TxDiversity' transmission scheme which has a rank of 1. On PUCCH, CQI selection corresponds
to Report Type 2 (for reporting Mode1-1) or Report Type 4 (for reporting Mode 1-0). On PUSCH, the
reporting is Mode 1-2, Mode 3-0, or Mode 3-1.

A CQI Index is a scalar (0,...,15), indicating the selected value of the CQI index. The CQI index is
defined as per TS 36.213. The highest CQI index is selected when a single PDSCH transport block
with a modulation scheme and transport block size of CQI index, and occupying a group of downlink
physical resource blocks termed the CSI reference resource, can be received with a transport block
error probability not exceeding 0.1. If a CQI index of 1 does not satisfy this condition, then the
returned CQI index is 0. The CQI reference resource is defined in TS 36.213, Section 7.2.3. The
relationship between CQI indices, modulation scheme, and code rate (from which transport block size
is derived) is described in TS 36.213, Tables 7.2.3-1 and 7.2.3-2.

A subband differential CQI offset level is the difference between a subband CQI index and the
corresponding wideband CQI index.

A spatial differential CQI offset level is the difference between the wideband CQI index for codeword
0 and the wideband CQI index for codeword 1.

Within the 3GPP standard, CQI offsets are reported as CQI values. These values are nonnegative
integers corresponding to single CQI offset levels or ranges of CQI offset levels (see TS 36.213,
Tables 7.2-2 and 7.2.1-2). The CQI offset levels reported here are either the single CQI offset level
corresponding to the CQI value reported or the boundary value of the CQI offset level range
corresponding to the CQI value reported. For example, a calculated spatial differential CQI offset
level of –6 would be reported per the standard as a spatial differential CQI value of 4. This function
will return a spatial differential offset level of –4 because the calculated differential CQI offset level
exceeds this boundary value, meaning –6 < –4 (see TS 36.213, Table 7.2-2).

For transmission schemes using UE-specific beamforming ('Port 5', 'Port 7-8', 'Port 8',
'Port7-14'), the performance depends on the beamforming used. For UE-specific beamforming, the
appropriate value of chs.SINRs90pc field is provided. If this field is not provided, for single antenna
ports, the function uses default SINRs90pc values.

Version History
Introduced in R2014b

References
[1] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer

procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

 lteCQISelect

2-35

https://www.3gpp.org

See Also
lteRISelect | ltePMISelect

2 Functions

2-36

lteCRCDecode
Cyclic redundancy check decoding and removal

Syntax
[blk,err] = lteCRCDecode(blkcrc,poly)
[blk,err] = lteCRCDecode(blkcrc,poly,mask)

Description
[blk,err] = lteCRCDecode(blkcrc,poly) checks the input data vector for a CRC error
assuming the vector comprises a block of data with the associated CRC bits attached. The data part
of the input is returned in vector blk. The logical difference (XOR) between the attached CRC and
the CRC recalculated across the data part of the input is returned in uint32 scalar err. If err is not
equal to 0, either an error has occurred or the input CRC has been masked. A logical mask can also
be applied directly to err. See TS 36.212 [1], Section 5.1.1 for the associated polynomials.

[blk,err] = lteCRCDecode(blkcrc,poly,mask) checks the input data vector for a CRC error
XOR-ing with the scalar mask parameter before it is returned in err. The mask value is applied to the
CRC bits with the most significant bit (MSB) first and the least significant bit (LSB) last.

Examples

Check Data Vector for CRC Error

Check the effect of CRC decoding a block of data with and without a mask.

CRC encode attaching a masked '24A'-type CRC to an all-ones vector of length 100.

rnti = 8;
blkcrc = lteCRCEncode(ones(100,1),'24A',rnti);

CRC decode with the data block without using a mask.

[blk1,err1] = lteCRCDecode(blkcrc,'24A');
err1

err1 = uint32
 8

The logical difference between the original CRC and recalculated CRC equals the CRC mask. Since
the CRC was been masked, decoding without specifying the mask, returned err1 = 8, which is the
value of rnti.

CRC decode using the RNTI as a mask.

[blk2,err2] = lteCRCDecode(blkcrc,'24A',rnti);
err2

err2 = uint32
 0

 lteCRCDecode

2-37

The returned output, err2, is 0 because the original mask, rnti, is XORed with itself.

Input Arguments
blkcrc — CRC input data bit vector
numeric column vector

CRC input data bit vector, specified as a numeric column vector. The function checks the input bit
vector for a CRC error assuming that the data consists of a block of data with CRC bits attached.

poly — CRC polynomial
'8' | '16' | '24A' | '24B'

CRC polynomial, specified as '8', '16', '24A', or '24B'. See TS 36.212 [1], Section 5.1.1 for the
associated polynomials.

mask — XOR mask
scalar integer

XOR mask, specified as a scalar integer. The CRC difference is XOR-ed with mask before err is
returned.
Data Types: double

Output Arguments
blk — Data bit vector
column vector

Data bit vector, returned as a column vector. blk is the data-only part of the input blkcrc.
Data Types: int8

err — Logical difference
integer

Logical difference, returned as an integer. err is the logical difference between the CRC and CRC
recalculated across the data part of the input.
Data Types: uint32

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

2 Functions

2-38

https://www.3gpp.org

See Also
lteCRCEncode | lteCodeBlockDesegment | lteConvolutionalDecode

 lteCRCDecode

2-39

lteCRCEncode
Cyclic redundancy check calculation and appending

Syntax
blkcrc = lteCRCEncode(blk,poly)
blkcrc = lteCRCEncode(blk,poly,mask)

Description
blkcrc = lteCRCEncode(blk,poly) calculates a cyclic redundancy check (CRC) for the input
data vector and returns a copy of the vector with the CRC attached. To support the correct
processing of filler bits, negative input bit values are interpreted as logical 0 for the purposes of the
CRC calculation. A value of –1 is used to represent filler bits. lteCRCEncode calculates the CRC
defined by poly for the input bit vector blk and returns a copy of the input with the CRC appended
in vector blkcrc. Valid options for the CRC polynomial are '8', '16', '24A', or '24B'. See TS
36.212 [1], Section 5.1.1 for the associated polynomials.

blkcrc = lteCRCEncode(blk,poly,mask) XOR masks the appended CRC bits with the integral
value of mask. The mask value is applied to the CRC bits with the most significant bit (MSB) first and
the least significant bit (LSB) last.

Examples

Calculate and Append CRC

Calculate and append the CRC associated with an all zero vector, which is also zero.

crc1 = lteCRCEncode(zeros(100,1),'24A');
crc1(1:10)

ans = 10x1 int8 column vector

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

The result is an all-zeros vector of length 124.

2 Functions

2-40

Calculate and Append CRC with MSB First

Mask the CRC bits in an MSB-first order.

Set the XOR mask to 1 to make the appended CRC bits XOR masked from the most significant to least
significant bit.

mask = 1;
crc2 = lteCRCEncode(zeros(100,1),'24A',mask);
crc2(end-10:end)

ans = 11x1 int8 column vector

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 ⋮

The result is all zeros, except for a single one in last element position.

Input Arguments
blk — Data bit vector
numeric column vector

Data bit vector, specified as a numeric column vector.

poly — CRC polynomial
'8' | '16' | '24A' | '24B'

CRC polynomial, specified as '8', '16', '24A', or '24B'. See TS 36.212 [1], Section 5.1.1 for the
associated polynomials.

mask — XOR mask
integer

XOR mask, specified as an integer. The appended CRC bits are XOR masked from the most significant
to least significant bit.

Output Arguments
blkcrc — Bit vector with CRC
column vector

Bit vector with CRC, returned as a column vector.
Data Types: int8

 lteCRCEncode

2-41

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: http://www.3gpp.org.

See Also
lteCRCDecode | lteCodeBlockSegment | lteConvolutionalEncode

2 Functions

2-42

https://www.3gpp.org

lteCSICodebook
Codebook for channel state information reporting

Syntax
out = lteCSICodebook(nu,p,idx)
out = lteCSICodebook(nu,p,idx,table)
out = lteCSICodebook(nu,p,i1,i2)

Description
out = lteCSICodebook(nu,p,idx) returns the precoding matrix associated with channel state
information (CSI) reporting as defined in TS 36.213 [1], Section 7.2.4 given the number of layers, nu,
the number of antennas, p, and the codebook index, idx. For more information, see “CSI Codebook
Reporting” on page 2-45 and ltePMIInfo.

out = lteCSICodebook(nu,p,idx,table) where table specifies the codebook selection table.
For more information, see “CSI Codebook Reporting” on page 2-45.

out = lteCSICodebook(nu,p,i1,i2) where i1 and i2 specify the first and second codebook
indices, respectively. This signature was only intended for p = 8. This signature may be removed in a
future release, instead use out = lteCSICodebook(nu,p,idx) with idx = [i1 i2].

Examples

Create Codebook Entry for CSI Reporting

This example creates a codebook entry for CSI reporting with 2 layers, 4 antennas, and a codebook
index of 3.

lteCSICodebook(2,4,3)

ans = 4×2 complex

 0.3536 + 0.0000i 0.0000 + 0.3536i
 0.0000 - 0.3536i 0.3536 + 0.0000i
 -0.3536 + 0.0000i 0.0000 + 0.3536i
 0.0000 + 0.3536i 0.3536 + 0.0000i

Create Alternate Codebook Entry for CSI Reporting

Create an alternative codebook entry for CSI reporting with three layers, and four antennas, using
codebook indices provided.

lteCSICodebook(3,4,[0 7],'AltCodeBook4Tx')

ans = 4×3 complex

 lteCSICodebook

2-43

 0.2887 + 0.0000i 0.0000 + 0.2887i -0.2041 + 0.2041i
 0.2041 - 0.2041i -0.2041 - 0.2041i 0.0000 - 0.2887i
 0.0000 - 0.2887i 0.2887 + 0.0000i -0.2041 - 0.2041i
 -0.2041 - 0.2041i -0.2041 + 0.2041i 0.2887 + 0.0000i

The codebook entry [i1 i2] = [0 7] from TS 36.213, Table 7.2.4-0C is used.

Input Arguments
nu — Number of transmission layers
1,...,8 | positive scalar integer

Number of transmission layers, specified as an integer from 1 to 8.

p — Number of transmission antennas
1 | 2 | 4 | 8 | positive scalar integer

Number of transmission antennas, specified as 1, 2, 4, or 8.

idx — Codebook index
0,...,15 | scalar integer | vector with two integers

Codebook index, specified as an integer or vector of two integers from 0 to 15.

• If p = 8, idx should be a pair of indices [i1 i2].
• If p = 4 and table = 'AltCodebook4Tx', idx should be a pair of indices [i1 i2].
• If p = 4 and table = 'StdCodebook4Tx', idx should be a single index or a pair with i1 set to

zero.
• If p = 1 or p = 2, idx should be a single index or a pair with i1 set to zero.

For more information, see “CSI Codebook Reporting” on page 2-45.
Example: [0 3] indicates the codebook indices [i1 i2].

i1 — First codebook index
0 (default),...,15 | scalar integer

First codebook index, specified as an integer from 0 to 15. For more information, see “CSI Codebook
Reporting” on page 2-45.

i2 — Second codebook index
0,...,15 | scalar integer

Second codebook index, specified as an integer from 0 to 15. For more information, see “CSI
Codebook Reporting” on page 2-45.

table — Codebook selection table
‘StdCodebook4Tx’ (default) | ‘AltCodebook4Tx’ | optional

Codebook selection table for four transmission antennas, specified as 'StdCodebook4Tx' or
'AltCodebook4Tx'. table is optional and only applicable when p = 4. For more information, see
“CSI Codebook Reporting” on page 2-45.

2 Functions

2-44

Data Types: char | string

Output Arguments
out — Precoding matrix associated with CSI reporting
complex-valued numeric matrix

Precoding matrix associated with CSI reporting, returned as a complex-valued numeric p-by-nu
matrix, where p is the number of transmission antennas, and nu is the number of transmission layers.
nu must always be less than or equal to p. For more information, see “CSI Codebook Reporting” on
page 2-45.
Data Types: double
Complex Number Support: Yes

More About
CSI Codebook Reporting

A UE reports the precoding matrix indicator (PMI) according to the feedback modes as described in
TS 36.213 [1], Section 7.2.4. lteCSICodebook returns the precoding matrix for CSI reporting as a p-
by-nu matrix, where p is the number of transmission antennas (CSI-RS or CRS ports) and nu is the
number of transmission layers (PDSCH transmission layers). nu must always be less than or equal to
p. Inputs to the function are nu, p, idx indicating the codebook indices, and optionally table
indicating the codebook selection table.

Reference
Signal Codebook Number of

layers, nu p
Codebook indices,
idx (See Note 1) table

Transmiss
ion
schemei1 i2

CSIRefP

TS 36.213,
Table
7.2.4-1

1

8

0–15

0–15

n/a 'Port7-1
4'

TS 36.213,
Table
7.2.4-2

2

TS 36.213,
Table
7.2.4-3

3

0–3

TS 36.213,
Table
7.2.4-4

4 0–7

TS 36.213,
Table
7.2.4-5

5

0TS 36.213,
Table
7.2.4-6

6

 lteCSICodebook

2-45

Reference
Signal Codebook Number of

layers, nu p
Codebook indices,
idx (See Note 1) table

Transmiss
ion
schemei1 i2

TS 36.213,
Table
7.2.4-7

7

TS 36.213,
Table
7.2.4-8

8 0

CellRefP
or CSIRefP
(See Note
2)

TS 36.213,
Table
7.2.4-0A

1

4

0–15

0–15 'AltCode
book4Tx'

'Port7-8
' or
'Port7-1
4' (See
Note 2)

TS 36.213,
Table
7.2.4-0B

2

TS 36.213,
Table
7.2.4-0C

3

0
TS 36.213,
Table
7.2.4-0D

4

TS 36.211,
Table
6.3.4.2.3-2

1–4 4

0

0–15 'StdCode
book4Tx'

TS 36.211,
Table
6.3.4.2.3-1

1
2

0–3

n/a2 0–2

Precoding
matrix = 1 1 1 0 any single

antenna
Note

1 Preferred format for codebook indices, idx, is a two element vector, [i1 i2]. A scalar format is
accepted when the only available setting for i1 is zero. For this case, use the applicable scalar
input range shown for i2.

2 CellRefP for the 'Port7-8' or CSIRefP for the 'Port7-14'

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer

procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

2 Functions

2-46

https://www.3gpp.org

[2] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and
Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePMISelect | ltePMIInfo | ltePDSCH | ltePDSCHDecode | lteDLPrecode

 lteCSICodebook

2-47

https://www.3gpp.org

lteCSIRS
Channel state information reference signal

Syntax
sym = lteCSIRS(enb)
sym = lteCSIRS(enb,opts)

Description
sym = lteCSIRS(enb) returns the channel state information reference signal (CSI-RS) symbols for
transmission in a single subframe on up to eight antenna ports (p = 15,...,22). See “lteCSIRS
Processing” on page 2-51.

sym = lteCSIRS(enb,opts) formats the returned symbols using options specified by opts.

Examples

Create CSI-RS Symbols and Combine with Resource Grid

Generate CSI-RS symbols and combine them with a 10 MHz, release 8, port 0 PDSCH subframe
resource grid.

Initialize a reference channel structure. Create a 10 MHz, release 8, port 0 PDSCH configuration
parameter structure. Set subframe number to 1, number of CSI-RS antenna ports to 8, CSI-RS
configuration to 0, and CSIRSPeriod to 6.

rmc = lteRMCDL('R.2','FDD',1);
rmc.NSubframe = 1;
rmc.CSIRefP = 8;
rmc.CSIRSConfig = 0;
rmc.CSIRSPeriod = 6;

The 8 antenna ports are ports 15 to 22. The setting for CSIRSPeriod is Icsi-rs, which equals
[Tcsi-rs Dcsi-rs]=[10 1].

Create a 3-D resource grid to contain the subframes for all eight CSI-RS ports.

rgrid = lteResourceGrid(rmc,rmc.CSIRefP);

Write the release 8 port 0 transmission into the first plane of the resource grid.

[wave,rgrid(:,:,1)] = lteRMCDLTool(rmc,[1,0,0,1]);

Create the CSI-RS symbols for ports 15 to 22. Overwrite all ports included in the port 0 transmission
with the actual CSI-RS and unused RE.

rgrid(lteCSIRSIndices(rmc,'rs+unused')) = lteCSIRS(rmc,'rs+unused');

2 Functions

2-48

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required
or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource blocks
(NRB

DL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

NFrame Optional 0 (default), nonnegative scalar
integer

Frame number

CellRefP is only used when the Indexing format option for indexing generation is'rs+unused'
  CellRefP Optional 1 (default), 2, 4 Number of cell-specific reference

signal (CRS) antenna ports
CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length
DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division
Duplex

• 'TDD' for Time Division Duplex
The following parameters apply when DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7, 8, 9 Special subframe configuration

(SSC)
CSIRSPeriod Optional 'On' (default), 'Off', Icsi-rs

(0,...,154), [Tcsi-rs Dcsi-rs].
You can also specify values in a cell
array of configurations for each
resource.

See note.

CSI-RS subframe configurations for
one or more CSI-RS resources.
Multiple CSI-RS resources can be
configured from a single common
subframe configuration or from a
cell array of configurations for each
resource.

The following CSI-RS resource parameters apply only when CSIRSPeriod sets one, or more CSI-RS subframe
configurations to any value other than 'Off'. Each parameter length must be equal to the number of CSI-RS
resources required.
  CSIRSConfig Required Nonnegative scalar integer Array CSI-RS configuration indices.

See TS 36.211, Table 6.10.5.2-1.
  CSIRefP Required 1 (default), 2, 4, 8 Array of number of CSI-RS antenna

ports

 lteCSIRS

2-49

Parameter Field Required
or
Optional

Values Description

  NCSIID Optional Nonnegative scalar integer CSI-RS scrambling identity. If this
field is not present, then NCellID is
used as the identity.

ZeroPowerCSIRSPeri
od

Optional 'Off' (default), 'On', Icsi-rs
(0,...,154), [Tcsi-rs Dcsi-rs].
You can also specify values in a cell
array of configurations for each
resource.

See note.

Zero power CSI-RS subframe
configurations for one or more zero
power CSI-RS resource configuration
index lists. Multiple zero power CSI-
RS resource lists can be configured
from a single common subframe
configuration or from a cell array of
configurations for each resource list.

The following zero power CSI-RS resource parameter is only required if one, or more of the above zero power
subframe configurations are set to any value other than 'Off'.
  
ZeroPowerCSIRSConf
ig

Required 16-bit bitmap character vector or
string scalar (truncated if not 16 bits
or '0' MSB extended), or a numeric
list of CSI-RS configuration indices.
You can also specify values in a cell
array of configurations for each
resource.

Zero power CSI-RS resource
configuration index lists (TS 36.211
Section 6.10.5.2). Specify each list
as a 16-bit bitmap character vector
or string scalar (if less than 16 bits,
then '0' MSB extended), or as a
numeric list of CSI-RS configuration
indices from TS 36.211 Table
6.10.5.2-1 in the '4' CSI reference
signal column. Multiple lists can be
defined using a cell array of
individual lists.

[1]
Note:

1 CSIRSPeriod and ZeroPowerCSIRSPeriod parameters control the downlink subframes in which the
different CSI-RS resources are present. Valid settings include:

• always 'On'
• always 'Off'
• scalar subframe configuration index Icsi-rs from 0 through 154
• explicit subframe periodicity and offset pair [Tcsi-rs Dcsi-rs]

The subframes containing CSI-RS are located with NSubframe and the optional NFrame parameters.
NSubframe can be greater than 10; thus NSubframe = 11 is equivalent to setting NSubframe to 1 and
NFrame to 1.

For more information, see TS 36.211 [1], Section 6.10.5.3.

opts — Symbol generation options
character vector | cell array of character vectors | string array

2 Functions

2-50

Symbol generation options, specified as a character vector, cell array of character vectors, or string
array. For convenience, you can specify several options as a single character vector or string scalar
by a space-separated list of values placed inside the quotes. Values for opts when specified as a
character vector include (use double quotes for string):

Option Values Description
Symbol
style

'ind' (default),
'mat'

Style for returning CSI-RS symbols, specified as one of the following options.

• 'ind' — returns the CSI-RS symbols as a column vector (default)
• 'mat' — returns the CSI-RS symbols as a matrix, where each column

contains symbols for an individual port and CSI-RS configuration. To form a
matrix, a column can contain duplicate entries.

Symbol
format

'rsonly'
(default), 'rs
+unused'

Format for the returned symbols, specified as one of the following options.

• 'rsonly' — returns only defined CSI-RS symbols (default), both zero and
non-zero

• 'rs+unused' — also includes zeros for the resource element (RE)
locations that should be unused because they are reserved for CSI-RS on
another port.

Note Returned symbols specify the CSI-RS resource values within an N-by-M-by-antennas array. The number
of antennas is max(CSIRefP) or if zero power CSI-RS are also defined number of antennas is
max(max(CSIRefP),4). For the 'rs+unused' option, the number of antennas used to define the empty REs
(either because they are zero power or they are unused in another port) is max(max(CSIRefP),CellRefP).

Example: 'ind rsonly', "ind rsonly", {'ind','rsonly'}, or ["ind","rsonly"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
sym — CSI-RS symbols
column vector (default) | matrix

CSI-RS symbols for transmission in a single subframe on up to eight antenna ports, returned as a
column vector or matrix of concatenated CSI-RS symbol sequences for each of the enb.CSIRefP
ports based on the cell-wide parameter settings. The length of sym is the number of resource
elements. See “lteCSIRS Processing” on page 2-51.
Data Types: double
Complex Number Support: Yes

More About
lteCSIRS Processing

The lteCSIRS function supports the creation of multiple non-zero power CSI-RS resources and zero
power CSI-RS.

By default the output symbols are returned as a column vector and are ordered as they should be
mapped into the resource elements along with lteCSIRSIndices. If, according to the CSI-RS resource
subframe configurations and duplex mode, there are no CSI-RS scheduled in the subframe, then the

 lteCSIRS

2-51

output is empty. Optionally the returned symbols can also include zeros representing the resource
elements which should be unused since they are reserved for CSI-RS symbols in one or more of the
other ports. On assignment into a populated subframe grid, these zeros create empty resource
elements for both Release 8, and Release 10 and 11 compatibility. When multiple non-zero power
resources and zero power CSI-RS are output, the zero power CSI-RS symbols are first in the
concatenated output, followed by the symbols for the ordered set of CSI-RS resources.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteCSIRSIndices | lteCellRS | lteDMRS | lteEPDCCHDMRS | ltePRS | ltePRBS

2 Functions

2-52

https://www.3gpp.org

lteCSIRSIndices
CSI-RS resource element indices

Syntax
ind = lteCSIRSIndices(enb)
ind = lteCSIRSIndices(enb,opts)

Description
ind = lteCSIRSIndices(enb) returns the indices of the channel state information reference
signal (CSI-RS) resource elements (RE) for the specified subframe. See “lteCSIRSIndices Processing”
on page 2-57.

ind = lteCSIRSIndices(enb,opts) formats the returned indices using options specified by
opts.

Examples

Generate Column Vector of CSI-RS RE Indices

Generate a column vector of CSI-RS resource element linear indices for ports 15 to 22 of a 10 MHz
downlink subframe 0 resource grid.

Create a 10 MHz, downlink, subframe 0 configuration parameter structure. Set the number of
antenna ports to 8, the CSI-RS configuration to 0, and Icsi-rs to 5.

rmc = lteRMCDL('R.2');
rmc.CSIRefP = 8;
rmc.CSIRSConfig = 0;
rmc.CSIRSPeriod = 5;

The 8 antenna ports are ports 15 to 22. The variable Icsi-rs = 5 is equivalent to a [Tcsi-rs
Dcsi-rs] setting of [10 0].

csirs1 = lteCSIRSIndices(rmc);
csirs1(1:5)

ans = 5x1 uint32 column vector

 3010
 3022
 3034
 3046
 3058

 lteCSIRSIndices

2-53

Generate Matrix of CSI-RS RE Indices

This example shows how to generate a matrix of CSI-RS RE linear indices for ports 15 to 22 of a 10
MHz downlink subframe 0 resource grid.

Create a 10 MHz, downlink, subframe 0 configuration parameter structure. Set the number of
antenna ports to 8, the CSI-RS configuration to 0, and Icsi-rs to 5.

rmc = lteRMCDL('R.2');
rmc.CSIRefP = 8;
rmc.CSIRSConfig = 0;
rmc.CSIRSPeriod = 5;

Generate a matrix of linear indices with eight columns.

csirs2 = lteCSIRSIndices(rmc,'mat');
size(csirs2)

ans = 1×2

 88 8

Generate Used and Unused CSI-RS RE Indices

This example shows how to generate both used and unused CSI-RS RE linear indices for ports 15 to
22 of a 10 MHz downlink subframe 0 resource grid.

Create a 10 MHz, downlink, subframe 0 configuration parameter structure. Set the number of
antenna ports to 8, the CSI-RS configuration to 0, and Icsi-rs to 5.

rmc = lteRMCDL('R.2');
rmc.CSIRefP = 8;
rmc.CSIRSConfig = 0;
rmc.CSIRSPeriod = 5;

The 8 antenna ports are ports 15 to 22. The variable Icsi-rs = 5 is equivalent to a [Tcsi-rs
Dcsi-rs] setting of [10 0].

Generate both used and unused CSI-RS RE in all ports.

csirs3 = lteCSIRSIndices(rmc,'rs+unused');
csirs3(1:5)

ans = 5x1 uint32 column vector

 3010
 3022
 3034
 3046
 3058

2 Functions

2-54

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

NFrame Optional 0 (default), nonnegative scalar
integer

Frame number

CellRefP is only used when the Indexing format option for indexing generation is'rs+unused'
  CellRefP Optional 1 (default), 2, 4 Number of cell-specific reference

signal (CRS) antenna ports
CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length
DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as

either:

• 'FDD' for Frequency Division
Duplex

• 'TDD' for Time Division
Duplex

The following apply when DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7, 8, 9 Special subframe configuration

(SSC)
CSIRSPeriod Optional 'On' (default), 'Off', Icsi-rs

(0,...,154), [Tcsi-rs Dcsi-rs].
You can also specify values in a
cell array of configurations for
each resource.

See note.

CSI-RS subframe configurations
for one or more CSI-RS resources.
Multiple CSI-RS resources can be
configured from a single common
subframe configuration or from a
cell array of configurations for
each resource.

The following CSI-RS resource parameters apply only when CSIRSPeriod sets one, or more CSI-RS subframe
configurations to any value other than 'Off'. Each parameter length must be equal to the number of CSI-RS
resources required.
  CSIRSConfig Required Nonnegative scalar integer Array CSI-RS configuration

indices. See TS 36.211, Table
6.10.5.2-1.

  CSIRefP Required 1 (default), 2, 4, 8 Array of number of CSI-RS
antenna ports

 lteCSIRSIndices

2-55

Parameter Field Required or
Optional

Values Description

ZeroPowerCSIRSPeri
od

Optional 'Off' (default), 'On', Icsi-rs
(0,...,154), [Tcsi-rs Dcsi-rs].
You can also specify values in a
cell array of configurations for
each resource.

See note.

Zero power CSI-RS subframe
configurations for one or more
zero power CSI-RS resource
configuration index lists. Multiple
zero power CSI-RS resource lists
can be configured from a single
common subframe configuration
or from a cell array of
configurations for each resource
list.

The following zero power CSI-RS resource parameter is required only if one, or more of the other zero power
subframe configurations are set to any value other than 'Off'.
  
ZeroPowerCSIRSConf
ig

Required 16-bit bitmap character vector or
string scalar (truncated if not 16
bits or '0' MSB extended), or a
numeric list of CSI-RS
configuration indices. You can also
specify values in a cell array of
configurations for each resource.

Zero power CSI-RS resource
configuration index lists (TS
36.211 Section 6.10.5.2). Specify
each list as a 16-bit bitmap
character vector or string scalar
(if less than 16 bits, then '0' MSB
extended), or as a numeric list of
CSI-RS configuration indices from
TS 36.211 Table 6.10.5.2-1 in the
'4' CSI reference signal column.
Multiple lists can be defined using
a cell array of individual lists.

Note:

1 The CSIRSPeriod and ZeroPowerCSIRSPeriod parameters control the downlink subframes in which
the different CSI-RS resources are present. Valid settings include:

• Always 'On'
• Always 'Off'
• Scalar subframe configuration index Icsi-rs from 0 through 154
• Explicit subframe periodicity and offset pair [Tcsi-rs Dcsi-rs]

To locate the subframes containing CSI-RS, use the NSubframe parameter and the optional NFrame
parameter. NSubframe can be greater than 10. Thus NSubframe = 11 is equivalent to setting NSubframe
to 1 and NFrame to 1.

For more information, see TS 36.211 [1], Section 6.10.5.3.

opts — Index generation options
character vector | cell array of character vectors | string array

Index generation options, specified as a character vector, cell array of character vectors, or string
array. For convenience, you can specify several options as a single character vector or string scalar
by a space-separated list of values placed inside the quotes. Values for opts when specified as a
character vector include (use double quotes for string):

2 Functions

2-56

Option Values Description
Indexing
style

'ind' (default),
'mat', 'sub'

Style for the returned indices, specified as one of the following options.

• 'ind' — returns the indices as an NRE-by-1 vector (default)
• 'mat' — returns the indices as a matrix. If not precoded, each column

contains indices for an individual layer/port. If precoded, each column
contains symbols for a transmit antenna. To form a matrix, a column can
contain duplicate entries.

• 'sub' — returns the indices as an NRE-by-3 matrix. in [subcarrier,
symbol, antenna] subscript row style.

NRE is the number of resource elements.
Index base '1based'

(default),
'0based'

Base value of the returned indices. Specify '1based' to generate indices
where the first value is 1. Specify '0based' to generate indices where the
first value is 0.

Indexing
format

'rsonly'
(default), 'rs
+unused'

Format for the returned locations, specified as one of the following options.

• 'rsonly' — returns only defined CSI-RS locations (default), both zero and
non-zero

• 'rs+unused' — also includes zeros for the resource element (RE)
locations that should be unused because they are reserved for CSI-RS on
another port.

Note Returned indices specify the CSI-RS resource values within an N-by-M-by-antennas array. Where the
number of antennas is max(CSIRefP) or if zero power CSI-RS are also defined number of antennas is
max(max(CSIRefP),4). In the case of the 'rs+unused' option, the number of antennas used to define the
empty REs (either because they are zero power or they are unused in another port) is
max(max(CSIRefP),CellRefP).

Example: 'ind rsonly', "ind rsonly", {'ind','rsonly'}, or ["ind","rsonly"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — Channel state information reference signal (CSI-RS) indices
column vector (default) | matrix

Channel state information reference signal (CSI-RS) indices, returned as a vector or matrix. See
“lteCSIRSIndices Processing” on page 2-57.
Data Types: uint32

More About
lteCSIRSIndices Processing

The lteCSIRSInidices function supports the creation of multiple non-zero power resources and
zero power CSI-RS.

By default the output indices as re returned as a column vector in one-based linear indexing form,
that can directly index elements in an N-by-M-by-max(CSIRefP) array. These indices represent the

 lteCSIRSIndices

2-57

subframe grid across max(CSIRefP) antenna ports (p = 15,...,22). Other index representations can
also be created as well as whether the output includes the RE that should be empty in a specific port
because of CSI-RS transmissions in another port. These indices are ordered as the complex CSI-RS
symbols should be mapped and do not include any elements allocated to PBCH, PSS, and SSS. You
can define the CSI-RS subframe configuration schedule as required for the CSI-RS resources. If the
subframe contains no CSI-RS, then an empty vector is returned. When multiple non-zero power and
zero power CSI-RS are returned, the indices for the zero power CSI-RS appear first in the
concatenated output, followed by the indices for the ordered set of CSI-RS resources.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteCSIRS | lteCellRSIndices | lteDMRSIndices | ltePRSIndices

2 Functions

2-58

https://www.3gpp.org

lteCellRS
Cell-specific reference signal

Syntax
sym = lteCellRS(enb)
sym = lteCellRS(enb,ports)

Description
sym = lteCellRS(enb) returns cell-specific reference signal symbols for cell-wide settings in the
enb structure. sym is a complex-valued column vector containing cell-specific reference signal
symbols. Unlike other physical channels and signals, the symbols for multiple antennas are
concatenated into a single column rather than returned in a matrix with a column for each antenna.
The reason for this behavior is that the number of symbols varies across the antenna ports.

sym = lteCellRS(enb,ports) returns cell-specific reference signal symbols for antenna ports
specified in the vector, ports (0,1,2,3), and cell-wide settings structure, enb. In this case, CellRefP
is ignored if present in enb and ports is used instead.

Examples

Find Length of Cell-Specific Reference Signals

This example shows different numbers of cell-specific reference signal symbols transmitted at
antenna port 0 and 2.

Initialize cell wide parameter structure, enb, to RMC R.6

enb = lteRMCDL('R.6');

Observe the number of cell-specific reference symbols on port 0

cellRefPort0 = length(lteCellRS(enb,0))

cellRefPort0 = 200

Observe the number of cell-specific reference symbols on port 2

cellRefPort2 = length(lteCellRS(enb,2))

cellRefPort2 = 100

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

 lteCellRS

2-59

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to
110

Number of downlink resource blocks (NRB
DL)

NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative

scalar integer
Subframe number

CellRefP Required 1, 2, 4 Number of cell-specific reference signal
(CRS) antenna ports

CyclicPrefix Optional 'Normal' (default),
'Extended'

Cyclic prefix length

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

The following parameters are dependent upon the condition that DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6,

7, 8, 9
Special subframe configuration (SSC)

ports — Antenna ports
0 (default) | 1 | 2 | 3 | numeric vector | optional

Antenna ports, specified as a numeric vector whose elements must be (0, 1, 2, 3).

Output Arguments
sym — Cell-specific reference signal symbols
complex-valued numeric column vector

Cell-specific reference signal symbols, returned as a complex-valued numeric column vector. This
argument contains cell-specific reference signal symbols for the specified cell-wide settings, enb, and
optional number of antenna ports, ports.
Data Types: double

Version History
Introduced in R2014a

See Also
lteCellRSIndices | lteDMRS | lteEPDCCHDMRS | ltePRS | lteCSIRS | ltePRBS

2 Functions

2-60

lteCellRSIndices
CRS resource element indices

Syntax
ind = lteCellRSIndices(enb)
ind = lteCellRSIndices(enb,opts)
ind = lteCellRSIndices(enb,ports)
ind = lteCellRSIndices(enb,ports,opts)

Description
ind = lteCellRSIndices(enb) returns a column vector of resource element (RE) indices for the
cell-specific reference signal (RS), given the cell-wide settings in the enb structure. By default, the
indices are returned in 1-based linear indexing form that can directly index elements of a 3-D array
representing the subframe resource grid for all antenna ports. These indices are ordered as the
reference signal modulation symbols should be mapped. Unlike other physical channels and signals,
the indices for multiple antennas are concatenated into a single column rather than returned in a
matrix with a column for each antenna. The indices for each antenna are concatenated because the
number of indices varies across the antenna ports.

ind = lteCellRSIndices(enb,opts) returns RE indices in a format specified by opts.

ind = lteCellRSIndices(enb,ports) returns RE indices for antenna ports specified in the
vector ports. In this case, the CellRefP field of enb is ignored, and ports is used instead.

ind = lteCellRSIndices(enb,ports,opts) returns RE indices for the specified antenna ports
and formatting options.

Examples

Generate Cell-Specific Reference Signal RE Indices

Generate zero-based cell-specific reference signal (CRS) resource element (RE) indices in subscript
form for antenna port 2.

enb = lteRMCDL('R.0');
enb.NCellID = 10;
ind = lteCellRSIndices(enb,2,{'0based','sub'});
ind(1:4,:)

ans = 4x3 uint32 matrix

 4 1 2
 10 1 2
 16 1 2
 22 1 2

 lteCellRSIndices

2-61

In this case, each row of the generated matrix has three columns, which represent subcarrier,
symbol, and antenna port, respectively.

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
CellRefP Required 1, 2, 4 Number of cell-specific reference

signal (CRS) antenna ports
CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length
DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division
Duplex

• 'TDD' for Time Division Duplex
The following parameters are dependent upon the condition that DuplexMode is set to 'TDD'.
Nsubframe Required 0 (default), nonnegative scalar

integer
Subframe number

TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7, 8, 9 Special subframe configuration

(SSC)

ports — Antenna ports
numeric vector

Antenna ports, specified as a numeric vector whose elements must be (0, 1, 2, 3).

opts — Index generation options
character vector | cell array of character vectors | string array

Index generation options, specified as a character vector, cell array of character vectors, or string
array. For convenience, you can specify several options as a single character vector or string scalar
by a space-separated list of values placed inside the quotes. Values for opts when specified as a
character vector include (use double quotes for string):

2 Functions

2-62

Option Values Description
Indexing
style

'ind' (default),
'sub'

Style for the returned indices, specified as one of the following options.

• 'ind' — returns the indices in linear index form as a column vector
(default)

• 'sub' — returns the indices in [subcarrier, symbol, antenna]
subscript row style. The number of rows in the output, ind, is the number
of resource elements (NRE). Thus, ind is an NRE-by-3 matrix.

Index base '1based'
(default),
'0based'

Base value of the returned indices. Specify '1based' to generate indices
where the first value is 1. Specify '0based' to generate indices where the
first value is 0.

Example: 'ind 0based', "ind 0based", {'ind','0based'}, ["ind","0based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — Cell-specific reference signal RE indices
column vector | numeric matrix

Cell-specific reference signal RE indices, returned as a column vector. Optionally, can be returned as
an NRE-by-3 matrix.
Data Types: uint32

Version History
Introduced in R2014a

See Also
lteCellRS | lteCSIRSIndices | lteDMRSIndices | ltePRSIndices

 lteCellRSIndices

2-63

lteCellSearch
Cell identity search using PSS and SSS

Syntax
[cellid,offset,peak] = lteCellSearch(enb,waveform)
[cellid,offset,peak] = lteCellSearch(enb,waveform,alg)
[cellid,offset,peak] = lteCellSearch(enb,waveform,cellids)

Description
[cellid,offset,peak] = lteCellSearch(enb,waveform) returns the cell identity carried by
the PSS and SSS signals in the input waveform, the timing offset to the start of the first frame of the
waveform, and the peak correlation magnitude. The cell-wide settings structure, enb, defines the link
configuration.

[cellid,offset,peak] = lteCellSearch(enb,waveform,alg) takes an additional input
structure, alg, which provides control over the cell search. The input structure, alg, contains
optional fields to define the SSS detection method, the maximum number of cells to detect, and which
cell identities to search.

[cellid,offset,peak] = lteCellSearch(enb,waveform,cellids) uses an additional input
to constrain the cell search to the list of cell identities specified by in cellids.

Note This syntax will be removed in a future release. Instead use the syntax [cellid,offset,peak]
= lteCellSearch(enb,waveform,alg) and set alg.CellIDs = cellids.

Examples

Find Cell Identity

Search for the cell identity (in this case 171) of an R.12 RMC waveform.

Initialize reference channel configuration, rmc. Perform cell search on the waveform produced using
this configuration.

rmc = lteRMCDL('R.12');
rmc.NCellID = 171;
rmc.TotSubframes = 1;

cellID = lteCellSearch(rmc,lteRMCDLTool(rmc,[1;0;0;1]))

cellID = 171

2 Functions

2-64

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required
or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource blocks
(NRB

DL)
CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length
Duplexmode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division
Duplex

• 'TDD' for Time Division Duplex

waveform — Time-domain waveform
numeric matrix

Time-domain waveform, specified as a numeric matrix of size T-by-P. Where T is the number of time-
domain samples and P is the number of receive antennas. The sampling rate of the time domain
waveform must be the same as used in the lteOFDMModulate function for the specified number of
resource blocks enb.NDLRB. The number of time domain samples, T, must be sufficient to provide at
least one subframe for FDD (or 2 for TDD since in TDD mode PSS and SSS lie in adjacent subframes).
For the cell search to succeed, the waveform provided must contain the PSS and SSS signals.

Note enb.NDLRB is only required to specify the sampling rate of waveform.

Data Types: double
Complex Number Support: Yes

alg — Cell search algorithm control
structure

Cell search algorithm control, specified as a structure. alg accepts these fields defining optional cell
search algorithm settings.

Parameter Field Required
or
Optional

Values Description

SSSDetection Optional 'PreFFT' (default), 'PostFFT'. SSS detection method.
a

MaxCellCount Optional Nonnegative scalar integer. (1, ...,
504), default 1.

The number of cell identities to
detect.
b

 lteCellSearch

2-65

Parameter Field Required
or
Optional

Values Description

CellIDs Optional Vector of nonnegative integers,
default vector (0:503).

A vector containing the cell identities
to use for the cell search.
c

a 'PostFFT' SSS detection operates in the frequency domain. For 'PostFFT':

• OFDM demodulation is performed using the timing estimate from PSS detection,
• the demodulated SSS resource elements are correlated with possible SSS sequences to find the cell identity group,
• and the peak correlation magnitude is the sum of the peak correlation magnitudes from time-domain PSS detection and frequency-

domain SSS detection.
b When alg.MaxCellCount > 1, the returned cellid, offset, and peak are vectors, with each element corresponding to one cell.
c If alg.CellIDs is absent, the output vectors are sorted by decreasing correlation peak magnitude, that is, decreasing peak value. If

alg.CellIDs is present and alg.MaxCellCount = numel(alg.CellIDs), the output vectors are in the same order as the cell
identities in alg.CellIDs. Sorting the peaks enables monitoring of the peak output for a predetermined set of cells.

cellids — Cell identities
nonnegative scalar integer | vector of nonnegative integers

Cell identities to be used in the cell search, specified as a nonnegative scalar integer or vector of
nonnegative integers.

Note cellids and the syntax it is associated with will be removed in a future release. Instead use
alg.CellIDs and the recommended alternate syntax.

Data Types: double

Output Arguments
cellid — Cell identity
nonnegative scalar integer | vector of nonnegative integers

Physical layer cell identity, returned as a nonnegative scalar integer or vector of nonnegative
integers. cellid indicates the detected cell identity. The returned cellid is a vector when
alg.MaxCellCount > 1 and more than one cell is detected.

The overall physical layer cell identity is cellid = (3*Nid1) + Nid2. PSS conveys the second cell
identity number (Nid2, (0,1,2)) within a cell identity group and is established via time-domain
correlation using the lteDLFrameOffset function. SSS conveys the first cell identity number (Nid1,
(0,...,167)) and is established in a similar fashion.
Data Types: double

offset — Timing offset
nonnegative scalar integer | vector of nonnegative integers

Timing offset, returned as a nonnegative scalar integer or vector of nonnegative integers. offset
indicates the number of samples from the start of the input waveform to the position in that
waveform where the first frame begins. The timing offset is calculated by correlating with the
detected PSS and SSS. The returned offset is a vector when alg.MaxCellCount > 1 and more
than one cell is detected.

2 Functions

2-66

Data Types: double

peak — Peak magnitude
numeric scalar | vector of numeric values

Peak magnitude of the correlation, returned as a numeric scalar or vector of numeric values, used for
cell detection. The returned peak is a vector when alg.MaxCellCount > 1 and more than one cell
is detected. The peak correlation magnitude is the sum of the peak correlation magnitudes from PSS
and SSS detection. A complete correlation output is available as the output argument, corr, from
lteDLFrameOffset.

Version History
Introduced in R2014a

See Also
lteDLFrameOffset | lteFrequencyOffset | lteFrequencyCorrect | lteOFDMDemodulate

 lteCellSearch

2-67

lteCodeBlockDesegment
Code block desegmentation and CRC decoding

Syntax
[blk,err] = lteCodeBlockDesegment(cbs,blklen)
[blk,err] = lteCodeBlockDesegment(cbs)

Description
[blk,err] = lteCodeBlockDesegment(cbs,blklen) concatenates the input code block vectors
contained in cbs into an output vector, blk, of length blklen. blklen is also used to validate the
dimensions of the data in cbs and to calculate the amount of filler to be removed. If cbs is a cell
array containing more than one vector, each vector is assumed to have a type-24B CRC attached. This
CRC is decoded and stripped from each code block before output concatenation and the CRC error
result is placed in the associated element of vector err. The length of err is the number of code
blocks. If cbs is a single vector or a cell array containing a single vector, no CRC decoding or
stripping is performed and err is empty. In all cases, the number of filler bits stripped from the
beginning of the (first) code block is calculated from blklen. lteCodeBlockDesegment performs
the inverse of the code block segmentation and CRC appending (see lteCodeBlockSegment).

[blk,err] = lteCodeBlockDesegment(cbs) no leading filler bits are stripped from the output.

Examples

Desegment Code Block

Perform code block desegmentation and discover when segmentation occurs.

Code block segmentation occurs if the input length is greater than 6144. The input vector of length
6145 is segmented by lteCodeBlockSegment into two vectors of length 3072 and 3136.

cbs = lteCodeBlockSegment(ones(6145,1));

Next, perform desegmentation and CRC removal.

[blk,err] = lteCodeBlockDesegment(cbs);
size(blk)

ans = 1×2

 6160 1

err

err = 1x2 int8 row vector

 0 0

2 Functions

2-68

The first output, blk, is a column vector of length 6160. The second output, err, is a column vector
of zero values.

Input Arguments
cbs — Code block segments
column vector | cell array

Code block segments, specified as a column vector or cell array of column vectors. If cbs is a cell
array containing more than one vector, each vector is assumed to have a type-24B CRC attached. This
CRC is decoded and stripped from each code block before output concatenation and the CRC error
result is placed in the associated element of vector err. The length of err is the number of code
blocks. If cbs is a single vector or a cell array containing a single vector, no CRC decoding or
stripping is performed and err is empty. In all cases, the number of filler bits stripped from the
beginning of the (first) code block is calculated from blklen.

blklen — Block length
nonnegative integer

Block length, specified as a nonnegative integer.

Output Arguments
blk — Output data block
column vector

Output data block, returned as a column vector. The input code blocks are segmented into a single
output data block, blk, removing any filler and type-24B CRC bits.
Data Types: int8

err — Code block CRC decoding errors
column vector | nonnegative integer

Code block CRC decoding errors, returned as a nonnegative integer. The length of err is equal to the
number of code blocks. If cbs is a cell array containing multiple vector elements,
lteCodeBlockDesegment assumes that each vector has a type-24B CRC attached. The CRC is
decoded and stripped from each code block before output concatenation and the CRC error result is
placed in the associated element of err. If cbs is a single vector or a cell array containing a single
vector, no CRC decoding or stripping is performed and err is empty.
Data Types: int8

Version History
Introduced in R2014a

See Also
lteCodeBlockSegment | lteTurboDecode | lteCRCDecode | lteDLSCHDecode |
lteULSCHDecode

 lteCodeBlockDesegment

2-69

lteCodeBlockSegment
Code block segmentation and CRC attachment

Syntax
cbs = lteCodeBlockSegment(blk)

Description
cbs = lteCodeBlockSegment(blk) splits the input data bit vector blk into a cell array cbs of
code block segments, with filler bits and type-24B CRC appended as appropriate, according to the
rules of TS 36.212 [1], Section 5.1.2. Code block segmentation occurs in transport blocks, after initial
type-24A CRC appending, for turbo encoded transport channels, including DL-SCH, UL-SCH, PCH,
and MCH.

The segmentation and padding operation ensures that code blocks entering the turbo coder are no
larger than 6144 in length and are all legal turbo code blocks sizes. The LTE turbo coder only
supports a finite set of code block sizes. If the input block length is greater than 6144, the input block
is split into a cell array of smaller code blocks where each individual block also has a type-24B CRC
appended to it. The NULL filler bits, represented by –1 at the output, are prepended to the first code
block so that all blocks in the set have acceptable lengths. If the input block length is less than or
equal to 6144, no segmentation occurs and no CRC is appended, but the single output code block may
have NULL filler bits prepended. The latter case still results in a cell array output containing a single
vector.

Examples

Segment Code Block

Perform code block segmentation, providing two vectors with different lengths.

Code block segmentation occurs if the input length is greater than 6144. Provide a vector of length
6144.

cbs1 = lteCodeBlockSegment(ones(6144,1))

cbs1 = 1x1 cell array
 {6144x1 int8}

No segmentation occurs.

Provide a vector of length 6145.

cbs2 = lteCodeBlockSegment(ones(6145,1))

cbs2=1×2 cell array
 {3072x1 int8} {3136x1 int8}

Segmentation occurs for input length greater than 6144.

2 Functions

2-70

Input Arguments
blk — Data bit vector
column vector

Data bit vector, specified as a column vector.

Output Arguments
cbs — Code block segments
cell array of integer column vectors

Code block segments, returned as a cell array with int8 column vector elements. If the input block
length is less than or equal to 6144, cbs is a cell array containing a single column vector. If the input
block length is greater than 6144, cbs is a cell array of multiple column vectors.
Data Types: cell

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: http://www.3gpp.org.

See Also
lteCodeBlockDesegment | lteCRCEncode | lteTurboEncode | lteDLSCHInfo | lteDLSCH

 lteCodeBlockSegment

2-71

https://www.3gpp.org

lteConvolutionalDecode
Convolutional decoding

Syntax
out = lteConvolutionalDecode(softBits)

Description
out = lteConvolutionalDecode(softBits) returns out, data recovered by convolutionally
decoding softBits, a vector of soft bits.

The decoder uses a soft input wrap-around Viterbi algorithm without any quantization. The algorithm
creates training data to append to the start and end of the packet by cyclically extending the packet.
The traceback decoding length is 42.

Examples

Perform Convolutional Decoding

Generate random bits and convolutionally encode them.

txBits = randi([0 1],1000,1);
codedData = lteConvolutionalEncode(txBits);

QPSK modulate the coded bits and add noise to the received symbols.

txSym = lteSymbolModulate(codedData,'QPSK');
noise = 0.5*complex(randn(size(txSym)),randn(size(txSym)));
rxSym = txSym + noise;

Show rxSymbols constellation, setting txSymbols as the reference constellation.

xylimits = [-2.5 2.5];
cdScope = comm.ConstellationDiagram('ReferenceConstellation',txSym,'XLimits',xylimits ,'YLimits',xylimits);
cdScope(rxSym)

2 Functions

2-72

Demodulate the noisy symbols to obtain soft bits, convolutionally decode the soft bits, and display the
number of erroneous bits.

softBits = lteSymbolDemodulate(rxSym,'QPSK','Soft');
out = lteConvolutionalDecode(softBits);
disp(sum(out ~= int8(txBits)))

 0

Input Arguments
softBits — Soft bit data
column vector

 lteConvolutionalDecode

2-73

Soft bit data, specified as a column vector. The function assumes that input data has been encoded by
a tail-biting convolutional code with constraint length 7, coding rate 1/3, and octal polynomials G0 =
133, G1 = 171 and G2 = 165. The function also assumes that the input data vector is structured as
three encoded parity streams concatenated block-wise in the form [D0 D1 D2], where D0, D1, and
D2 are the separate parity streams resulting from the original encoding with individual polynomials
G0, G1, and G2.
Data Types: double

Output Arguments
out — Convolutionally decoded data
column vector

Convolutionally decoded data, returned as a column vector. The length of this vector is 1/3 of the
length of the softBits input.
Data Types: int8

Version History
Introduced in R2014a

See Also
lteConvolutionalEncode | lteTurboDecode | lteRateRecoverConvolutional |
lteCRCDecode | lteBCHDecode | lteCQIDecode | lteDCIDecode

2 Functions

2-74

lteConvolutionalEncode
Convolutional encoding

Syntax
output = lteConvolutionalEncode(input)

Description
output = lteConvolutionalEncode(input) returns the result of convolutionally encoding the
input data vector input. The convolutional code has constraint length 7 and is tail biting with coding
rate 1/3 and octal polynomials G0=133, G1=171 and G2=165. Because the code is tail-biting, output
is three times the length of the input. The three encoded parity streams are concatenated block-wise
to form the encoded output that is, out = [D0 D1 D2] where D0, D1, and D2 are the separate
vectors resulting from encoding the input input with the individual polynomials G0, G1, and G2.

Examples

Perform Convolutional Encoding

Perform convolutional encoding and compare the length of the input vector to the length of the
output vector.

Perform convolutional encoding of a vector of length 100.

coded = lteConvolutionalEncode(ones(100,1));
size(coded)

ans = 1×2

 300 1

The resulting output is a coded vector of length 300, which is three times the length of the input
vector, as expected.

Input Arguments
input — Input data vector
column vector

Input data vector, specified as a column vector.

Output Arguments
output — Convolutionally encoded data
column vector

 lteConvolutionalEncode

2-75

Convolutionally encoded data, returned as a column vector. Because the code is tail biting, output is
three times the length of the input. The three encoded parity streams are concatenated block-wise to
form the encoded output that is, out = [D0 D1 D2] where D0,D1, and D2 are the separate vectors
resulting from encoding the input input with the individual octal polynomials G0=133, G1=171, and
G2=165.
Data Types: int8

Version History
Introduced in R2014a

See Also
lteConvolutionalDecode | lteTurboEncode | lteCRCEncode | lteRateMatchConvolutional
| lteBCH | lteDCIEncode

2 Functions

2-76

lteDCI
Downlink control information format structures and bit payloads

Syntax
dciout = lteDCI(enb,dciin)
[dciout,bitsout] = lteDCI(enb,dciin)
[___] = lteDCI(enb,dciin,opts)
[___] = lteDCI(enb,chs,dciin,opts)
[___] = lteDCI(enb,bitsin,opts)
[___] = lteDCI(enb,chs,bitsin,opts)

[___] = lteDCI(istr,opts)

Description
dciout = lteDCI(enb,dciin) returns the dciout structure containing a downlink control
information (DCI) message given input structures containing the cell-wide settings and the DCI
format setting. With this syntax, the messages created have the minimum possible sizes for the cell
configuration (link bandwidths, frame structure, and so on).

This function creates and manipulates DCI messages for the formats defined in TS 36.212 [2], Section
5.3.3. Later releases of the LTE standard may add UE-specific bit fields to a format. By default, any
UE-specific bit fields added after a format is first released, appear in the output but are inactive. Uses
for lteDCI include creation of a default DCI message, blind decoding of DCI format types, and
determining the sizes of the bit fields.

For information on link bandwidth assignment, see “Specifying Number of Resource Blocks” on page
2-101.

[dciout,bitsout] = lteDCI(enb,dciin) also returns a vector, bitsout, representing the set
of message fields mapped to the information bit payload (including any zero padding).

[___] = lteDCI(enb,dciin,opts) formats the returned structure through the options specified
by opts.

This syntax supports output options from prior syntaxes.

[___] = lteDCI(enb,chs,dciin,opts) permits formats to be extended with additional bit
fields on a per-UE basis using the UE-specific channel configuration structure, chs.

[___] = lteDCI(enb,bitsin,opts) uses bitsin to initialize all the message fields. bitsin is
treated as the DCI information bit payload and directly maps to bitsout, (bitsout == bitsin). By
default the format is deduced directly from the length of bitsin. Therefore, the length of bitsin
must be one of the valid format sizes for the given cell-wide parameters, enb. For more information,
see lteDCIInfo.

When multiple formats have the same payload size, the first matching format is selected. The function
checks formats 0 and 1A first, favoring the more likely common search space. If no match is found,
the remaining formats are searched in alphanumerical order. To override the blind format matching
in this syntax, add an explicit enb.DCIFormat field.

 lteDCI

2-77

[___] = lteDCI(enb,chs,bitsin,opts) permits formats to be extended with additional bit
fields on a per-UE basis using the UE-specific channel configuration structure, chs. The DCI payload
sizes for the combination of cell-wide and UE-specific parameters define the set of valid bitsin
lengths. For more information, see lteDCIInfo.

As with the previous syntax, the format type is deduced from the length of bitsin. To override the
blind format matching in this syntax, add an explicit chs.DCIFormat field.

[___] = lteDCI(istr,opts) accepts an input structure, istr. The fields described in the
structures enb and dciin must be present as part of istr. In this syntax, dciout, also carries
forward the NDLRB and DCIFormat fields supplied in istr.

This syntax is not recommended and will be removed in a future release. Instead, use one of the
previous syntaxes that separates the parameters into different input structures.

Examples

Create DCI

Create a format 1A DCI message structure with the distributed VRB allocation type. The allocation
message fields are contained in the dci1A.Allocation substructure. When the format 1A
AllocationType field is properly initialized at the input to the function, the appropriate set of fields
is output. For format 1A, setting AllocationType to 1 gives a distributed allocation and 0 gives a
localized allocation.

enb = struct('NDLRB',50,'CellRefP',1,'DuplexMode','FDD');
dciin = struct('DCIFormat','Format1A','AllocationType',1);
dci1A = lteDCI(enb,dciin)

dci1A = struct with fields:
 DCIFormat: 'Format1A'
 CIF: 0
 AllocationType: 1
 Allocation: [1x1 struct]
 ModCoding: 0
 HARQNo: 0
 NewData: 0
 RV: 0
 TPCPUCCH: 0
 TDDIndex: 0
 SRSRequest: 0
 HARQACKResOffset: 0

allocfields = dci1A.Allocation

allocfields = struct with fields:
 RIV: 0
 Gap: 0

The field values of this structure can be set and passed back through the function. Output the
information bits with the new values.

2 Functions

2-78

dci1A.RV = 1;
dci1A.Allocation.RIV = 6;
dci1Aupdated = lteDCI(enb,dci1A)

dci1Aupdated = struct with fields:
 DCIFormat: 'Format1A'
 CIF: 0
 AllocationType: 1
 Allocation: [1x1 struct]
 ModCoding: 0
 HARQNo: 0
 NewData: 0
 RV: 1
 TPCPUCCH: 0
 TDDIndex: 0
 SRSRequest: 0
 HARQACKResOffset: 0

allocfields = dci1Aupdated.Allocation

allocfields = struct with fields:
 RIV: 6
 Gap: 0

Create Format 1 TDD DCI Message

Create a format 1 DCI message structure with the resource allocation type 1 and TDD modulation
scheme. Set AllocationType to 1, and output the set of allocation fields. AllocationType is the
resource allocation header bit for format 1. Also initialize the ModCoding field at the input. All
noninitialized fields default to 0.

enb.NDLRB = 50;
enb.CellRefP = 1;
enb.DuplexMode = 'TDD';

dciin.DCIFormat = 'Format1';
dciin.AllocationType = 1;
dciin.ModCoding = 7;

dci1 = lteDCI(enb,dciin)

dci1 = struct with fields:
 DCIFormat: 'Format1'
 CIF: 0
 AllocationType: 1
 Allocation: [1x1 struct]
 ModCoding: 7
 HARQNo: 0
 NewData: 0
 RV: 0
 TPCPUCCH: 0
 TDDIndex: 0

 lteDCI

2-79

 HARQACKResOffset: 0

allocfields = dci1.Allocation

allocfields = struct with fields:
 Bitmap: '00000000000000'
 RBSubset: 0
 Shift: 0

For the specified configuration, the Allocation substructure includes the character vector bit field,
Bitmap, plus RBSubset and Shift fields.

Create DCI Bit Message

Create a format 1A DCI message structure and output the bitsout message. Modify the DCI
message and observe the change.

Create cell-wide settings and DCI message settings structures. For the DCI message, assign format
1A and allocation type 0. Generate the DCI message. View the DCI message structure and bits output.

enb = struct('NDLRB',25,'CellRefP',1,'DuplexMode','FDD');
dciin = struct('DCIFormat','Format1A','AllocationType',0);

[dciout,bitsout] = lteDCI(enb,dciin);

dciout

dciout = struct with fields:
 DCIFormat: 'Format1A'
 CIF: 0
 AllocationType: 0
 Allocation: [1x1 struct]
 ModCoding: 0
 HARQNo: 0
 NewData: 0
 RV: 0
 TPCPUCCH: 0
 TDDIndex: 0
 SRSRequest: 0
 HARQACKResOffset: 0

bitsout'

ans = 1x25 int8 row vector

 1 0

The first bit in bitsout is a 1 for DCI message format 1A. The second bit is 0 for AllocationType
= 0.

Modify the allocation type to 1. Regenerate the DCI message. View the DCI message structure and
bits output.

2 Functions

2-80

dciin = struct('DCIFormat','Format1A','AllocationType',1);

[dciout,bitsout] = lteDCI(enb,dciin);

dciout

dciout = struct with fields:
 DCIFormat: 'Format1A'
 CIF: 0
 AllocationType: 1
 Allocation: [1x1 struct]
 ModCoding: 0
 HARQNo: 0
 NewData: 0
 RV: 0
 TPCPUCCH: 0
 TDDIndex: 0
 SRSRequest: 0
 HARQACKResOffset: 0

bitsout'

ans = 1x25 int8 row vector

 1 1 0

Note the AllocationType and the second bit of bitsout both changed from 0 to 1.

Modify the DCI message format to 0. Regenerate the DCI message. View the DCI message structure
and bits output.

dciin = struct('DCIFormat','Format0','AllocationType',1);

[dciout,bitsout] = lteDCI(enb,dciin);

dciout

dciout = struct with fields:
 DCIFormat: 'Format0'
 CIF: 0
 Allocation: [1x1 struct]
 ModCoding: 0
 NewData: 0
 TPC: 0
 CShiftDMRS: 0
 TDDIndex: 0
 CSIRequest: 0
 SRSRequest: 0
 AllocationType: 1

bitsout'

ans = 1x25 int8 row vector

 0 1 0

 lteDCI

2-81

The first bit in bitsout change from 1 to 0. Because the message formats 0 and 1A have the same
length, the first bit in bitsout is used to distinguish these formats. For all other formats, the
message length is used to distinguish the format types. For format 0, the setting for
AllocationType is specified by bit number 24.

Optional DCI Message Views

Create a format 1 DCI message structure and supply the optional 'fieldsizes' and
'excludeunusedfields' inputs. By default, the output structure contains all possible fields for the
input format. Not all fields are active for the given input parameters. Specifically, some might not be
present in the payload bits. To see the number of bits associated with each field, use the optional
'fieldsizes' input. The 'fieldsizes' option also adds the 'Padding' field to the output
indicating the number of padding bits.

enb.NDLRB = 50;
enb.CellRefP = 1;
enb.DuplexMode = 'TDD';

dciin.DCIFormat = 'Format1';
dciin.AllocationType = 1;
dciin.ModCoding = 7;

opts = {'fieldsizes'}

opts = 1x1 cell array
 {'fieldsizes'}

dci1 = lteDCI(enb,dciin,opts)

dci1 = struct with fields:
 DCIFormat: 'Format1'
 CIF: 0
 AllocationType: 1
 Allocation: [1x1 struct]
 ModCoding: 5
 HARQNo: 4
 NewData: 1
 RV: 2
 TPCPUCCH: 2
 TDDIndex: 2
 HARQACKResOffset: 0
 Padding: 0

allocfields = dci1.Allocation

allocfields = struct with fields:
 Bitmap: 14
 RBSubset: 2
 Shift: 1

View the output to see the sizes for all DCI message fields.

2 Functions

2-82

Remove unused (0 bit) fields from the output structure by using the 'excludeunusedfields'
option.

opts = {'fieldsizes','excludeunusedfields'}

opts = 1x2 cell
 {'fieldsizes'} {'excludeunusedfields'}

dci1 = lteDCI(enb,dciin,opts)

dci1 = struct with fields:
 DCIFormat: 'Format1'
 AllocationType: 1
 Allocation: [1x1 struct]
 ModCoding: 5
 HARQNo: 4
 NewData: 1
 RV: 2
 TPCPUCCH: 2
 TDDIndex: 2

allocfields = dci1.Allocation

allocfields = struct with fields:
 Bitmap: 14
 RBSubset: 2
 Shift: 1

The output fields with bit length equal to zero bits no longer appear in the output.

Blindly Recover Modified Format 1A DCI Message

Create a format 1A DCI message structure with the distributed VRB allocation type. The Allocation
substructure contains the allocation message fields. To specify a distributed allocation, set the format
1A AllocationType field to 1. To specify a localized allocation, set the AllocationType field to 0.

enb.NDLRB = 50;
enb.CellRefP = 1;
enb.DuplexMode = 'FDD';
dciin.DCIFormat = 'Format1A';
dciin.AllocationType = 1;
[dci1A,bits] = lteDCI(enb,dciin);
disp(dci1A)

 DCIFormat: 'Format1A'
 CIF: 0
 AllocationType: 1
 Allocation: [1x1 struct]
 ModCoding: 0
 HARQNo: 0
 NewData: 0
 RV: 0

 lteDCI

2-83

 TPCPUCCH: 0
 TDDIndex: 0
 SRSRequest: 0
 HARQACKResOffset: 0

disp(dci1A.Allocation)

 RIV: 0
 Gap: 0

Adjust the RV and RIV field values of dci1A. Call the lteDCI function again to update the
information bits with the new values. View the updated message fields by blindly recovering them
directly from the output DCI message bits.

dci1A.RV = 1;
dci1A.Allocation.RIV = 6;
[~,bitsUpdated] = lteDCI(enb,dci1A);
dci1Arec = lteDCI(enb,bitsUpdated);
disp(dci1Arec)

 DCIFormat: 'Format1A'
 CIF: 0
 AllocationType: 1
 Allocation: [1x1 struct]
 ModCoding: 0
 HARQNo: 0
 NewData: 0
 RV: 1
 TPCPUCCH: 0
 TDDIndex: 0
 SRSRequest: 0
 HARQACKResOffset: 0

disp(dci1Arec.Allocation)

 RIV: 6
 Gap: 0

Create DCI Message Using UE-Specific Control

Use an additional UE-specific input parameter structure to control UE-specific DCI fields. Create a
message to be sent on the EPDCCH that is intended for a UE configured with the carrier indicator
field, CIF.

Initialize cell-wide structure enb, DCI format structure dciin, UE-specific structure chs, and output
options structure opts.

enb.NDLRB = 50;
enb.CellRefP = 1;
enb.DuplexMode = 'TDD';

dciin.DCIFormat = 'Format1';
dciin.AllocationType = 1;
dciin.ModCoding = 7;

chs.ControlChannelType = 'EPDCCH';

2 Functions

2-84

chs.EnableCarrierIndication = 'On';
chs.EnableSRSRequest = 'Off';
chs.EnableMultipleCSIRequest = 'Off';

opts = {'fieldsizes','excludeunusedfields'}

opts = 1x2 cell
 {'fieldsizes'} {'excludeunusedfields'}

Create and view the DCI message.

dci1 = lteDCI(enb,chs,dciin,opts)

dci1 = struct with fields:
 DCIFormat: 'Format1'
 CIF: 3
 AllocationType: 1
 Allocation: [1x1 struct]
 ModCoding: 5
 HARQNo: 4
 NewData: 1
 RV: 2
 TPCPUCCH: 2
 TDDIndex: 2
 HARQACKResOffset: 2

allocfields = dci1.Allocation

allocfields = struct with fields:
 Bitmap: 14
 RBSubset: 2
 Shift: 1

Based on the UE-specific settings in chs, the output includes the three bit CIF field and the two bit
HARQACKResOffset field. If these fields were present in dciin, their values would be mapped into
the appropriate positions in the information bits at the output.

Create DCI Message Using UE-Specific Control And Bit Stream

Use an additional UE-specific input parameter structure to control UE-specific DCI fields. Create a
message to be sent on the EPDCCH that is intended for a UE configured with the carrier indicator
field, CIF.

Initialize cell-wide structure enb, UE-specific structure chs, and output options structure opts.

enb.NDLRB = 50;
enb.CellRefP = 1;
enb.DuplexMode = 'TDD';

chs.DCIFormat = 'Format1B';
chs.ControlChannelType = 'EPDCCH';
chs.EnableCarrierIndication = 'On';
chs.EnableSRSRequest = 'Off';

 lteDCI

2-85

chs.EnableMultipleCSIRequest = 'Off';
chs.NTxAnts = 1;

opts = {'fieldsizes','excludeunusedfields'};

Based on the UE-specific settings in chs, the DCI message length is extended to include fields CIF (3
bits) and HARQACKResOffset (2 bits). Using lteDCIInfo and chs to determine the correct input
bitstream length, create bitsin.

info = lteDCIInfo(enb,chs);

bitsin = zeros(getfield(info,chs.DCIFormat),1);

Create a new DCI message using cell-wide settings, UE-specific Control and bitsin.

[dciout,bitsout] = lteDCI(enb,chs,bitsin,opts);
dciout

dciout = struct with fields:
 DCIFormat: 'Format1B'
 CIF: 3
 AllocationType: 1
 Allocation: [1x1 struct]
 ModCoding: 5
 HARQNo: 4
 NewData: 1
 RV: 2
 TPCPUCCH: 2
 TDDIndex: 2
 TPMI: 2
 PMI: 1
 HARQACKResOffset: 2

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
NULRB Required Scalar integer from 6 to 110 Number of uplink resource blocks.

(NRB
UL)

2 Functions

2-86

Parameter Field Required or
Optional

Values Description

DCIFormat Required (see
syntax
descriptions
for
applicability)

'Format0', 'Format1',
'Format1A', 'Format1B',
'Format1C', 'Format1D',
'Format2', 'Format2A',
'Format2B', 'Format2C',
'Format2D', 'Format3',
'Format3A', 'Format4',
'Format5', 'Format5A'

Downlink control information (DCI)
format

CellRefP Optional 1 (default), 2, 4 Number of cell-specific reference
signal (CRS) antenna ports

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as
either:

• 'FDD' for Frequency Division
Duplex

• 'TDD' for Time Division Duplex

dciin — DCI settings
structure

DCI settings, specified as a structure that can contain these fields.

Parameter Field Required or
Optional

Values Description

DCIFormat Required,
except when
bitsin is
input

'Format0', 'Format1', 'Format1A',
'Format1B', 'Format1C', 'Format1D',
'Format2', 'Format2A', 'Format2B',
'Format2C', 'Format2D', 'Format3',
'Format3A', 'Format4', 'Format5',
'Format5A'

Downlink control information
(DCI) format

Any format-specific fields can be initialized by adding them to dciin. See dciout for specific fields
output for each DCIFormat.

opts — Formatting options for output DCI structure
character vector | cell array of character vectors | string array

Formatting options for output DCI structure, specified as a character vector, cell array of character
vectors, or a string array. You can specify a format for the Field content and Fields to include. For
convenience, you can specify several options as a single character vector or string scalar by a space-
separated list of values placed inside the quotes. Values for opts when specified as a character
vector include (use double quotes for string):

Category Options Description
Field content 'fieldvalues' (default) Set the fields to zero or to their input

values.

 lteDCI

2-87

Category Options Description
'fieldsizes' Sets the field values to their bit sizes

and adds the Padding field to dciout.
Padding indicates the number of
padding bits appended.

Fields to include 'includeallfields' (default) dciout includes all possible fields for
the requested DCI format.

'excludeunusedfields' dciout excludes fields that have zero
length for the given parameter set.

Example: 'fieldsizes excludeunusedfields', "fieldsizes excludeunusedfields",
{'fieldsizes','excludeunusedfields'}, or ["fieldsizes","excludeunusedfields"]
specify the same formatting options.
Data Types: char | string | cell

chs — User-equipment-related channel configuration
structure

User-equipment-related (UE-related) channel configuration, specified as a structure containing these
UE-specific fields.

Note All fields in chs are optional. The presence of these optional fields depends on:

• Whether the transmission of DCI message is in a PDCCH using common search space mapping or
in an EPDCCH.

• The release-specific features configured at the destination UE.

These additional UE-specific bit fields are off by default.

DCIFormat — DCI format name
'Format0' | 'Format1' | 'Format1A' | 'Format1B' | 'Format1C' | 'Format1D' | 'Format2' |
'Format2A' | 'Format2B' | 'Format2C' | 'Format2D' | 'Format3' | 'Format3A' | 'Format4' |
'Format5''Format5A'

DCI format name, specified as a character vector or string scalar. For string scalar, use double
quotes. See syntax descriptions for applicability.
Data Types: char | string

ChannelControlType — Physical control channel type
'PDCCH' (default) | 'EPDCCH' | optional

Physical control channel type used to carry DCI formats, specified as 'PDCCH' or 'EPDCCH'. The
setting for ChannelControlType affects the presence of the HARQ-ACK resource offset field and
message padding.
Data Types: char | string

SearchSpace — Search space mapping
'UESpecific' (default) | 'Common' | optional

2 Functions

2-88

Search space mapping for DCI formats 0/1A/1C, specified as 'UESpecific' or 'Common'. This field
is only applicable for PDCCH. None of the additional fields can be present when formats 0 or 1A are
mapped into the PDCCH common search space.
Data Types: char | string

EnableCarrierIndication — Option to enable carrier indication
'Off' (default) | 'On' | optional

Option to enable carrier indication field (CIF) in the UE configuration, specified as 'Off' or 'On'. By
default, EnableCarrierIndication is disabled. When EnableCarrierIndication is enabled
('On'), the CIF is present in the UE-specific configuration.
Data Types: char | string

EnableSRSRequest — Option to enable SRS request
'Off' (default) | 'On' | optional

Option to enable SRS request in the UE configuration, specified as 'Off' or 'On'. By default,
EnableSRSRequest is disabled. When EnableSRSRequest is enabled ('On'), the SRS request field
is present in UE-specific formats 0/1A for FDD or TDD and formats 2B/2C/2D for TDD.
Data Types: char | string

EnableMultipleCSIRequest — Option to enable multiple CSI requests
'Off' (default) | 'On' | optional

Option to enable multiple CSI requests in the UE configuration, specified as 'Off' or 'On'. By
default, EnableMultipleCSIRequest is disabled. When EnableMultipleCSIRequest is enabled
('On'), the UE is configured to process multiple channel state information (CSI) requests from cells.
Enabling multiple CSI requests affects the length of the CSI request field in UE-specific formats 0 and
4.
Data Types: char | string

NTxAnts — Number of UE transmission antennas
1 (default) | 2 | 4 | optional

Number of UE transmission antennas, specified as 1, 2, or 4. The number of UE transmission
antennas affects the length of the precoding information field in DCI format 4.
Data Types: double

PSSCHNSubchannels — Number of sub-channels in V2X PSSCH pool
1 (default) | integer scalar from 2 to 110 | optional

Number of sub-channels in V2X PSSCH pool, specified as an integer scalar from 1 to 110. It affects
the length of RIV in format 5A
Data Types: double

Data Types: struct

bitsin — Input bits
vector

Input bits, specified as a column vector. bitsin is treated as the DCI information bit payload, that is,
bitsout == bitsin. The length of bitsin must be one of the valid sizes for the format type and

 lteDCI

2-89

number of resource blocks. For information on link bandwidth assignment, see “Specifying Number
of Resource Blocks” on page 2-101. For information on valid sizes, see lteDCIInfo.

When bitsin is specified, the structure dciin does not require the DCIFormat field. If the
DCIFormat field is not present, lteDCI attempts to decode the format from the length of the payload
vector bitsin.
Data Types: double

istr — Input structure
structure

Input structure, specified as a structure that includes all the fields described in the structures enb
and dciin.

Use of the istr input syntax is not recommended and will be removed in a future release. Instead,
use one of the previous syntaxes that separates the parameters into different input structures.

Output Arguments
dciout — DCI message structure
structure

DCI message structure, returned as a structure whose fields match the associated DCI format
contents.

The field names associated with dciout depend on the DCI format field in dciin. By default, all
values are set to zero. However, if any of the DCI fields are already present in the input dciin, their
values are carried forward into dciout. The input field values appear in the associated bit positions
in bitsout. Carrying the values forward allows for easy initialization of DCI field values, particularly
the resource allocation type, which affects the fields used by the format. dciout also carries forward
the NDLRB and DCIFormat fields supplied in dciin.

This table presents the fields associated with each DCI format as defined in TS 36.212 [2], Section
5.3.3.

DCI Formats dciout Fields Size Description
'Format0' DCIFormat - 'Format0'

CIF 0 or 3 bits Carrier indicator field
FreqHopping 1 bit PUSCH frequency hopping flag
Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation, coding scheme, and

redundancy version
NewData 1 bit New data indicator
TPC 2 bits PUSCH TPC command
CShiftDMRS 3 bits Cyclic shift for DM RS

2 Functions

2-90

DCI Formats dciout Fields Size Description
TDDIndex 2 bits For TDD config 0, this field is the Uplink

Index.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
CSIRequest 1, 2, or 3 bits CSI request
SRSRequest 0 or 1 bit SRS request. This field can only be

present in DCI formats scheduling
PUSCH which are mapped onto the UE
specific search space given by the C-
RNTI

AllocationType 1 bit Resource allocation type, only present if
NRB

UL≤NRB
DL.

'Format1' DCIFormat - 'Format1'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation and coding scheme
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

NewData 1 bit New data indicator
RV 2 bits Redundancy version
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format1A' DCIFormat - 'Format1A'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit VRB assignment flag: 0 (localized), 1

(distributed)

 lteDCI

2-91

DCI Formats dciout Fields Size Description
Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation and coding scheme
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

NewData 1 bit New data indicator
RV 2 bits Redundancy version
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
SRSRequest 0 or 1 bit SRS request. This field can only be

present in DCI formats scheduling
PUSCH which are mapped onto the UE
specific search space given by the C-
RNTI

HARQACKResOffset 2 bits HARQ-ACK resource offset. Present
when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format1B' DCIFormat - 'Format1B'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit VRB assignment flag: 0 (localized), 1

(distributed)
Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation and coding scheme
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

NewData 1 bit New data indicator
RV 2 bits Redundancy version
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.

2 Functions

2-92

DCI Formats dciout Fields Size Description
TPMI 2 bits for two

antennas

4 bits for four
antennas

PMI information

PMI 1 bit PMI confirmation
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format1C' DCIFormat - 'Format1C'
Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation and coding scheme

'Format1D' DCIFormat - 'Format1D'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit VRB assignment flag: 0 (localized), 1

(distributed)
Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation and coding scheme
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

NewData 1 bit New data indicator
RV 2 bits Redundancy version
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
TPMI 2 bits for two

antennas

4 bits for four
antennas

Precoding TPMI information

DlPowerOffset 1 bit Downlink power offset
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format2' DCIFormat - 'Format2'
CIF 0 or 3 bits Carrier indicator field

 lteDCI

2-93

DCI Formats dciout Fields Size Description
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

SwapFlag 1 bit Transport block to codeword swap flag
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1
RV1 2 bits Redundancy version for transport block

1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
RV2 2 bits Redundancy version for transport block

2
PrecodingInfo 3 bits for two

antennas

6 bits for four
antennas

Precoding information

HARQACKResOffset 2 bits HARQ-ACK resource offset. Present
when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format2A' DCIFormat - 'Format2A'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation

2 Functions

2-94

DCI Formats dciout Fields Size Description
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

SwapFlag 1 bit Transport block to codeword swap flag
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1
RV1 2 bits Redundancy version for transport block

1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
RV2 2 bits Redundancy version for transport block

2
PrecodingInfo 0 bits for two

antennas

2 bits for four
antennas

Precoding information

HARQACKResOffset 2 bits HARQ-ACK resource offset. Present
when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format2B' DCIFormat - 'Format2B'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.

 lteDCI

2-95

DCI Formats dciout Fields Size Description
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

ScramblingId 1 bit Scrambling identity
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1
RV1 2 bits Redundancy version for transport block

1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
RV2 2 bits Redundancy version for transport block

2
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format2C' DCIFormat - 'Format2C'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

TxIndication 3 bits Antenna ports, scrambling identity, and
number of layers indicator

SRSRequest Varies SRS request. Only present for TDD.
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1

2 Functions

2-96

DCI Formats dciout Fields Size Description
RV1 2 bits Redundancy version for transport block

1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
RV2 2 bits Redundancy version for transport block

2
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format2D' DCIFormat - 'Format2D'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

TxIndication 3 bits Antenna ports, scrambling identity, and
number of layers indicator

SRSRequest Varies SRS request. Only present for TDD.
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1
RV1 2 bits Redundancy version for transport block

1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
RV2 2 bits Redundancy version for transport block

2

 lteDCI

2-97

DCI Formats dciout Fields Size Description
REMappingAndQCL 2 bits PDSCH RE Mapping and Quasi-Co-

Location Indicator
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format3' DCIFormat - 'Format3'
TPCCommands Varies TPC commands for PUCCH and PUSCH

'Format3A' DCIFormat - 'Format3A'
TPCCommands Varies TPC commands for PUCCH and PUSCH

'Format4' DCIFormat - 'Format4'
CIF 0 or 3 bits Carrier indicator field
Allocation Varies Resource block assignment/allocation
TPC 2 bits PUSCH TPC command
CShiftDMRS 3 bits Cyclic shift for DM-RS
TDDIndex 2 bits For TDD config 0, this field is Uplink

Index.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
CSIReq Varies CSI request
SRSRequest 2 bits SRS request
AllocationType 1 bit Resource allocation header type 0 or

type 1.
ModCoding 5 bits Modulation, coding scheme, and

redundancy version
NewData 1 bit New data indicator
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
PrecodingInfo 3 bits for two

antennas

6 bits for four
antennas

Precoding information

'Format5' DCIFormat - 'Format5'
PSCCHResource 6 bits Resource for PSCCH

2 Functions

2-98

DCI Formats dciout Fields Size Description
TPC 1 bit TPC command for PSCCH and PSSCH
FreqHopping 1 bit Frequency hopping flag
Allocation Varies Resource block assignment and hopping

resource allocation
TimeResourcePatte
rn

7 bits Time resource pattern

'Format5A' DCIFormat - 'Format5A'
CIF 3 bits Carrier indicator
FirstSubchannelId
x

log2 Nsubchannel
SL Lowest index of the subchannel

allocation to the initial transmission
RIV from 0 to 13 bits,

log2

Nsubchannel
SL × Nsubchannel

SL + 1
2

Resource indication value

TimeGap 4 bits Time gap between initial transmission
and retransmission

SLIndex 2 bits SL SPS configuration index

The DCIFormat field indicates the DCI format. All other fields are represented by an integer which is
converted to a set of binary message bits for each individual field.

The ModCoding fields in the table correspond to the variable IMCS defined in TS 36.213 [3], Section
7.1.7, Table 7.1.7.1-1. This field expects to be assigned a decimal number. The call to lteDCI
serializes ModCoding into a 5-bit field value. For example, the ModCoding field for 64QAM
modulation (Qm) and transport block index (ITBS) 15 is assigned 17 (a decimal number).

The fields included in the Allocation structure vary based on the format type as outlined in these
tables. All fields take a character vector of zeros and ones with the appropriate bit length.

Resource allocation type 0 on page 2-101
DCI Formats Allocation Fields Size (bits) Description
'Format1'
'Format2'
'Format2A'
'Format2B'

Bitmap Varies Bitmap value in terms of
RBG, specified as a
character vector

 lteDCI

2-99

Resource allocation type 1 on page 2-101
DCI Formats Allocation Fields Size (bits) Description
'Format1'
'Format2'
'Format2A'
'Format2B'

Bitmap Varies Bitmap value in terms of
RBG, specified as a
character vector

RBSubset 2 bits Selected resource blocks
subset indicator

Shift 1 bit Shift of the resource
allocation span indicator

Resource allocation type 2 (localized) on page 2-102
DCI Formats Allocation Fields Size (bits) Description
'Format1A'
'Format1B'
'Format1C'
'Format1D'

RIV Varies Resource indication value

Resource allocation type 2 (distributed) on page 2-102
DCI Formats Allocation Fields Size (bits) Description
'Format1A'
'Format1B'
'Format1C'
'Format1D'

RIV Varies Resource indication value
Gap 1 bit Gap value: 0 (gap1), 1

(gap2)

Uplink Nonhopping allocation on page 2-102
DCI Formats Allocation Fields Size (bits) Description
'Format0'
'Format5'

RIV Varies Resource indication value

Uplink Hopping allocation on page 2-102
DCI Formats Allocation Fields Size (bits) Description
'Format0'
'Format5'

RIV Varies Resource indication value
HoppingBits Varies When the number of

hopping bits is 1,
HoppingBits value can
be 0 or 1.
When the number of
hopping bits is 2,
HoppingBits value can
be 00, 01, 10, or 11.
See TS 36.213 [3], Table
8.4-2.

bitsout — DCI message in bit payload form
bit vector

2 Functions

2-100

DCI message in bit payload form, returned as a column vector. bitsout represents the set of
message fields mapped to the information bit payload (including any zero-padding).

More About
Specifying Number of Resource Blocks

The number of resource blocks specifies the uplink and downlink bandwidth. The LTE Toolbox
implementation assumes symmetric link bandwidth unless you specifically assign different values to
NULRB and NDLRB. If the number of resource blocks is initialized in only one link direction, then the
initialized number of resource blocks (NULRB or NDLRB) is used for both uplink and downlink. When
this mapping is used, no warning is displayed. An error occurs if NULRB and NDLRB are both
undefined.

Algorithms
Resource allocation type 0

In type 0 resource allocation, a bitmap represents a resource block group (RBG) allocated to a UE. P
gives the RBG size, which can be deduced from TS 36.213 [3], Table 7.1.6.1-1 for a given system
bandwidth. The number of bits in the Bitmap field is equal to NDLRB/P . Each bit in the Bitmap
selects a small contiguous group whose size depends on the bandwidth (RBG: 1,…,4). The maximum
resource block (RB) coverage of any type 0 allocation is the entire bandwidth, that is, a type 0
allocation with all the bits in bitmap set to '1' is equivalent to the entire bandwidth.

Example 50 RB bandwidth

The number of bits in Bitmap are 17. Each bit in the 17-bit bitmap selects a group of three RB (apart
from the last group, which only contains two RB for this bandwidth). Each bit is associated with a
group of RBs with the same color.

Resource allocation type 1

In type 1 resource allocation, a bitmap indicates physical resource blocks inside a selected resource
block group subset p, where 0 ≤ p < P. The maximum resource block (RB) coverage of any type 1
allocation is a subset of entire bandwidth. A type 1 allocation, even with all the bits in the Bitmap set
to '1', does not span the entire bandwidth. Each bit in the bitmap selects a single RB from "islands"
of small contiguous groups whose size (RBG) and separation depend on the total bandwidth. This
grouping provides the provision of selecting a single RB without turning on any other RB.

In type 1, the resource block assignment signaling is split into three field parts:

1 RBSubset — Represents the selected resource block group subset
2 Shift — Indicates whether to apply an offset when interpreting the bitmap
3 Bitmap — Contains the bitmap that indicates to the UE the specific physical resource block

within the resource block group subset.

In comparison to type 0, the bitmap size for type 1 is always short by log2 P + 1 bits, where P is
defined as in resource allocation type 0.

 lteDCI

2-101

Example 50 RB bandwidth

The number of bits in Bitmap are 14 (3 bits short as compared to type 0, due to RBSubset and
Shift parameters). Each bit in the 14-bit bitmap selects an individual RB inside a selected subset.
The figure shows all the bits in Bitmap set to '1' for different subsets and offset values.

Resource allocation type 2

In type 2 resource allocation, physical resource blocks are not directly allocated. Instead, virtual
resource blocks are allocated, which are then mapped onto physical resource blocks. Type 2
allocation supports both localized and distributed virtual resource block allocation, differentiated by
one-bit flag. The starting point of the virtual resource block and the length in terms of the
contiguously allocated virtual resource blocks can be derived from Resource Indication Value (RIV)
signaled within the DCI.

Example 50 RB bandwidth

A UE is allocated a bandwidth of 25 resource blocks (LCRBs=25), starting from resource block 10
(RBstart=10) in the frequency domain. To calculate the RIV value, refer to the formula given in TS
36.213 [3], Section 7.1.6.3, which yields RIV = 1210. Using this RIV, which is signaled in the DCI, the
UE can unambiguously derive the starting resource block and the number of allocated resource
blocks from RIV again.

Uplink Nonhopping Resource Allocation

For uplink nonhopping resource allocation, the rules for type 2 localized resource allocation apply for
deriving the resource allocation from the RIV value.

Uplink Hopping Resource Allocation

When FreqHopping is set to 1, uplink hopping resource allocation is available. For uplink hopping
resource allocation, two types of hopping are used: Type 1 PUSCH Hopping and Type 2 PUSCH
Hopping. Do not confuse these types with downlink resource allocation types 1 and 2 described
earlier. Type 1 PUSCH Hopping is calculated using the RIV value and parameters signaled by higher

2 Functions

2-102

layers. Type 2 PUSCH Hopping is calculated using a predefined pattern, which is a function of the
subframe and frame number, as defined in TS 36.211 [1], Section 5.3.4. The fundamental set of
resource blocks used as part of the hopping is calculated via the rules for type 2 localized resource
allocation from the RIV value, except either 1 or 2 (depending on system bandwidth) hopping bits
have been deducted from the resource allocation bitmap. These hopping bits specify whether Type 1
or Type 2 PUSCH Hopping is used, and for the case of 2 bits, variations of the position of the Type 1
hopping in the frequency domain. The definition of the hopping bits can be found in TS 36.213 [3],
Table 8.4-2. Bandwidth dependency for the number of hopping bits allocated follows the following
rule:

• If the system BW is NULRB<=49, the number of hopping bits is 1, and HoppingBits can be 0 or 1.
• If the system BW is NULRB>49, the number of hopping bits is 2, and HoppingBits can be 00, 01,

10, or 11.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel
coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[3] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteDCIEncode | lteDCIDecode | lteDCIResourceAllocation | lteDCIInfo | lteSCI

 lteDCI

2-103

https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org

lteDCIDecode
Downlink control information decoding

Syntax
[dcibits,crc_rnti] = lteDCIDecode(dcilen,softbits)
[dcibits,crc_rnti] = lteDCIDecode(enb,softbits)
[dcibits,crc_rnti] = lteDCIDecode(enb,chs,softbits)

Description
[dcibits,crc_rnti] = lteDCIDecode(dcilen,softbits) recovers a downlink control
information (DCI) message, given the DCI vector length, dcilen, and a softbits input vector. For
more information, see “DCI Message Decoding” on page 2-109.

[dcibits,crc_rnti] = lteDCIDecode(enb,softbits) uses the cell-wide configuration
structure, enb. With this syntax, the DCI message length is deduced from enb.DCIFormat and cell-
wide settings in enb.

[dcibits,crc_rnti] = lteDCIDecode(enb,chs,softbits) uses the UE-specific channel
configuration structure, chs. With this syntax, the DCI message length is deduced from
chs.DCIFormat, the cell-wide configuration in enb, and the UE-specific channel configuration in
chs.

Examples

DCI Decoding

Perform DCI decoding of a sample codeword and return the decoded vector, decodedDCIbits, of the
length defined for the DCI Format 1 message.

enb.NDLRB = 50;
enb.CellRefP = 1;
enb.DuplexMode = 'FDD';

dciInfo = lteDCIInfo(enb);
dcilen = dciInfo.Format1

dcilen = uint64
 31

ue.PDCCHFormat = 1;
ue.RNTI = 10;
ue.NDLRB = 50;

dciBits = zeros(dcilen,1);
cw = lteDCIEncode(ue,dciBits);

[decodedDCIbits,crcRNTI] = lteDCIDecode(dcilen,cw);

2 Functions

2-104

decodedDCIbitslen = size(decodedDCIbits)

decodedDCIbitslen = 1×2

 31 1

crcRNTI

crcRNTI = uint32
 10

The decodedDCIbits length matches the value of dcilen. The crcRNTI output has a value of 10,
corresponding to the RNTI values used in CRC masking.

DCI Decoding with ENB Structure

Perform DCI decoding of a sample codeword and return the decoded vector, decodedDCIbits, of the
length defined for the DCI Format 1 message. The lteDCIDecode function uses fields in enb to
determine DCI length.

enb.NDLRB = 25;
enb.CellRefP = 1;
enb.DuplexMode = 'FDD';

dciInfo = lteDCIInfo(enb);
dcilen = dciInfo.Format1

dcilen = uint64
 27

ue.PDCCHFormat = 1;
ue.RNTI = 7;
ue.NDLRB = 25;

dciBits = zeros(dcilen,1);
cw = lteDCIEncode(ue,dciBits);

Define the enb configuration structure for recovery of the DCI message and RNTI. Perform DCI
decoding using enb.

enb.DCIFormat = 'Format1';

[decodedDCIbits,crcRNTI] = lteDCIDecode(enb,cw);

decodedDCIbitslen = size(decodedDCIbits)

decodedDCIbitslen = 1×2

 27 1

crcRNTI

 lteDCIDecode

2-105

crcRNTI = uint32
 7

The decodedDCIbits length matches the value of dcilen. The crcRNTI value recovered
corresponds to and matches ue.RNTI, which is the RNTI value used in the CRC masking.

DCI Decoding Using Channel Structure

Perform DCI decoding of a sample codeword and return the decoded vector, decodedDCIbits, of the
length defined for the DCI Format 2A message.

enb.NDLRB = 25;
enb.CellRefP = 1;
enb.DuplexMode = 'FDD';

dciInfo = lteDCIInfo(enb);
dcilen = dciInfo.Format2A

dcilen = uint64
 36

ue.PDCCHFormat = 2;
ue.RNTI = 5;
ue.NDLRB = 25;

dciBits = zeros(dcilen,1);
cw = lteDCIEncode(ue,dciBits);

Define the ue-specific configuration structure, chs, for recovery of the DCI message and RNTI.
Perform DCI decoding using enb and chs.

chs.DCIFormat = 'Format2A';
chs.ControlChannelType = 'PDCCH';
chs.EnableCarrierIndication = 'Off';

[decodedDCIbits,crcRNTI] = lteDCIDecode(enb,chs,cw);

decodedDCIbitslen = size(decodedDCIbits)

decodedDCIbitslen = 1×2

 36 1

crcRNTI

crcRNTI = uint32
 5

The decodedDCIbits length matches the value of dcilen. The crcRNTI value recovered
corresponds to and matches ue.RNTI, which is the RNTI value used in the CRC masking.

2 Functions

2-106

Input Arguments
dcilen — Length of recovered DCI message vector
integer

Length of recovered DCI message vector, specified as a positive integer.
Data Types: double

softbits — Floating-point soft bits
vector

Floating-point soft bits, specified as a column vector.
Data Types: double | int8

enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
NULRB Required Scalar integer from 6 to 110 Number of uplink resource blocks.

(NRB
UL)

DCIFormat Required (see
syntax
descriptions
for
applicability)

'Format0', 'Format1',
'Format1A', 'Format1B',
'Format1C', 'Format1D',
'Format2', 'Format2A',
'Format2B', 'Format2C',
'Format2D', 'Format3',
'Format3A', 'Format4',
'Format5', 'Format5A'

Downlink control information (DCI)
format

CellRefP Optional 1 (default), 2, 4 Number of cell-specific reference
signal (CRS) antenna ports

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as
either:

• 'FDD' for Frequency Division
Duplex

• 'TDD' for Time Division Duplex

chs — User-equipment-related channel configuration
structure

User-equipment-related (UE-related) channel configuration, specified as a structure containing these
UE-specific fields.

Note All fields in chs are optional. The presence of these optional fields depends on:

 lteDCIDecode

2-107

• Whether the transmission of DCI message is in a PDCCH using common search space mapping or
in an EPDCCH.

• The release-specific features configured at the destination UE.

These additional UE-specific bit fields are off by default.

DCIFormat — DCI format name
'Format0' | 'Format1' | 'Format1A' | 'Format1B' | 'Format1C' | 'Format1D' | 'Format2' |
'Format2A' | 'Format2B' | 'Format2C' | 'Format2D' | 'Format3' | 'Format3A' | 'Format4' |
'Format5''Format5A'

DCI format name, specified as a character vector or string scalar. For string scalar, use double
quotes. See syntax descriptions for applicability.
Data Types: char | string

ChannelControlType — Physical control channel type
'PDCCH' (default) | 'EPDCCH' | optional

Physical control channel type used to carry DCI formats, specified as 'PDCCH' or 'EPDCCH'. The
setting for ChannelControlType affects the presence of the HARQ-ACK resource offset field and
message padding.
Data Types: char | string

SearchSpace — Search space mapping
'UESpecific' (default) | 'Common' | optional

Search space mapping for DCI formats 0/1A/1C, specified as 'UESpecific' or 'Common'. This field
is only applicable for PDCCH. None of the additional fields can be present when formats 0 or 1A are
mapped into the PDCCH common search space.
Data Types: char | string

EnableCarrierIndication — Option to enable carrier indication
'Off' (default) | 'On' | optional

Option to enable carrier indication field (CIF) in the UE configuration, specified as 'Off' or 'On'. By
default, EnableCarrierIndication is disabled. When EnableCarrierIndication is enabled
('On'), the CIF is present in the UE-specific configuration.
Data Types: char | string

EnableSRSRequest — Option to enable SRS request
'Off' (default) | 'On' | optional

Option to enable SRS request in the UE configuration, specified as 'Off' or 'On'. By default,
EnableSRSRequest is disabled. When EnableSRSRequest is enabled ('On'), the SRS request field
is present in UE-specific formats 0/1A for FDD or TDD and formats 2B/2C/2D for TDD.
Data Types: char | string

EnableMultipleCSIRequest — Option to enable multiple CSI requests
'Off' (default) | 'On' | optional

Option to enable multiple CSI requests in the UE configuration, specified as 'Off' or 'On'. By
default, EnableMultipleCSIRequest is disabled. When EnableMultipleCSIRequest is enabled

2 Functions

2-108

('On'), the UE is configured to process multiple channel state information (CSI) requests from cells.
Enabling multiple CSI requests affects the length of the CSI request field in UE-specific formats 0 and
4.
Data Types: char | string

NTxAnts — Number of UE transmission antennas
1 (default) | 2 | 4 | optional

Number of UE transmission antennas, specified as 1, 2, or 4. The number of UE transmission
antennas affects the length of the precoding information field in DCI format 4.
Data Types: double

PSSCHNSubchannels — Number of sub-channels in V2X PSSCH pool
1 (default) | integer scalar from 2 to 110 | optional

Number of sub-channels in V2X PSSCH pool, specified as an integer scalar from 1 to 110. It affects
the length of RIV in format 5A
Data Types: double

Data Types: struct

Output Arguments
dcibits — Recovered DCI message bit vector
vector

Recovered DCI message bit vector, returned as a column vector. The length of dcibits is defined
though structure enb in terms of the DCI message format and the bandwidth.
Data Types: int8

crc_rnti — 16-bit integer result of the CRC decoder
vector

16-bit integer result of the CRC decoder, returned as a column vector. crc_rnti is equivalent to the
RNTI value that would need to mask (XOR) the CRC for no CRC error.
Data Types: uint32

More About
DCI Message Decoding

Downlink control information (DCI) message decoding performs the inverse DCI processing operation
as specified in TS 36.212 [1], Section 5.3.3. Specifically, lteDCIDecode performs rate recovery, and
Viterbi and CRC decoding to recover the DCI message bit vector (dcibits) from an input vector of
received soft bits previously coded by the DCI processing. lteDCIDecode also returns the 16-bit
integer result of the CRC decoder, crc_rnti, which is equivalent to the RNTI value that would need
to mask (XOR) the CRC for no CRC error. Using the RNTI, recovered with no CRC errors, enables the
system to match the recovered DCI message with a specific ue.

The length of the DCI information payload to be recovered can be specified

 lteDCIDecode

2-109

• Directly by dcilen
• Determined using the fields in enb that specify the DCI message format (DCIFormat) and

bandwidth (either NDLRB or NULRB).

For information on link bandwidth assignment, see “Specifying Number of Resource Blocks” on page
2-110.

Specifying Number of Resource Blocks

The number of resource blocks specifies the uplink and downlink bandwidth. The LTE Toolbox
implementation assumes symmetric link bandwidth unless you specifically assign different values to
NULRB and NDLRB. If the number of resource blocks is initialized in only one link direction, then the
initialized number of resource blocks (NULRB or NDLRB) is used for both uplink and downlink. When
this mapping is used, no warning is displayed. An error occurs if NULRB and NDLRB are both
undefined.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteDCIEncode | lteDCI | lteDCIResourceAllocation | lteDCIInfo | ltePDCCHDecode

2 Functions

2-110

https://www.3gpp.org

lteDCIInfo
Downlink control information message information

Syntax
info = lteDCIInfo(enb)
info = lteDCIInfo(enb,chs)

Description
info = lteDCIInfo(enb) returns a structure indicating the minimum possible payload sizes,
including zero-padding bits when necessary, for all downlink control information (DCI) message
formats, given the cell-wide configuration in enb. This syntax uses default values for the UE-specific
channel configuration.

To access the individual bit field sizes for each separate format, use the related function lteDCI.

TS 36.212 [1], Section 5.3.3.1, along with the referenced procedures of TS 36.213 [2], specify the
rules defining the relationship between the bit field sizes and message padding per format, and the
cell-wide and UE-specific parameters.

For information on link bandwidth assignment, see “Specifying Number of Resource Blocks” on page
2-117.

info = lteDCIInfo(enb,chs) permits formats to be extended with additional bit fields on a per-
UE basis, using the UE-specific channel configuration, chs.

Examples

Get DCI Message Information

Find the minimum payload sizes of all DCI message formats for NDLRB = 50 (10 MHz symmetric link
bandwidth), FDD duplexing, and PDCCH transmission.

enb = struct('NDLRB',50,'DuplexMode','FDD','CellRefP',1);
lteDCIInfo(enb)

ans = struct with fields:
 Format0: 27
 Format1: 31
 Format1A: 27
 Format1B: 28
 Format1C: 13
 Format1D: 28
 Format2: 43
 Format2A: 41
 Format2B: 41
 Format2C: 42
 Format2D: 45
 Format3: 27

 lteDCIInfo

2-111

 Format3A: 27
 Format4: 36
 Format5: 27
 Format5A: 27

Get DCI Message Using UE-Specific Configuration

Using the UE-specific channel structure, chs, extend the DCI formats to include optional fields
dependent on the target UE protocol configuration.

Show the minimum DCI message size per format for NDLRB = 50 (10 MHz symmetric link bandwidth),
FDD duplexing, and PDCCH transmission.

enb = struct('NDLRB',50,'DuplexMode','FDD','CellRefP',1);
dciout = lteDCIInfo(enb)

dciout = struct with fields:
 Format0: 27
 Format1: 31
 Format1A: 27
 Format1B: 28
 Format1C: 13
 Format1D: 28
 Format2: 43
 Format2A: 41
 Format2B: 41
 Format2C: 42
 Format2D: 45
 Format3: 27
 Format3A: 27
 Format4: 36
 Format5: 27
 Format5A: 27

Default settings for the UE-specific channel structure, chs, are:

chs.ControlChannelType = 'PDCCH';
chs.SearchSpace = 'UESpecific';
chs.EnableCarrierIndication = 'Off';
chs.EnableMultipleCSIRequest = 'Off';
chs.EnableSRSRequest = 'Off';
chs.NTxAnts = 1;

Enable carrier indication, and show the sizes per format when the DCI message is configured to
include the UE-specific 3 bit carrier indicator field (CIF).

chs.EnableCarrierIndication = 'On';

dciout = lteDCIInfo(enb,chs)

dciout = struct with fields:
 Format0: 29
 Format1: 34
 Format1A: 29

2 Functions

2-112

 Format1B: 31
 Format1C: 13
 Format1D: 31
 Format2: 46
 Format2A: 43
 Format2B: 43
 Format2C: 45
 Format2D: 47
 Format3: 27
 Format3A: 27
 Format4: 39
 Format5: 29
 Format5A: 29

The sizes have not changed for formats 1C/3/3A, because the CIF does not apply to them. Also,
because of the padding rules, the original lengths for some of the formats increased by less than 3
bits. These lengths are for formats mapped into the UE-specific search space, not formats 3/3A.

Change the UE-specific parameter to map the CIF into the PDCCH common search space.

chs.SearchSpace = 'Common';
dciout = lteDCIInfo(enb,chs)

dciout = struct with fields:
 Format0: 27
 Format1: 34
 Format1A: 27
 Format1B: 31
 Format1C: 13
 Format1D: 31
 Format2: 46
 Format2A: 43
 Format2B: 43
 Format2C: 45
 Format2D: 47
 Format3: 27
 Format3A: 27
 Format4: 39
 Format5: 27
 Format5A: 27

When the DCI message is configured for PDCCH-common search space, the format 0/1A length
returns to its original size.

As specified in TS 36.212, with regard to search space, these points apply:

• Only formats 0/1A/1C can be mapped into either the PDCCH common or UE-specific search
spaces.

• Formats 3/3A can be mapped into the common search space only.
• All other formats are mapped into UE-specific spaces only.
• There is no common search space for the EPDCCH.

 lteDCIInfo

2-113

Input Arguments
enb — DCI message format and bandwidth
structure

DCI message format and bandwidth, specified as a structure that can contain the following fields.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)

For information on link
bandwidth assignment, see
“Specifying Number of Resource
Blocks” on page 2-117.

NULRB Required Scalar integer from 6 to 110 Number of uplink resource
blocks. (NRB

UL)

For information on link
bandwidth assignment, see
“Specifying Number of Resource
Blocks” on page 2-117.

CellRefP Optional 1 (default), 2, 4 Number of cell-specific
reference signal (CRS) antenna
ports

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as
either:

• 'FDD' for Frequency
Division Duplex

• 'TDD' for Time Division
Duplex

chs — User Equipment (UE) related channel configuration
structure

User-equipment-related (UE-related) channel configuration, specified as a structure containing these
UE-specific fields.

Note All fields in chs are optional. The presence of these optional fields depends on:

• Whether the transmission of DCI message is in a PDCCH using common search space mapping or
in an EDPCCH.

• The release-specific features configured at the destination UE.

These additional UE-specific bit fields are off by default.

EnableCarrierIndication — Option to enable carrier indication
'Off' (default) | 'On' | optional

2 Functions

2-114

Option to enable carrier indication field (CIF) in the UE configuration, specified as 'Off' or 'On'. By
default, EnableCarrierIndication is disabled. When EnableCarrierIndication is enabled
('On'), the CIF is present in the UE-specific configuration.
Data Types: char | string

ChannelControlType — Physical control channel type
'PDCCH' (default) | 'EPDCCH' | optional

Physical control channel type used to carry DCI formats, specified as 'PDCCH' or 'EPDCCH'. The
setting for ChannelControlType affects the presence of the HARQ-ACK resource offset field and
message padding.
Data Types: char | string

SearchSpace — Search space mapping
'UESpecific' (default) | 'Common' | optional

Search space mapping for DCI formats 0/1A/1C, specified as 'UESpecific' or 'Common'. This field
is only applicable for PDCCH. None of the additional fields can be present when formats 0 or 1A are
mapped into the PDCCH common search space.
Data Types: char | string

EnableSRSRequest — Option to enable SRS request
'Off' (default) | 'On' | optional

Option to enable SRS request in the UE configuration, specified as 'Off' or 'On'. By default,
EnableSRSRequest is disabled. When EnableSRSRequest is enabled ('On'), the SRS request field
is present in UE-specific formats 0/1A for FDD or TDD and formats 2B/2C/2D for TDD.
Data Types: char | string

EnableMultipleCSIRequest — Option to enable multiple CSI requests
'Off' (default) | 'On' | optional

Option to enable multiple CSI requests in the UE configuration, specified as 'Off' or 'On'. By
default, EnableMultipleCSIRequest is disabled. When EnableMultipleCSIRequest is enabled
('On'), the UE is configured to process multiple channel state information (CSI) requests from cells.
Enabling multiple CSI requests affects the length of the CSI request field in UE-specific formats 0 and
4.
Data Types: char | string

NTxAnts — Number of UE transmission antennas
1 (default) | 2 | 4 | optional

Number of UE transmission antennas, specified as 1, 2, or 4. The number of UE transmission
antennas affects the length of the precoding information field in DCI format 4.
Data Types: double

PSSCHNSubchannels — Number of sub-channels in V2X PSSCH pool
1 (default) | integer scalar from 2 to 110 | optional

Number of sub-channels in V2X PSSCH pool, specified as an integer scalar from 1 to 110. It affects
the length of RIV in format 5A

 lteDCIInfo

2-115

Data Types: double

Data Types: struct

Output Arguments
info — Payload sizes for all DCI message formats
structure

Payload sizes for all DCI message formats, returned as a structure with the following parameter
fields.

Parameter Field Description Values Data Type
Format0 Format0 payload size. Format0 is the DCI format used

for the scheduling of PUSCH.
Integer uint64

Format1 Format1 payload size. Format1 is the DCI format used
for the scheduling of one PDSCH codeword.

Integer uint64

Format1A Format1A payload size. Format1A is the DCI format
used for the compact scheduling of one PDSCH
codeword and random access procedure.

Integer uint64

Format1B Format1B payload size. Format1B is the DCI format
used for the compact scheduling of one PDSCH
codeword with precoding information.

Integer uint64

Format1C Format1C payload size. Format1C is the DCI format
used for very compact scheduling of one PDSCH
codeword.

Integer uint64

Format1D Format1D payload size. Format1D is the DCI format
used for the compact scheduling of one PDSCH
codeword with precoding and power offset information.

Integer uint64

Format2 Format2 payload size. Format2 is the DCI format used
for the scheduling of two PDSCH codewords with
precoding information for closed-loop spatial
multiplexing.

Integer uint64

Format2A Format2A payload size. Format2A is the DCI format
used for the scheduling of two PDSCH codewords with
precoding information for open-loop spatial multiplexing.

Integer uint64

Format2B Format2B payload size. Format2B is the DCI format
used for the scheduling of dual-layer transmission, for
antenna ports 7 and 8.

Integer uint64

Format2C Format2C payload size. Format2C is the DCI format
used for the scheduling of up to eight-layer transmission,
for antenna ports 7–14, using TM9.

Integer uint64

Format2D Format2D payload size. Format2D is the DCI format
used for the scheduling of up to eight-layer transmission,
for antenna ports 7–14, using TM10.

Integer uint64

2 Functions

2-116

Parameter Field Description Values Data Type
Format3 Format3 payload size. Format3 is the DCI format used

for the transmission of transmit power control (TPC)
commands for PUCCH and PUSCH with 2-bit power
adjustments.

Integer uint64

Format3A Format3A payload size. Format3A is the DCI format
used for the transmission of transmit power control
(TPC) commands for PUCCH and PUSCH with 1-bit
power adjustments.

Integer uint64

Format4 Format4 payload size. Format4 is the DCI format used
for the scheduling of PUSCH with multi-antenna port
transmission mode.

Integer uint64

Format5 Format5 payload size. Format5 is the DCI format used
for the scheduling of PSCCH, and also contains several
SCI format 0 fields used for the scheduling of PSSCH.

Integer uint64

Format5A Format5A payload size. Format5A is the DCI format
used for the scheduling of V2X PSSCH.

Integer uint64

According to the rules defined in TS 36.212 [1], Section 5.3.3, the payload size of DCI Format0 and
Format1A should always be the same and either format will be appended with padding bits, if
necessary, to fulfill this condition.

None of the DCI format payload sizes should equal the ambiguous sizes defined in TS 36.212 [1],
Table 5.3.3.1.2-1. If necessary, padding bits are added to the DCI format payload. When transmitting
DCI messages using PDCCH, the ambiguous format payload sizes are 12, 14, 16, 20, 24, 26, 32, 40,
44, and 56.

More About
Specifying Number of Resource Blocks

The number of resource blocks specifies the uplink and downlink bandwidth. The LTE Toolbox
implementation assumes symmetric link bandwidth unless you specifically assign different values to
NULRB and NDLRB. If the number of resource blocks is initialized in only one link direction, then the
initialized number of resource blocks (NULRB or NDLRB) is used for both uplink and downlink. When
this mapping is used, no warning is displayed. An error occurs if NULRB and NDLRB are both
undefined.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

 lteDCIInfo

2-117

https://www.3gpp.org

[2] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteDCI | lteDCIEncode | lteDCIDecode | lteDCIResourceAllocation | lteSCIInfo

2 Functions

2-118

https://www.3gpp.org

lteDCIEncode
Downlink control information encoding

Syntax
cw = lteDCIEncode(ue,dcibits)
cw = lteDCIEncode(ue,dcibits,outlen)

Description
cw = lteDCIEncode(ue,dcibits) returns the vector resulting from downlink control information
(DCI) processing of the input bit vector, dcibits, given the field settings in the structure, ue.

As described in TS 36.212 [1], Section 5.3.3, DCI processing involves CRC attachment with ue.RNTI
masking of the CRC, convolutional coding, and rate matching to the capacity of the PDCCH format.

cw = lteDCIEncode(ue,dcibits,outlen) rate matches the output to outlen. For this syntax,
ue.PDCCHFormat is ignored if present. The ability to request arbitrary output length makes this
syntax useful for golden reference comparisons. Use this syntax for DCI encoding of PDCCH or
EPDCCH transmissions.

Examples

Encode DCI with Zero RNTI

Perform DCI processing on an all-zero input. This processing results in an all-zero output when you
set RNTI to 0.

Generate a dcibits input vector with zeros for a DCI format 1 message. enb is defined with 50
downlink RBs, 1 cell-specific reference signal antenna port, and FDD duplex mode.

enb = struct('NDLRB',50,'CellRefP',1,'DuplexMode','FDD');
dciInfo = lteDCIInfo(enb);
dcibits = zeros(dciInfo.Format1,1);

Define a ue parameter structure with PDCCH format 1 and RNTI set to 0.

ue = struct('PDCCHFormat',1,'RNTI',0);

Encode the DCI bits.

cw = lteDCIEncode(ue,dcibits);
cw(1:5)

ans = 5x1 int8 column vector

 0
 0
 0
 0

 lteDCIEncode

2-119

 0

For PDCCH format 1, the output vector length is 144. For this example, the output is an all-zero
vector because the DCI bits were 0 and RNTI was set to 0.

Encode DCI with Unity RNTI

Perform DCI processing on an all-zero input with RNTI set to 1. This processing results in a nonzero
output when you set RNTI to 1.

Generate a dcibits input vector with zeros for a DCI format 1 message. enb is defined with 50
downlink RBs, 1 cell-specific reference signal antenna port, and FDD duplex mode.

enb = struct('NDLRB',50,'CellRefP',1,'DuplexMode','FDD');
dciInfo = lteDCIInfo(enb);
dcibits = zeros(dciInfo.Format1,1);

Define a ue parameter structure with PDCCH format 1 and RNTI set to 1.

ue = struct('PDCCHFormat',1,'RNTI',1);

Encode the DCI bits.

cw = lteDCIEncode(ue,dcibits);
cw(1:10)

ans = 10x1 int8 column vector

 0
 0
 0
 0
 0
 0
 0
 1
 0
 0

For PDCCH format 1, the output vector length is 144. For this example, with RNTI set to 1, the output
vector is not all-zeros.

Encode DCI Rate Matching Output Length

Perform DCI processing on an all-zero input. Set the output length to 100 bits.

Define enb with 50 downlink RBs, 1 cell-specific reference signal antenna port, and FDD duplex
mode. Use lteDCIInfo to determine DCI message lengths for the defined configuration. Generate a
dcibits input vector with zeros for a format 1 DCI message.

2 Functions

2-120

enb = struct('NDLRB',50,'CellRefP',1,'DuplexMode','FDD');
dciInfo = lteDCIInfo(enb);
dcibits = zeros(dciInfo.Format1,1);

Define a ue parameter structure with PDCCH format 1 and RNTI set to 0.

ue = struct('PDCCHFormat',1,'RNTI',0);

Encode the DCI bits.

cw1 = lteDCIEncode(ue,dcibits);
size(cw1)

ans = 1×2

 144 1

Encode the DCI bits again, setting the output length to 100 bits.

cw2 = lteDCIEncode(ue,dcibits,100);
size(cw2)

ans = 1×2

 100 1

The output vector length for cw2 is 100, rather than the encoded PDCCH format 1 length of 144 bits
in cw1, as expected for the configuration.

Encode DCI Message on EPDCCH

Use the DCI encoding function, lteDCIEncode, to code a DCI for transmission on EPDCCH. The
required size is output by the lteEPDCCHIndices function and defined by info.EPDCCHG.

Specify the cell-wide settings in parameter structure enb.

enb.NDLRB = 6;
enb.NSubframe = 0;
enb.NCellID = 0;
enb.CellRefP = 1;
enb.CyclicPrefix = 'Normal';
enb.DuplexMode = 'FDD';
enb.NFrame = 0;
enb.CSIRSPeriod = 'Off';
enb.ZeroPowerCSIRSPeriod = 'Off';

Specify the channel transmission configuration in parameter structure chs.

chs.ControlChannelType = 'EPDCCH';
chs.SearchSpace = 'UESpecific';
chs.EnableCarrierIndication = 'Off';
chs.EnableMultipleCSIRequest = 'Off';
chs.EnableSRSRequest = 'Off';
chs.NTxAnts = 1;

 lteDCIEncode

2-121

chs.EPDCCHECCE = [2 3];
chs.EPDCCHType = 'Localized';
chs.EPDCCHPRBSet = 4:5;
chs.EPDCCHStart = 2;
chs.EPDCCHNID = 0;
chs.PDCCHFormat = 1;
chs.RNTI = 1;
dciInfo = lteDCIInfo(enb,chs);
dciin = zeros(dciInfo.Format1A,1);

Determine the EPDCCH data bit capacity, output by lteEPDCCHIndices in info.EPDCCHG.

[ind,info] = lteEPDCCHIndices(enb,chs);
info

info = struct with fields:
 EPDCCHG: 114
 EPDCCHGd: 57
 nEPDCCH: 114
 NECCE: 8
 NECCEPerPRB: 4
 NEREGPerECCE: 4
 EPDCCHPorts: 4

Encode the DCI bits.

cw1 = lteDCIEncode(chs,dciin);
size(cw1)

ans = 1×2

 144 1

Encode the DCI bits again, setting the output length to info.EPDCCHG bits.

cw2 = lteDCIEncode(chs,dciin,info.EPDCCHG);
size(cw2)

ans = 1×2

 114 1

The output vector length for cw2 is 114, rather than the encoded format 1A length of 144 bits in cw1,
as expected for the configuration.

Input Arguments
ue — Parameter structure for DCI processing
structure

Parameter structure for DCI processing, specified as a structure that must have these fields.

2 Functions

2-122

Parameter Field Required
or Optional

Values Description

PDCCHFormat Required 0, 1, 2, 3 PDCCH format
RNTI Required 0 (default), scalar integer Radio network temporary identifier

(RNTI) value (16 bits)

dcibits — DCI message bit vector
vector

DCI message bit vector, specified as a column vector. dcibits are the DCI processing input bits to
be transmitted on a single PDCCH.
Data Types: double | int8

outlen — Output vector length
optional | nonnegative scalar integer

Output vector length, specified as a nonnegative scalar integer.

Output Arguments
cw — Output vector
vector

Output vector resulting from DCI processing, returned as a column vector. cw is the result of DCI
processing the input vector, dcibits. Depending on the function syntax used, the length of cw is
either:

• 72*2ue.PDCCUFormat elements, where 2ue.PDCCUFormat represents the number of control channel
elements (CCE) and one CCE is 72 bits.

• Rate matched to outlen.

Data Types: int8

Version History
Introduced in R2013b

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteDCI | lteDCIDecode | lteDCIResourceAllocation | lteDCIInfo | ltePDCCH | lteEPDCCH

 lteDCIEncode

2-123

https://www.3gpp.org

lteDCIResourceAllocation
DCI message physical resource blocks allocation

Syntax
[prbset, nrbg, rbgsize] = lteDCIResourceAllocation(enbue,dcistr)
[prbset, nrbg, rbgsize] = lteDCIResourceAllocation(dcistr)

Description
[prbset, nrbg, rbgsize] = lteDCIResourceAllocation(enbue,dcistr) returns a matrix
containing the zero-based physical resource block (PRB) indices prbset, the number of resource
block groups nrbg, and the resource block group size rbgsize, for the specified DCI message
settings structure enbue and DCI message structure dcistr.

TS 36.213 [1] specifies resource allocation types used for downlink, uplink and sidelink. For more
information, see “Resource Allocation Types” on page 2-139.

If you specify DCI Format 0, Format 4, or Format 5 in dcistr.DCIFormat, the function sets the
system bandwidth based on the number of uplink resource blocks, enbue.NULRB. If you do not
specify enbue.NULRB, the function sets the system bandwidth based on the number of downlink
resource blocks, enbue.NDLRB. For all other formats, the function first checks enbue.NDLRB for the
number of resource blocks. For more information, see “Specifying Number of Resource Blocks” on
page 2-140.

[prbset, nrbg, rbgsize] = lteDCIResourceAllocation(dcistr) returns outputs prbset,
nrbg, and rbgsize as above, except the fields described in structure enbue must be present as part
of dcistr.

Calling lteDCIResourceAllocation specifying the dcistr structure as the only input argument is
not recommended because this signature will be removed in a future release.

Examples

Get Allocated PRB Indices for DCI Message

Allocate DCI resource and shows the allocation of the DCI resources.

Create a DCI message structure with a system bandwidth of 50 resource blocks and DCI Format 1A.

enb = struct('NDLRB',50);
dciStr = lteDCI(enb,struct('DCIFormat','Format1A','AllocationType',1));

Return allocated physical resource block indices, the number of resource block groups, and the
resource block group size.

[prbSet, nrBg, rbgSize] = lteDCIResourceAllocation(enb,dciStr)

prbSet = 1x2 uint64 row vector

2 Functions

2-124

 0 27

nrBg = int32
 17

rbgSize = int32
 3

Display Uplink PRB Allocation Type 1

Display the PRB allocations associated with the sequence of subframes in a frame for DCI Format 0
and uplink resource allocation type 1.

Configure a type 1 uplink resource allocation (multi-cluster). TS 36.213, Section 8.1.2 describes the
resource indication value (RIV) determination.

enbue = struct('NDLRB',50);
dcistr = lteDCI(enbue,struct('DCIFormat','Format0','AllocationType',1));
dcistr.Allocation.RIV = 1;

Display an image of the PRBs used in each slot of each subframe in a frame.

• Create a subframeslots matrix full of zeros. There are 20 slots per frame, specifically two slots
per subframe and ten subframes per frame.

• Loop through assigning a PRB set of indices for each subframe. Also assign a value in
subframeslots for each occupied PRB index.

subframeslots = zeros(enbue.NDLRB,20);
for i = 0:9
 enbue.NSubframe = i;
 prbSet = lteDCIResourceAllocation(enbue,dcistr);
 prbSet = repmat(prbSet,1,2/size(prbSet,2));
 for s = 1:2
 subframeslots(prbSet(:,s)+1,2*i+s) = 20+s*20;
 end
end
imagesc(subframeslots);
axis xy;
xlabel('Subframe Slots');
ylabel('PRB Indices');

 lteDCIResourceAllocation

2-125

Observe from the image that the same set of PRB indices is used in each slot.

Display Uplink Hopping PRB Allocation

Display the PRB allocations associated with the sequence of subframes in a frame for an uplink
resource allocation with hopping.

Configure a type 1 uplink resource allocation that has type 0 hopping and slot and subframe hopping.

enbue = struct('NDLRB',50,'NCellID',0);
dcistr = lteDCI(enbue,struct('DCIFormat','Format0','AllocationType',0,...
 'FreqHopping',1));
dcistr.Allocation.HoppingBits = 0;
dcistr.Allocation.RIV = 110;
enbue.PUSCHHopping = 'InterAndIntra';
enbue.MacTxNumber = 0;
enbue.NSubbands = 1;
enbue.PUSCHHoppingOffset = 10;

Display an image of the PRBs used in each slot of each subframe in a frame.

• Create a subframeslots matrix full of zeros. There are 20 slots per frame, specifically two slots
per subframe and ten subframes per frame.

2 Functions

2-126

• Loop through assigning a PRB set of indices for each subframe. Also assign a value in
subframeslots for each occupied PRB index.

subframeslots = zeros(enbue.NDLRB,20);
for i = 0:9
 enbue.NSubframe = i;
 prbSet = lteDCIResourceAllocation(enbue,dcistr);
 prbSet = repmat(prbSet,1,2/size(prbSet,2));
 for s = 1:2
 subframeslots(prbSet(:,s)+1,2*i+s) = 20+s*20;
 end
end
imagesc(subframeslots)
axis xy
xlabel('Subframe Slots')
ylabel('PRB Indices')

Observe from the image that the occupied PRB indices hops in odd and even slots.

Input Arguments
enbue — DCI message settings
structure

DCI message settings, specified as a structure. enbue can contain the following fields.

 lteDCIResourceAllocation

2-127

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
CellRefP Optional 1, 2, 4 Number of cell-specific reference

signal (CRS) antenna ports
DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as one

of the following:

• 'FDD' — Frequency division
duplex (default)

• 'TDD' — Time division duplex
The following parameters apply when dcistr.DCIFormat = 'Format0' or 'Format4'
  NULRB Required Scalar integer from 6 to 110 Number of uplink resource blocks.

(NRB
UL)

The following parameters apply when dcistr.FreqHopping = 1
  NCellID Required Integer from 0 to 503 Physical layer cell identity
  NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

  NFrame Required 0 (default), nonnegative scalar
integer

Frame number

  PUSCHHopping Optional 'Inter' (default),
'InterAndIntra'

Uplink subframe hopping mode

  MacTxNumber Optional Scalar integer from 0 (default) to
27

Number of the current MAC
(re-)transmission,
CURRENT_TX_NB

  NSubbands Optional 1 (default), 2, 3, or 4 Number of subbands.
  
PUSCHHoppingOffset

Optional Scalar integer from 0 (default) to
98

PUSCH hopping offset

The following parameters apply for DCI Format 5 (dcistr = 'Format5').
  NULRB Required Scalar integer from 6 to 110 Number of uplink resource blocks.

(NRB
UL)

The following parameters apply for DCI Format 5 (dcistr = 'Format5') with frequency hopping
(dcistr.FreqHopping = 1).
  NSubframePSSCH Required Integer Subframe number in PSSCH

subframe pool
  
PSSCHHoppingParame
ter

Optional Integer from 0 (default) to 510. All
values ≥ 504 are set to 510.

PSSCH hopping parameter

  NSubbands Optional 1, 2, or 4 Number of subbands
  
PSSCHHoppingOffset

Optional Integer from 0 (default) to 110 PSSCH hopping offset

2 Functions

2-128

Parameter Field Required or
Optional

Values Description

  PRBPool Optional Integer vector PSSCH resource block pool
(sidelink transmission mode 2). A
vector of zero-based indices giving
the PRBs in the pool. If absent or
empty then the pool is assumed to
be the full transmission bandwidth

The following parameters apply for DCI Format 5A (dcistr = 'Format5A') .
PSSCHNSubchannels Optional Integer from 1 (default) to 110 Number of sub-channels in the

V2X PSSCH resource pool
PSSCHSubchannelSiz
e

Optional Integer from 1 to 110. Default
value is 4.

Number of PRB in each sub-
channel

PSSCHSubchannelPRB
Start

Optional Integer from 0 (default) to 109 First PRB index associated with
first sub-channel of the resource
pool

PSSCHAdjacency Optional 'On' (default), 'Off' Whether PSCCH and PSSCH are
transmitted in adjacent PRB

Data Types: struct

dcistr — DCI message structure
structure

DCI message structure, returned as a structure whose fields match those of the associated DCI
format.

The field names associated with dcistr are dependent on the DCI format. The format is expected to
be one of the formats generated by lteDCI. The LTE standard defines resource allocations types for
downlink, uplink, and sidelink. For more information, see “Resource Allocation Types” on page 2-139

The following table details the DCI formats and accompanying dcistr parameter fields.

DCI Formats dciout Fields Size Description
'Format0' DCIFormat - 'Format0'

CIF 0 or 3 bits Carrier indicator field
FreqHopping 1 bit PUSCH frequency hopping flag
Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation, coding scheme, and

redundancy version
NewData 1 bit New data indicator
TPC 2 bits PUSCH TPC command
CShiftDMRS 3 bits Cyclic shift for DM RS

 lteDCIResourceAllocation

2-129

DCI Formats dciout Fields Size Description
TDDIndex 2 bits For TDD config 0, this field is the Uplink

Index.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
CSIRequest 1, 2, or 3 bits CSI request
SRSRequest 0 or 1 bit SRS request. This field can only be

present in DCI formats scheduling
PUSCH which are mapped onto the UE
specific search space given by the C-
RNTI

AllocationType 1 bit Resource allocation type, only present if
NRB

UL≤NRB
DL.

'Format1' DCIFormat - 'Format1'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation and coding scheme
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

NewData 1 bit New data indicator
RV 2 bits Redundancy version
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format1A' DCIFormat - 'Format1A'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit VRB assignment flag: 0 (localized), 1

(distributed)

2 Functions

2-130

DCI Formats dciout Fields Size Description
Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation and coding scheme
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

NewData 1 bit New data indicator
RV 2 bits Redundancy version
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
SRSRequest 0 or 1 bit SRS request. This field can only be

present in DCI formats scheduling
PUSCH which are mapped onto the UE
specific search space given by the C-
RNTI

HARQACKResOffset 2 bits HARQ-ACK resource offset. Present
when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format1B' DCIFormat - 'Format1B'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit VRB assignment flag: 0 (localized), 1

(distributed)
Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation and coding scheme
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

NewData 1 bit New data indicator
RV 2 bits Redundancy version
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.

 lteDCIResourceAllocation

2-131

DCI Formats dciout Fields Size Description
TPMI 2 bits for two

antennas

4 bits for four
antennas

PMI information

PMI 1 bit PMI confirmation
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format1C' DCIFormat - 'Format1C'
Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation and coding scheme

'Format1D' DCIFormat - 'Format1D'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit VRB assignment flag: 0 (localized), 1

(distributed)
Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation and coding scheme
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

NewData 1 bit New data indicator
RV 2 bits Redundancy version
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
TPMI 2 bits for two

antennas

4 bits for four
antennas

Precoding TPMI information

DlPowerOffset 1 bit Downlink power offset
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format2' DCIFormat - 'Format2'
CIF 0 or 3 bits Carrier indicator field

2 Functions

2-132

DCI Formats dciout Fields Size Description
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

SwapFlag 1 bit Transport block to codeword swap flag
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1
RV1 2 bits Redundancy version for transport block

1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
RV2 2 bits Redundancy version for transport block

2
PrecodingInfo 3 bits for two

antennas

6 bits for four
antennas

Precoding information

HARQACKResOffset 2 bits HARQ-ACK resource offset. Present
when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format2A' DCIFormat - 'Format2A'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation

 lteDCIResourceAllocation

2-133

DCI Formats dciout Fields Size Description
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

SwapFlag 1 bit Transport block to codeword swap flag
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1
RV1 2 bits Redundancy version for transport block

1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
RV2 2 bits Redundancy version for transport block

2
PrecodingInfo 0 bits for two

antennas

2 bits for four
antennas

Precoding information

HARQACKResOffset 2 bits HARQ-ACK resource offset. Present
when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format2B' DCIFormat - 'Format2B'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.

2 Functions

2-134

DCI Formats dciout Fields Size Description
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

ScramblingId 1 bit Scrambling identity
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1
RV1 2 bits Redundancy version for transport block

1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
RV2 2 bits Redundancy version for transport block

2
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format2C' DCIFormat - 'Format2C'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

TxIndication 3 bits Antenna ports, scrambling identity, and
number of layers indicator

SRSRequest Varies SRS request. Only present for TDD.
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1

 lteDCIResourceAllocation

2-135

DCI Formats dciout Fields Size Description
RV1 2 bits Redundancy version for transport block

1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
RV2 2 bits Redundancy version for transport block

2
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format2D' DCIFormat - 'Format2D'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

TxIndication 3 bits Antenna ports, scrambling identity, and
number of layers indicator

SRSRequest Varies SRS request. Only present for TDD.
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1
RV1 2 bits Redundancy version for transport block

1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
RV2 2 bits Redundancy version for transport block

2

2 Functions

2-136

DCI Formats dciout Fields Size Description
REMappingAndQCL 2 bits PDSCH RE Mapping and Quasi-Co-

Location Indicator
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format3' DCIFormat - 'Format3'
TPCCommands Varies TPC commands for PUCCH and PUSCH

'Format3A' DCIFormat - 'Format3A'
TPCCommands Varies TPC commands for PUCCH and PUSCH

'Format4' DCIFormat - 'Format4'
CIF 0 or 3 bits Carrier indicator field
Allocation Varies Resource block assignment/allocation
TPC 2 bits PUSCH TPC command
CShiftDMRS 3 bits Cyclic shift for DM-RS
TDDIndex 2 bits For TDD config 0, this field is Uplink

Index.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
CSIReq Varies CSI request
SRSRequest 2 bits SRS request
AllocationType 1 bit Resource allocation header type 0 or

type 1.
ModCoding 5 bits Modulation, coding scheme, and

redundancy version
NewData 1 bit New data indicator
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
PrecodingInfo 3 bits for two

antennas

6 bits for four
antennas

Precoding information

'Format5' DCIFormat - 'Format5'
PSCCHResource 6 bits Resource for PSCCH

 lteDCIResourceAllocation

2-137

DCI Formats dciout Fields Size Description
TPC 1 bit TPC command for PSCCH and PSSCH
FreqHopping 1 bit Frequency hopping flag
Allocation Varies Resource block assignment and hopping

resource allocation
TimeResourcePatte
rn

7 bits Time resource pattern

'Format5A' DCIFormat - 'Format5A'
CIF 3 bits Carrier indicator
FirstSubchannelId
x

log2 Nsubchannel
SL Lowest index of the subchannel

allocation to the initial transmission
RIV from 0 to 13 bits,

log2

Nsubchannel
SL × Nsubchannel

SL + 1
2

Resource indication value

TimeGap 4 bits Time gap between initial transmission
and retransmission

SLIndex 2 bits SL SPS configuration index

Data Types: struct

Output Arguments
prbset — Physical resource block indices
nonnegative integer column-vector | nonnegative integer column-matrix

Physical resource block indices, returned as a nonnegative integer column-vector or N-by-2 matrix of
zero-based indices. The returned prbset will be a single column vector or a two-column matrix
depending on whether the allocation type defines a different set of PRB indices in the first and second
slots of the subframe.
Data Types: uint64

nrbg — Number of resource block groups in the allocation
integer

Number of resource block groups in the allocation, returned as an integer.
Data Types: int32

2 Functions

2-138

rbgsize — Resource block group size
integer

Number of resource blocks in a group, returned as an integer.
Data Types: int32

More About
Resource Allocation Types

The LTE standard specifies resource allocation types used for downlink, uplink and sidelink. For a
detailed description of the resource allocation types, see lteDCI.

• For downlink, the LTE standard specifies three resource allocation types: type 0, 1, and 2. In terms
of the DCI formats, formats 1, 2, 2A, 2B, 2C , and 2D can use either resource allocation type 0 or
type 1, with the choice signalled by dcistr.AllocationType=0 and
dcistr.AllocationType=1 respectively. DCI formats 1A, 1B, 1C, and 1D use resource
allocation type 2, which can be configured to be localized or distributed across resource blocks,
signalled by dcistr.AllocationType=0 and dcistr.AllocationType=1 respectively.

• For uplink allocations (signaled in DCI format 0 messages), the allocation type is either hopping or
non-hopping, signalled by dcistr.FreqHopping=1 and dcistr.FreqHopping=0, respectively.

• For hopping allocations, there are two types of hopping: type 1 PUSCH hopping and type 2
PUSCH hopping (frequency hopping with a predefined pattern). The hopping type is signalled
by dcistr.Allocation.HoppingBits as described in TS 36.213 [1], Table 8.4-2.

• For non-hopping uplink allocations, there are two types of resource allocation: type 0 and type
1. These are signalled by dcistr.AllocationType=0 and dcistr.AllocationType=1
respectively. In case of DCI format 0 and uplink resource allocation type 1, the concatenation
of the frequency hopping flag field (dcistr.FreqHopping) and the resource block
assignment and hopping resource allocation field provides the resource allocation field
(dcistr.Allocation). Type 0 allocations create a single contiguous set of PRB, whereas
type 1 can create two contiguous PRB sets. The DCI format 4 messages can only signal non-
hopping resource allocations type 0 and type 1.

• For D2D sidelink PSSCH (signaled by DCI format 5 messages), allocations are the same as uplink
PUSCH allocation type 0, both non-hopping and hopping, but with a different set of additional
parameters required in the hopping case. Details for sidelink transmission mode 1 and mode 2 are
specified in TS 36.213 [1], Sections 14.1.1.2 and 14.1.1.4 respectively.

• Sidelink V2X PSSCH allocations (signalled by DCI format 5A messages when in sidelink
transmission mode 3) create a single contiguous set of PRB using one or more sub-channels. See
TS 36.213 [1], sections 14.1.1.4A and 14.1.1.4B for sidelink transmission mode 3 and mode 4
respectively. TM2 and TM4 use autonomous scheduling and therefore do not employ DCI
messages from the eNodeB to deliver the transmission grants.

All allocations define a single set of PRB for both slots in a subframe (prbset is a column vector)
except for the distributed resource allocation type 2 and uplink hopping allocations, where different
PRB sets are used across the slot pair.

The allocation type may also define a minimum unit of resource block allocation, which is defined by
the resource block group size, rbgsize. This specifies the number of resource blocks in a group.
There are nrbg resource block groups in the allocation.

 lteDCIResourceAllocation

2-139

Specifying Number of Resource Blocks

The number of resource blocks specifies the uplink and downlink bandwidth. The LTE Toolbox
implementation assumes symmetric link bandwidth unless you specifically assign different values to
NULRB and NDLRB. If the number of resource blocks is initialized in only one link direction, then the
initialized number of resource blocks (NULRB or NDLRB) is used for both uplink and downlink. When
this mapping is used, no warning is displayed. An error occurs if NULRB and NDLRB are both
undefined.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer

procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteDCI | ltePDCCH | lteDLSCH | lteEPDCCH | lteSCIResourceAllocation

2 Functions

2-140

https://www.3gpp.org

lteDLChannelEstimate
Downlink channel estimation

Syntax
[hest,noiseEst] = lteDLChannelEstimate(enb,rxgrid)
[hest,noiseEst] = lteDLChannelEstimate(enb,cec,rxgrid)
[hest,noiseEst] = lteDLChannelEstimate(enb,pdsch,cec,rxgrid)
[hest,noiseEst] = lteDLChannelEstimate(enb,epdcch,cec,rxgrid)

Description
[hest,noiseEst] = lteDLChannelEstimate(enb,rxgrid) returns hest, the estimated
channel response between each transmit and receive antenna for the input cell-wide settings enb and
the resource grid rxgrid. The function also returns noiseEst, an estimate of the noise power
spectral density on the reference signal subcarriers. For more information, see “Channel Estimation
Processing” on page 2-159.

Use this syntax to estimate the channel in an LTE configuration by using the method described in
Annex E of [1] and Annex F of [2].

[hest,noiseEst] = lteDLChannelEstimate(enb,cec,rxgrid) specifies the channel
estimation method and parameters in the channel estimator configuration structure cec. The value
that you specify for the Reference field in cec determines whether the function estimates the
channel for an LTE or NB-IoT configuration.

[hest,noiseEst] = lteDLChannelEstimate(enb,pdsch,cec,rxgrid) performs physical
downlink shared channel (PDSCH) estimation for pdsch, the PDSCH transmission configuration.

[hest,noiseEst] = lteDLChannelEstimate(enb,epdcch,cec,rxgrid) performs enhanced
physical downlink control channel (EPDCCH) estimation for epdcch, the EPDCCH transmission
configuration.

Examples

Estimate Downlink Channel Characteristics

Estimate the channel for an RMC R.12 (four-antenna transmit diversity) waveform.

Initialize a cell-wide configuration structure for transmission of RMC R.12.

rc = 'R.12';
enb = lteRMCDL(rc);

Initialize a channel estimation configuration. The averaging window size is configured in terms of
resource elements (REs), time, and frequency. Use cubic interpolation with an averaging window of 1-
by-1 REs. No noise estimate or averaging is required because no noise is not present in this example.
You can therefore set the frequency window and time window size to one.

 lteDLChannelEstimate

2-141

cec.FreqWindow = 1;
cec.TimeWindow = 1;
cec.InterpType = 'cubic';
cec.PilotAverage = 'UserDefined';
cec.InterpWinSize = 3;
cec.InterpWindow = 'Causal';

Generate a transmit waveform for the specified cell-wide settings by using the lteRMCDLTool
function.

txWaveform = lteRMCDLTool(enb,[1;0;0;1]);

Model the propagation channel by combining all transmit antennas into one receive antenna.

rxWaveform = sum(txWaveform,2);

Perform OFDM demodulation.

rxGrid = lteOFDMDemodulate(enb,rxWaveform);

Estimate the channel characteristics, displaying the size of the returned array. Confirm that the noise
power spectral density estimate is zero.

[hest,noiseEst] = lteDLChannelEstimate(enb,cec,rxGrid);
disp(size(hest))

 72 140 1 4

disp(noiseEst)

 0

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure. The fields that you specify in enb depend on whether the
function performs channel estimation for an LTE or NB-IoT configuration.1

Name Required or
Optional

Values Description Dependencies Data Types

NDLRB Required for LTE
configuration

Integer in the
interval [6, 110]

Number of
downlink
resource blocks

This field applies
only when you
specify the
Reference field
of the cec input
to a value other
than 'NRS'.

double

1 The value to which you set the Reference field of the cec input determines whether the function performs channel
estimation for an LTE or NB-IoT configuration.

2 Functions

2-142

Name Required or
Optional

Values Description Dependencies Data Types

CellRefP Required for LTE
configuration

1, 2, 4 Number of cell-
specific reference
signal (CRS)
antenna ports

This field applies
only when you
specify the
Reference field
of the cec input
to a value other
than 'NRS'.

double

NCellID Required for LTE
configuration

Integer in the
interval [0, 503]

Physical layer cell
identity (PCI)

This field applies
only when you
specify the
Reference field
of the cec input
to a value other
than 'NRS'.

double

NSubframe Required Nonnegative
integer

Subframe number Not applicable double

CyclicPrefix Optional 'Normal'
(default),
'Extended'

Cyclic prefix
length

Not applicable char, string

DuplexMode Optional 'FDD' (default),
'TDD'

Duplex mode,
specified as
'FDD' for
frequency
division duplex or
'TDD' for time
division duplex.

Not applicable char, string

TDDConfig Optional 1 (default),
integer in the
interval [0, 6]

Uplink-downlink
configuration; for
more information,
see Section 4.2 of
[3].

This field applies
only when you
specify the
DuplexMode field
as 'TDD'.

double

SSC Optional 0 (default),
integer in the
interval [0, 9]

Special subframe
configuration; for
more information,
see Section 4.2 of
[3].

This field applies
only when you
specify the
DuplexMode field
as 'TDD'.

double

CSIRefP Required when
you specify the
Reference field
of the cec input
as 'CSIRS'.

1, 2, 4, 8 Number of
channel-state
information
reference signal
(CSI-RS) antenna
ports

This field applies
only when you
specify the
Reference field
of the cec input
as 'CSIRS'.

double

 lteDLChannelEstimate

2-143

Name Required or
Optional

Values Description Dependencies Data Types

CSIRSConfig Required when
you specify the
Reference field
of the cec input
as 'CSIRS'.

Integer in the
interval [0, 31]

CSI-RS
configuration
index; for more
information, see
Table 6.10.5.2-1
in [3].

This field applies
only when you
specify the
Reference field
of the cec input
as 'CSIRS'.

double

CSIRSPeriod Optional 'On' (default),
'off', integer in
the interval [0,
154], 1-by-2
vector of integers

CSI-RS subframe
configuration,
specified as one
of these values:

• 'On'
• 'Off'
• An integer in

the interval [0,
154]
corresponding
to the value of
ICSI-RS in Table
6.10.5.3-1 of
[3]

• A 1-by-2
vector of
integers in the
form [TCSI-RS
ΔCSI-RS], where

• TCSI-RS is
the CSI-RS
periodicity

• ΔCSI-RS is
the CSI-RS
subframe
offset

For more
information,
see Table
6.10.5.3-1 of
[3].

This field applies
only when you
specify the
Reference field
of the cec input
as 'CSIRS'.

double, char,
string

NNCellID Required for NB-
IoT configuration

Integer in the
interval [0, 503]

Narrowband PCI This field applies
only when you
specify the
Reference field
of the cec input
as 'NRS'.

double

2 Functions

2-144

Name Required or
Optional

Values Description Dependencies Data Types

NBRefP Required for NB-
IoT configuration

1, 2 Number of
narrowband
reference signal
(NRS) antenna
ports

This field applies
only when you
specify the
Reference field
of the cec input
as 'NRS'.

double

Data Types: struct

rxgrid — Received resource element grid
complex-valued 3-D array

Received resource element grid, specified as a complex-valued array of size NSC-by-NSym-by-NR,
where:

• NSC is the number of subcarriers
• NSym = NSF × NSymPerSF is the number of OFDM symbols, where:

• NSF is the total number of subframes

Note To adhere to the estimation method defined in [1] and [2], NSF must be 10.
• NSymPerSF is the number of OFDM symbols per subframe

• For normal cyclic prefix, each subframe contains 14 OFDM symbols.
• For extended cyclic prefix, each subframe contains 12 OFDM symbols.

• NR is the number of receive antennas

cec — Channel estimation configuration
structure

Channel estimation configuration, specified as a structure containing these fields.

Name Required or
Optional

Values Description Dependencies Data Types

PilotAverage Required 'TestEVM',
'UserDefined'

Type of pilot
averaginga

The 'TestEVM'
value applies only
when you specify
the Reference
field as a value
other than
'NRS'.

char, string

FreqWindow Required Positive integer Size of window
for frequency
averaging, in
resource
elements

Not applicable double

 lteDLChannelEstimate

2-145

Name Required or
Optional

Values Description Dependencies Data Types

TimeWindow Required Positive integer Size of window
for time
averaging, in
resource
elements

Not applicable double

InterpType Required 'nearest',
'linear',
'natural',
'cubic', 'v4',
'none'

Type of
interpolation
between pilot
symbols,
specified as one
of these values:

• 'nearest' –
Nearest
neighbor
interpolation

• 'linear' –
Linear
interpolation

• 'natural' –
Natural
neighbor
interpolation

• 'cubic' –
Cubic
interpolation

• 'v4' –
MATLAB 4
griddata
method

• 'none' – No
interpolationb

For more
information, see
the griddata
function.

Not applicable char, string

InterpWindow Required 'Causal',
'Non-causal',
'Centred',
'Centered'

Interpolation
type; the values
'Centred' and
'Centered' are
equivalent. For
more information,
see “Noise
Reduction and
Interpolation” on
page 2-159.

Not applicable char, string

2 Functions

2-146

Name Required or
Optional

Values Description Dependencies Data Types

InterpWinSize Required Positive scalar Interpolation
window size, in
number of
subframes

If you specify the
InterpWindow
field as
'Centred' or
'Centered', you
cannot specify
this field as an
even integer.

double

 lteDLChannelEstimate

2-147

Name Required or
Optional

Values Description Dependencies Data Types

Reference Optional 'DMRS' (Default),
'CSIRS',
'CellRS',
'EPDCCHDMRS',
'NRS'

Reference signals
for channel
estimation,
specified as one
of these values:

• 'DMRS' –
Perform
PDSCH
estimation by
using the
demodulation
reference
signals (DM-
RSs)

• 'CSIRS' –
Perform
PDSCH
estimation by
using the
channel-state
information
reference
signals (CSI-
RSs)c

• 'CellRS' –
Perform
channel
estimation by
using the cell-
specific
reference
signals (CRSs)

• 'EPDCCHDMRS
' – Perform
EPDCCH
estimation by
using the DM-
RSs

• 'NRS' –
Perform
channel
estimation for
an NB-IoT
configuration

This field applies
only when you
specify one of
these
configurations:

• PDSCH
channel
estimation
with the
TxScheme
field of the
pdsch
argument
specified as
one of these
values:
'Port5',
'Port7-8',
'Port8',
'Port7-14'

• EPDCCH
channel
estimation

• NB-IoT
channel
estimation

char, string

2 Functions

2-148

Name Required or
Optional

Values Description Dependencies Data Types

by using the
NRSs.

a If you specify this field as 'TestEVM', the function ignores any other fields you specify in cec. The function performs pilot averaging
according to the method set out in Annex E of [1] and Annex F of [2]. This method is for transmitter error vector magnitude (EVM)
testing and is not supported for NB-IoT configurations.

When you specify this field as 'UserDefined', the function performs pilot averaging with a rectangular kernel of size FreqWindow-
by-TimeWindow. The function also performs a two-dimensional filtering operation on the pilots. The pilots near the edge of the
resource grid either have no neighbors or a limited number of neighbors through the creation of virtual pilots. Consequently, these
pilots are not averaged in the same way as pilots away from the edge of the resource grid.

b When you specify this field as 'none', the function performs no interpolation between pilot symbols and does not create virtual
pilots. The hest output contains channel estimates in the locations of transmitted reference symbols for each receive antenna, and
all other elements of hest are 0. The function still performs pilot symbol averaging in accordance with the values you specify for the
FreqWindow and TimeWindow fields.

c CSI-RS-based channel estimation is strictly only valid within the standard for the transmission scheme corresponding to the
'Port7-14' value of the TxScheme field of the pdsch argument. For more information, see Section 6.10.5.3 of [3].

pdsch — PDSCH transmission configuration
structure

PDSCH transmission configuration, specified as a structure containing these fields.

 lteDLChannelEstimate

2-149

Name Required or
Optional

Values Description Dependencies Data Types

TxScheme Required 'Port0',
'TxDiversity
', 'CDD',
'SpatialMux'
, 'MultiUser',
'Port5',
'Port7-8',
'Port8',
'Port7-14'

PDSCH
transmission
scheme,
specified as one
of these values:

• 'Port0' –
Single-
antenna
port, port 0

• 'TxDivers
ity' –
Transmit
diversity

• 'CDD' –
Large-delay
cyclic delay
diversity
(CDD)
scheme

• 'SpatialM
ux' –
Closed-loop
spatial
multiplexing

• 'MultiUse
r' –
Multiuser
multiple-
input/
multiple-
output
(MIMO)

• 'Port5' –
Single-
antenna
port, port 5

• 'Port7-8'
– Single-
antenna,
port 7 when
the NLayers
field is 1;
dual-layer
transmission
, ports 7 and
8 when the

Not applicable char, string

2 Functions

2-150

Name Required or
Optional

Values Description Dependencies Data Types

NLayers
field is 2

• 'Port8' –
Single-
antenna
port, port 8

• 'Port7-14
' – Up to
eight-layer
transmission
, ports 7–14

 lteDLChannelEstimate

2-151

Name Required or
Optional

Values Description Dependencies Data Types

PRBSet Required Column vector
of integers, two-
column matrix
of integers, cell
array

Physical
resource block
(PRB) indices,
in zero-based
form,
corresponding
to the slot-wise
resource
allocations for
the PDSCH.
Specify this
field as one of:

• A column
vector of
integers, for
which the
resource
allocation is
the same in
both slots of
the
subframe

• A two-
column
matrix, in
which you
can specify
PRBs for
each slot in
a subframe

• A cell array
of length 10,
correspondi
ng to a
frame if the
allocated
PRBs vary
across
subframes

This field varies
per subframe
for these
reference
measurement
channels
(RMCs):
'R.25' (TDD),

Not applicable single,
double, cell

2 Functions

2-152

Name Required or
Optional

Values Description Dependencies Data Types

'R.26' (TDD),
'R.27' (TDD),
'R.43' (FDD),
'R.44',
'R.45',
'R.48',
'R.50', and
'R.51'.

RNTI Required Nonnegative
integer

Radio network
temporary
identifier
(RNTI) value

Not applicable double

NLayers Required Integer in the
interval [1, 8]

Number of
transmission
layers

This field
applies only
when you
specify the
TxScheme field
as one of these
values:
'Port5',
'Port7-8',
'Port8',
'Port7-14'.

double

You can initialize a special case by specifying:

• The TxScheme field of pdsch as 'Port7-8', 'Port8', or 'Port7-14'
• The PilotAverage field of cec as 'UserDefined'
• The TimeWindow field of cec as 2 or 4
• The FreqWindow field of cec as 1.

The function uses a window of two or four pilots in time to average the pilot estimates. For this
configuration, averaging is always applied across two or four pilots, regardless of their separation in
OFDM symbols. Averaging is required for the UE-RS and CSI-RS ports because they occupy the same
time/frequency locations, using different orthogonal covers for the receiver to differentiate them.

• For the CSI-RS with any number of configured CSI-RS antenna ports, the pilot REs occur in one
pair per subframe. The CSI-RS pilot RE pairs are averaged with the TimeWindow field of cec set
to 2, resulting in one channel estimate per subframe.

• For the UE-RS with the NLayers field of pdsch specified as 1, 2, 3, or 4, the pilot REs occur in
pairs repeated in each slot. The UE-RS pilot RE pairs are averaged with the TimeWindow field of
cec set to 2, resulting in two estimates per subframe, one for each slot.

For the UE-RS with the NLayers field of pdsch specified as 5, 6, 7, or 8, the pairs are distinct
between the slots of the subframe. The pairs are averaged with the TimeWindow field of cec set to 4,
resulting in one estimate per subframe. In these cases, rxgrid must contain only one subframe
because only a single subframe can be estimated.
Data Types: struct

 lteDLChannelEstimate

2-153

epdcch — EPDCCH transmission configuration
structure

EPDCCH transmission configuration, specified as a structure containing these fields.

2 Functions

2-154

Name Required or
Optional

Values Description Data Types

EPDCCHType Required 'Localized',
'Distributed'

EPDCCH
transmission type.
As indicated in
Table 6.8A.5-1 of
[3], the function
performs channel
estimation
according to the
value you specify
for this field.

• When you
specify this
field as
'Localized',
the function
performs
channel
estimation in
one of these
sets of antenna
ports: {107,
108, 109, 110},
{107, 109}, or
{107, 108}.
The antenna
ports used
depend on the
cell
configuration.

• When you
specify this
field as
'Distributed
', the function
performs
channel
estimation in
the pair of
EPDCCH
antenna ports
used for
EPDCCH
transmission.
When you
specify the
CyclicPrefix
field of the enb
input as

char, string

 lteDLChannelEstimate

2-155

Name Required or
Optional

Values Description Data Types

'Normal', the
function uses
antenna ports
107 and 109.
When you
specify the
CyclicPrefix
field of the enb
input as
'Extended',
the function
uses antenna
ports 107 and
108.

• In other
EPDCCH
antenna ports,
the channel
estimate is
zero.

2 Functions

2-156

Name Required or
Optional

Values Description Data Types

EPDCCHPRBSet Required Vector of integers EPDCCH PRB pair
indices, in zero-
based form. The
length of this field
must be a power of
two. If no
transmission is
required, specify
this field as an
empty vector.

The function
returns only a
channel estimate
for the PRB pairs
that you specify in
this field, but
performs
estimation for all
EPDCCH
candidate locations
within those pairs.
In other PRBs, the
function
interpolates the
channel estimate
according to the
interpolation type
that you specify in
the InterpType
field of the cec
input.

double

EPCCHNID Required Nonnegative
integer

EPDCCH
scrambler
initialization
parameter. This
field represents
the parameter
nID, m

EPDCCH in the
definition of the
initial state of the
scrambling
sequence
generator, given in
Section 6.8A.2 of
[3].

double

 lteDLChannelEstimate

2-157

Note Specifying the PilotAverage, TimeWindow, and FreqWindow fields of the cec input as
'UserDefined', 2, and 1, respectively, initializes a special case. The function performs the
"despreading" pilot averaging behavior described in the note for the TxScheme field of the pdsch
input. This behavior results because the EPDCCH DMRS and PDSCH DMRS RE have the same
arrangement and employ the same use of orthogonal cover codes.

Dependencies

This argument applies only when you specify the Reference field of the cec input as
'EPDCCHDMRS'.
Data Types: struct

Output Arguments
hest — Estimated channel between transmit and receive antennas
complex-valued 4-D array

Estimated channel between transmit and receive antennas, returned as a complex-valued 4-D array.
The fourth dimension of hest varies based on the reference signal option you specify in the
Reference field of the cec argument and the TxScheme field of the pdsch input.

Value of Reference
Field of cec

Output Array
Dimensions

RS-Specific
Dimension

Transmission Scheme

'DMRS' NSC-by-NSym-by-NR-by-
NLayers

NLayers is the number
of transmission layers.

'Port5', 'Port7-8',
'Port8', and
'Port7-14'

'CSIRS' NSC-by-NSym-by-NR-by-
CSIRefP

CSIRefP is the number
of CSI-RS antenna
ports.

'Port5', 'Port7-8',
'Port8', and
'Port7-14'

'CellRS' NSC-by-NSym-by-NR-by-
CellRefP

CellRefP is the
number of cell-specific
reference signal
antenna ports.

'SpatialMux',
'Port0',
'TxDiversity',
'CDD', 'MultiUser',
'Port5', 'Port7-8',
'Port8', 'Port7-14'

'EPDCCHDMRS' NSC-by-NSym-by-NR-by-4 Estimate across all four
possible EPDCCH ports
(107–110), which
ensures consistency
with the indexing used
by the
lteEPDCCHDMRSIndic
es and
lteEPDCCHIndices
functions

Not applicable

'NRS' NSC-by-NSym-by-NR-by-
NBRefP

NBRefP is the number
of NRS antenna ports.

Not applicable

2 Functions

2-158

Value of Reference
Field of cec

Output Array
Dimensions

RS-Specific
Dimension

Transmission Scheme

Output array dimensions:

• NSC is the number of subcarriers.
• NSym is the number of OFDM symbols.
• NR is the number of receive antennas.

Data Types: double

noiseEst — Noise power spectral density estimate
real-valued scalar

Noise power spectral density estimate on reference signal subcarriers, returned as a real-valued
scalar. The function computes noiseest by using the reference signals.
Data Types: double

Algorithms
Channel Estimation Processing

The steps associated with channel estimation processing are:

1 Extract the reference signals, or pilot symbols, for a transmit-receive antenna pair from the
received grid. Use the reference signals to calculate the least-squares estimates of the channel
response at the pilot symbol positions within a received grid.

The function obtains the least-squares estimates of the reference signals by dividing the received
pilot symbols by their expected value. Any system noise affects the least-squares estimates.
Remove or reduce the noise to achieve a reasonable estimation of the channel at pilot symbol
locations. For more information, see “Noise Reduction and Interpolation” on page 2-159.

2 Average the least-squares estimates to reduce any unwanted noise from the pilot symbols.
3 Interpolate the cleaned pilot symbol estimates into an estimate of the channel for the entire

number of subframes passed into the function.

Noise Reduction and Interpolation

To minimize the effects of noise on the pilot symbol estimates, the function averages the least-squares
estimates through an averaging window. This method ensures a substantial reduction in the level of
noise found on the pilot symbols. The two pilot symbol averaging methods, which also define the
interpolation method performed to obtain the channel estimate, are 'TestEVM' and
'UserDefined'.

• 'TestEVM' — Follows the method described in Annex F.3.4 of [2]. The function performs time
averaging across each pilot symbol carrying subcarrier, resulting in a column vector containing
the time averaged estimates of the channel. The function then performs frequency averaging by
using a moving window with a maximum size of 19. The function uses linear interpolation to
estimate the values between the pilot symbols. The function replicates the estimated vector and
uses it as the entire channel estimate.

 lteDLChannelEstimate

2-159

Note For 'TestEVM', there are no user-defined parameters. Estimation behaves as described in
[2].

The algorithm differs from the implementation described in [2] due to the number of subframes
across which time-averaging is performed. In [2], the method requires 10 subframes. The
lteDLChannelEstimate function performs time averaging across the total number of subframes
contained in the rxgrid input.

• 'UserDefined' — Uses an averaging window that you define. The averaging window size is in
resource elements. Any pilot symbols located within the window are used to average the value of
the pilot symbol found at the center of the window. The function uses the averaged pilot symbol
estimates to perform a 2-D interpolation across a window of subframes. The location of pilot
symbols within the subframe is not ideally suited to interpolation. To account for this issue, the
function creates virtual pilots and places them outside the area of the current subframe. This
approach allows for complete and accurate interpolation. The InterpWindow field defines the
causal nature of the available data. Valid settings for InterpWindow are 'Causal', 'Non-
causal', 'Centred', or 'Centered'.

The value that you specify for InterpWindow depends upon the data that you use for
interpolation.

• 'Causal' – Use past data.
• 'Non-causal' – Use future data, the opposite of 'Causal'. Relying on only future data is

commonly referred to as an anti-causal method of interpolation.
• 'Centered' or 'Centred' – Use a combination of past, present, and future data.

Version History
Introduced in R2013b

References
[1] 3GPP TS 36.104. “Base Station (BS) radio transmission and reception.” 3rd Generation

Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal
Terrestrial Radio Access (E-UTRA).

[2] 3GPP TS 36.141. “Base Station (BS) conformance testing.” 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA).

[3] 3GPP TS 36.211. “Physical Channels and Modulation.” 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA).

See Also
lteOFDMDemodulate | lteEqualizeMIMO | lteEqualizeMMSE | lteEqualizeZF |
lteDLPerfectChannelEstimate | griddata

Topics
“Channel Estimation”

2 Functions

2-160

lteDLConformanceTestTool
Opens the LTE Throughput Analyzer app for performing downlink PDSCH demodulation conformance
tests

Syntax
lteDLConformanceTestTool

Description
lteDLConformanceTestTool opens the LTE Throughput Analyzer app for performing downlink
PDSCH demodulation conformance tests as defined in TS 36.101 [1].

The throughput performance graphs update dynamically during the simulation run and provides an
early understanding system behavior for a given setup. For more information, see LTE Throughput
Analyzer.

Examples

Open Throughput Analyzer App

lteDLConformanceTestTool

 lteDLConformanceTestTool

2-161

The LTE PDSCH Conformance Testing user interface opens.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

See Also
Apps
LTE Throughput Analyzer

2 Functions

2-162

https://www.3gpp.org

Functions
lteRMCDLTool | lteRMCULTool | lteTestModel

Topics
“Analyze Throughput for PDSCH Demodulation Performance Test”

 lteDLConformanceTestTool

2-163

lteDLDeprecode
Downlink deprecoding onto transmission layers

Syntax
out = lteDLDeprecode(in,nu,txscheme,codebook)
out = lteDLDeprecode(enb,chs,in)

Description
out = lteDLDeprecode(in,nu,txscheme,codebook) returns a symbol matrix by performing
deprecoding using matrix pseudo-inversion to undo processing described in TS 36.211 [1], Section
6.3.4. The overall operation of the deprecoder is to transpose what is defined in the specification.

out = lteDLDeprecode(enb,chs,in) performs deprecoding of the precoded symbol matrix, in,
according to cell-wide settings enb and chs (channel transmission configurations).

Examples

Perform Deprecoding on Identity Matrix

Deprecode a precoded identity matrix having codebook index 1 for three layers and four antennas.

in = lteDLPrecode(eye(3),4,'SpatialMux',1);
out = lteDLDeprecode(in,3,'SpatialMux',1)

out = 3×3 complex

 1.0000 + 0.0000i 0.0000 - 0.0000i -0.0000 + 0.0000i
 0.0000 - 0.0000i 1.0000 + 0.0000i 0.0000 + 0.0000i
 -0.0000 + 0.0000i 0.0000 - 0.0000i 1.0000 + 0.0000i

Input Arguments
in — Precoded input symbols
numeric matrix

Precoded input symbols, specified as numeric matrix. The size of the matrix is N-by-P, where P is the
number of transmission antennas and N is the number of symbols per antenna. Generate the matrix
by extracting a PDSCH using ltePDSCHIndices function on a received resource array. You can
perform a similar extraction using the index generator for any other downlink channel that utilizes
precoding.

nu — Number of layers
integer from 1 to 8

Number of layers, specified as an integer from 1 to 8. The maximum number of layers depends on the
transmission scheme, txscheme.

2 Functions

2-164

Data Types: double

txscheme — Transmission scheme
'Port0' | 'TxDiversity' | 'CDD' | 'SpatialMux' | 'MultiUser' | 'Port5' | 'Port7-8' |
'Port8' | 'Port7-14'

PDSCH transmission scheme, specified as one of the following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay diversity scheme
'SpatialMux' Closed loop spatial multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7, when NLayers = 1. Dual

layer transmission, ports 7 and 8, when NLayers = 2.
'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer transmission, ports 7–14

Data Types: char | single

codebook — Codebook index
integer from 0 to 15

Codebook index to select the precoding matrix, specified as an integer from 0 to 15. This input is
ignored for the 'Port0', 'TxDiversity', and 'CDD' transmission schemes. Find the precoding
matrix corresponding to a particular codebook index in TS 36.211 [1], Section 6.3.4. In the case of
'TxDiversity' and nu=1, the function falls back to single port processing.
Data Types: double

enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields:

Parameter Field Required or
Optional

Values Description

When chs.TxScheme is set to 'TxDiversity', 'CDD', 'SpatialMux', or 'MultiUser', these parameters
are applicable:
  CellRefP Required 1, 2, 4 Number of cell-specific

reference signal (CRS)
antenna ports

When chs.TxScheme is set to 'SpatialMux', or 'MultiUser' and chs.PMISet is present, these parameters
are applicable:.
  NCellID Required Integer from 0 to 503 Physical layer cell identity

 lteDLDeprecode

2-165

Parameter Field Required or
Optional

Values Description

  NSubframe Required 0 (default), nonnegative
scalar integer

Subframe number

  NDLRB Required Scalar integer from 6 to 110 Number of downlink
resource blocks (NRB

DL)
  CFI Required 1, 2, or 3

Scalar or if the CFI varies
per subframe, a vector of
length 10 (corresponding to
a frame).

Control format indicator
(CFI) value. In TDD mode,
CFI varies per subframe for
the RMCs ('R.0', 'R.5',
'R.6', 'R.6-27RB',
'R.12-9RB')

  CyclicPrefix Optional 'Normal' (default),
'Extended'

Cyclic prefix length

  DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as
either:

• 'FDD' for Frequency
Division Duplex

• 'TDD' for Time Division
Duplex

When DuplexMode is set to 'TDD', these parameters are applicable:
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink

configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7,

8, 9
Special subframe
configuration (SSC)

Data Types: struct

chs — Channel-specific transmission configuration
structure

Channel-specific transmission configuration, specified as a structure that can contain the following
parameter fields:

2 Functions

2-166

Parameter Field Required or
Optional

Values Description

TxScheme Required 'Port0', 'TxDiversity',
'CDD', 'SpatialMux',
'MultiUser', 'Port5',
'Port7-8', 'Port8',
'Port7-14'.

PDSCH transmission
scheme, specified as one of
the following options.

Transmission
scheme

Description

'Port0' Single antenna
port, port 0

'TxDiversity' Transmit diversity
'CDD' Large delay cyclic

delay diversity
scheme

'SpatialMux' Closed loop spatial
multiplexing

'MultiUser' Multi-user MIMO
'Port5' Single-antenna

port, port 5
'Port7-8' Single-antenna

port, port 7, when
NLayers = 1.
Dual layer
transmission,
ports 7 and 8,
when NLayers =
2.

'Port8' Single-antenna
port, port 8

'Port7-14' Up to eight layer
transmission,
ports 7–14

NLayers Required Integer from 1 to 8 Number of transmission
layers.

The following parameters are applicable when TxScheme is set to 'SpatialMux' or 'MultiUser'. Include
either CodebookIdx field or both PMISet and PRBSet fields. For more information, see Algorithms on page 2-
169.
  CodebookIdx Required Integer from 0 to 15 Codebook index used during

precoding

 lteDLDeprecode

2-167

Parameter Field Required or
Optional

Values Description

  PMISet Required Integer vector with element
values from 0 to 15.

Precoder matrix indication
(PMI) set. It can contain
either a single value,
corresponding to single PMI
mode, or multiple values,
corresponding to multiple or
subband PMI mode. The
number of values depends on
CellRefP, transmission layers
and TxScheme. For more
information about setting
PMI parameters, see
ltePMIInfo.

  PRBSet Required Integer column vector or
two-column matrix

Zero-based physical resource
block (PRB) indices
corresponding to the slot
wise resource allocations for
this PDSCH. PRBSet can be
assigned as:

• a column vector, the
resource allocation is the
same in both slots of the
subframe,

• a two-column matrix, this
parameter specifies
different PRBs for each
slot in a subframe,

• a cell array of length 10
(corresponding to a
frame, if the allocated
physical resource blocks
vary across subframes).

PRBSet varies per subframe
for the RMCs 'R.25'(TDD),
'R.26'(TDD),
'R.27'(TDD),
'R.43'(FDD), 'R.44',
'R.45', 'R.48', 'R.50',
and 'R.51'.

The fields PMISet and PRBSet are used to determine the frequency-domain position occupied by each precoded
symbol in out. This step is performed to apply the correct subband precoder when multiple PMI mode is used.
Alternatively, you can provide the CodebookIdx parameter field. CodebookIdx is a scalar specifying the
codebook index to use across the entire bandwidth. Therefore, the CodebookIdx field does not support
subband precoding. The relationship between PMI values and codebook index is given in TS 36.213 [2], Section
7.2.4.

2 Functions

2-168

Data Types: struct

Output Arguments
out — Deprecoded downlink output
matrix

Deprecoded downlink output, returned as NSYM-by-v matrix, containing v layers, with NSYMNSYM
symbols in each layer. The symbols for layers and antennas lie in columns rather than in rows.
Data Types: double

Algorithms
For transmission schemes 'CDD', 'SpatialMux', and 'MultiUser', and degenerately 'Port0',

• Precoding involves multiplying a P-by-v precoding matrix, F, by a v-by-NSYM matrix, representing
NSYM symbols on each of v transmission layers. This multiplication yields a P-by-NSYM matrix,
representing NSYM precoded symbols on each of P antenna ports. Depending on the transmission
scheme, the precoding matrix can be composed of multiple matrices multiplied together. But the
size of the product, F, is always P-by-v.

For the 'TxDiversity' transmission scheme,

• A P 2-by-2v precoding matrix, F, is multiplied by a 2v-by-NSYM matrix, formed by splitting the real
and imaginary components of a v-by-NSYM matrix of symbols on layers. This multiplication yields a
P 2-by-NSYM matrix of precoded symbols, which is then reshaped into a P-by-PNSYM matrix for
transmission. Since v is P for the 'TxDiversity' transmission scheme, F is of size P 2-by-2P,
rather than P 2-by-2v.

When v is P in 'CDD', 'SpatialMux', and 'MultiUser' transmission schemes, and when P and v
are 2 in the 'TxDiversity' transmission scheme,

• The precoding matrix, F, is square. Its size is 2P-by-2P for the transmit diversity scheme and P-by-
P otherwise. In this case, the deprecoder takes the matrix inversion of the precoding matrix to
yield the deprecoding matrix F –1. The matrix inversion is computed using LU decomposition with
partial pivoting (row exchange):

1 Perform LU decomposition PxF = LU.
2 Solve LY = I using forward substitution.
3 Solve UX = Y using back substitution.
4 F –1 = XPx.

The degenerate case of the 'Port0' transmission scheme falls into this category, with P = v = 1.

For the 'CDD', 'SpatialMux', and 'MultiUser' transmission schemes,

• The deprecoding is then performed by multiplying F –1 by the transpose of the input symbols
(symbols is size NSYM-by-P, so the transpose is a P-by-NSYM matrix). This multiplication recovers
the v-by-NSYM (equals P-by-NSYM) matrix of transmission layers.

For the 'TxDiversity' transmission scheme,

 lteDLDeprecode

2-169

• The deprecoding is performed, multiplying F –1 by the transpose of the input symbols (symbols is
size PNSYM-by-P, so the transpose is a P-by-PNSYM matrix), having first been reshaped into a 2P-by-
NSYM matrix. This multiplication yields a 2v-by-NSYM, matrix which is then split into two v-by-NSYM
matrices. To recover the v-by-NSYM matrix of transmission layers multiply the second matrix by j
and add the two matrices together (thus recombining real and imaginary parts).

For the other cases, specifically 'CDD', 'SpatialMux', and 'MultiUser' transmission schemes
with v ≠ P and the 'TxDiversity' transmission scheme with P = 4,

• The precoding matrix F is not square. Instead, the matrix is rectangular with size P-by-v, except in
the case of 'TxDiversity' transmission scheme with P = 4, where it is of size P 2-by-(2P = 16)-
by-8. The number of rows is always greater than the number of columns in the matrix F is size m-
by-n with m > n.

• In this case, the deprecoder takes the matrix pseudo-inversion of the precoding matrix to yield the
deprecoding matrix F +. The matrix pseudo-inversion is computed as follows.

1 Perform LU decomposition PxF = LU.
2 Remove the last m − n rows of U to give U.
3 Remove the last m − n columns of L to give L.
4

X = UH UUH −1
LHL

−1
LH (the matrix inversions are carried out as in the previous steps).

5 F + = XPx

The application of the deprecoding matrix F + is the same process as described for deprecoding the
square matrix case with F + in place of F –1.

This method of pseudo-inversion is based onLinear Algebra and Its Application [3], Chapter 3.4,
Equation (56).

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[3] Strang, Gilbert. Linear Algebra and Its Application. Academic Press, 1980. 2nd Edition.

See Also
lteDLPrecode | lteLayerDemap

2 Functions

2-170

https://www.3gpp.org
https://www.3gpp.org

lteDLFrameOffset
Downlink frame timing estimate

Syntax
offset=lteDLFrameOffset(enb,waveform)
[offset,corr]=lteDLFrameOffset(enb,waveform)
[offset,corr]=lteDLFrameOffset(enb,waveform,corrcfg)
[offset,corr]=lteDLFrameOffset(enb,waveform,'TestEVM')

Description
offset=lteDLFrameOffset(enb,waveform) returns the timing offset, in samples, between the
start of the input waveform and the start of the first frame. offset is measured using the reference
signals defined in the LTE standard.

lteDLFrameOffset performs synchronization using the PSS and SSS for the time-domain waveform,
given cell-wide settings structure, enb. Note that this function does not perform PSS/SSS cell identity
search. The cell identity must be provided in enb. The function lteCellSearch can be used to
perform cell identity search.

[offset,corr]=lteDLFrameOffset(enb,waveform) also returns a complex matrix, corr, of the
same dimensions as the input waveform.

[offset,corr]=lteDLFrameOffset(enb,waveform,corrcfg) provides control over which
reference signals are used for timing estimation, as specified in the input structure, corrcfg.

[offset,corr]=lteDLFrameOffset(enb,waveform,'TestEVM'), provides the input
'TestEVM' to stipulate alignment of the correlation configuration with TS 36.104, Annex E [1].

Examples

Synchronize and Demodulate Test Model Output

Synchronization and demodulation of Test Model output which has been delayed by five samples.

Initialize cell-wide parameters structure. Generate waveform for test model 1.1 with 5MHz
bandwidth. A five sample delay is achieved by inserting five zeros at the beginning of the waveform.
Compute and display the offset. Perform demodulation of the waveform accounting for the offset
delay by adjusting waveform start index.

enb = lteTestModel('1.1','5MHz');
tx = [0; 0; 0; 0; 0; lteTestModelTool(enb)];

offset = lteDLFrameOffset(enb,tx)

offset = 5

rxGrid = lteOFDMDemodulate(enb,tx(1+offset:end));

 lteDLFrameOffset

2-171

Input Arguments
enb — Cell-wide settings
scalar structure

Cell-wide settings, specified as a structure. enb can contain these fields.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length
NCellID Required Integer from 0 to 503 Physical layer cell identity
DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as

either:

• 'FDD' for Frequency Division
Duplex

• 'TDD' for Time Division
Duplex

The following parameters are only required for CellRS = 'On' or 'OmitEdgeRBs'. See corrcfg.
  CellRefP Required 1, 2, 4 Number of cell-specific reference

signal (CRS) antenna ports
The following parameters are only required when DuplexMode = 'TDD' and CellRS = 'On' or
'OmitEdgeRBs'. See corrcfg.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7, 8, 9 Special subframe configuration

(SSC)

Data Types: struct

waveform — Time-domain waveform
numeric matrix

Time-domain waveform, specified as a T-by-P numeric matrix, where T is the number of time-domain
samples and P is the number of receive antennas. waveform should be at least one subframe long
and contain the PSS and SSS signals. Use lteOFDMModulate or one of the channel model functions
(lteFadingChannel, lteHSTChannel, or lteMovingChannel) to generate this matrix.
Data Types: double | single

corrcfg — Control reference signals used for timing estimation
scalar structure

Control reference signals used for timing estimation, specified as a structure containing any or all of
these fields.

2 Functions

2-172

Parameter Field Required or
Optional

Values Description

PSS Optional 'On' (default), 'Off' Primary synchronization signal
(PSS) correlation mode

SSS Optional 'On' (default), 'Off' Secondary synchronization
signal (SSS) correlation mode

CellRS Optional 'Off' (default),
'OmitEdgeRBs', 'On'

Cell-specific reference signal
(CRS) correlation mode

For the corrcfg fields, lteDLFrameOffset uses the reference signals, (PSS, SSS, or CellRS) as
configured by initializing particular reference signal correlation mode(s) to 'On'. For CellRS, using
the mode setting, 'OmitEdgeRBs', instead of 'On', removes the uppermost and lowermost resource
block of reference signals from the correlation. The 'OmitEdgeRBs' method is specified for EVM
testing in TS 36.104, Annex E [1]. Omitting band edge RBs removes potential transmit filtering
nonlinear phase response and the resulting influence on group delay response for the overall band.
Data Types: struct

'TestEVM' — Test EVM setting
'TestEVM'

Test EVM setting, specified as 'TestEVM'. As defined in TS 36.104 [1], Annex E, sets correlation
with:

• PSS to 'On',
• SSS to 'Off', and
• CellRS to 'OmitEdgeRBs'.

Data Types: char | string

Output Arguments
offset — Timing offset from the start of the input waveform to the start of the first frame
numeric scalar

Timing offset from the start of the input waveform to the start of the first frame, returned as a
numeric scalar. It indicates the number of samples from the start of waveform, to the position in
waveform where the first frame begins. offset is computed by extracting the timing of the peak of
the correlation between waveform and the internally generated time-domain reference waveforms
containing PSS and SSS signals. The correlation is performed separately for each antenna.
lteDLFrameOffset uses the antenna with the earliest correlation peak and a correlation peak
magnitude at least 50% of the maximum across the antennas to compute offset.
Data Types: double

corr — Signal used to extract timing offset
complex numeric matrix

Signal used to extract the timing offset, returned as a complex numeric matrix of the same size as
waveform. Each column of corr is the correlation for each column (antenna) of waveform.
Data Types: double
Complex Number Support: Yes

 lteDLFrameOffset

2-173

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.104. “Base Station (BS) radio transmission and reception.” 3rd Generation

Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal
Terrestrial Radio Access (E-UTRA).

See Also
lteNBDLFrameOffset | lteFadingChannel | lteMovingChannel | lteHSTChannel |
lteOFDMDemodulate | lteCellSearch | lteFrequencyCorrect | lteFrequencyOffset

2 Functions

2-174

lteDLPerfectChannelEstimate
Downlink perfect channel estimation

Syntax
hest = lteDLPerfectChannelEstimate(enb,propchan)
hest = lteDLPerfectChannelEstimate(enb,propchan,timefreqoffset)
hest = lteDLPerfectChannelEstimate(enb,propchan,timefreqoffset,ntxants)

Description
hest = lteDLPerfectChannelEstimate(enb,propchan) performs perfect channel estimation
for a system configuration given structures containing the cell-wide settings, and the propagation
channel configuration. The perfect channel estimates are only produced for channel models created
using lteFadingChannel or lteHSTChannel.

This function provides a perfect MIMO channel estimate after OFDM modulation. Perfect channel
estimation is achieved by setting the channel with the desired configuration and sending a set of
known symbols through it for each transmit antenna in turn.

hest = lteDLPerfectChannelEstimate(enb,propchan,timefreqoffset) specifies the
timing and frequency offsets. This parameter allows hest to be the precise channel that results when
the receiver is precisely synchronized.

hest = lteDLPerfectChannelEstimate(enb,propchan,timefreqoffset,ntxants)
specifies the number of transmit antenna planes.

Note This syntax is provided to allow modeling of greater than four transmit antenna planes. For this
syntax, the enb.CellRefP field, is not required and, if included, is not used to define the number of
antenna planes.

Examples

Perform Perfect DL Channel Estimation

Perform perfect channel estimation for a given propagation channel configuration in the downlink.

Initialize eNodeB and propagation channel configuration structures.

enb.NDLRB = 6;
enb.CyclicPrefix = 'Normal';
enb.CellRefP = 4;
enb.TotSubframes = 1;

chs.Seed = 1;
chs.DelayProfile = 'EPA';
chs.NRxAnts = 2;
chs.DopplerFreq = 5.0;

 lteDLPerfectChannelEstimate

2-175

chs.MIMOCorrelation = 'Low';
chs.InitPhase = 'Random';
chs.InitTime = 0.0;
chs.ModelType = 'GMEDS';
chs.NTerms = 16;
chs.NormalizeTxAnts = 'On';
chs.NormalizePathGains = 'On';

Compute the downlink channel estimate and display the dimension of the output channel estimate.

H = lteDLPerfectChannelEstimate(enb,chs);
sizeH = size(H)

sizeH = 1×4

 72 14 2 4

Perfect DL Channel Estimation on a Time Offset Waveform

Perform perfect channel estimation on a time offset waveform that has passed through a fading
channel.

Configuration initialization

• Initialize cell-wide configuration to R.12 (TxDiversity, 6 RB, CellRefP=4, normal cyclic prefix).
• Initialize propagation channel configuration.

enb = lteRMCDL('R.1','FDD',1);
enb.TotSubframes = 1;

chan.Seed = 1;
chan.DelayProfile = 'EPA';
chan.NRxAnts = 1;
chan.DopplerFreq = 5.0;
chan.MIMOCorrelation = 'Low';
chan.InitPhase = 'Random';
chan.InitTime = 0.0;
chan.ModelType = 'GMEDS';
chan.NTerms = 16;
chan.NormalizeTxAnts = 'On';
chan.NormalizePathGains = 'On';

Waveform processing

• Create waveform and add samples for channel delay.
• Pass through a fading channel, generating time-domain receiver samples.

[txwave,txgrid,rmcCfg] = lteRMCDLTool(enb,[1;0;0;1]);
txwave = [txwave; zeros(25,enb.CellRefP)];
chan.SamplingRate = rmcCfg.SamplingRate;
rxwave = lteFadingChannel(chan,txwave);

2 Functions

2-176

Determine timing offset

• Use lteDLFrameOffset to estimate time offset.
• Account for the timing offset in the received waveform.

toffset = lteDLFrameOffset(enb,rxwave)

toffset = 7

rxwave = rxwave(1+toffset:end,:);

Demodulation and perfect channel estimation

• Demodulate rxwave to generate frequency-domain receiver data in rxgrid.
• Equalize with perfect channel estimate using time offset.
• Plot resource element grids to show impact of fading channel on the transmitted signal and

recovery of the signal using the perfect channel estimate.

rxgrid = lteOFDMDemodulate(enb,rxwave);
hest = lteDLPerfectChannelEstimate(enb,chan,[toffset,0]);
sizeH = size(hest);
recoveredgrid = rxgrid./hest;

subplot(2,2,1)
mesh(abs(txgrid(:,:,1,1)))
title('Transmitted Grid');
subplot(2,2,2)
mesh(abs(rxgrid(:,:,1,1)))
title('Received Grid');
subplot(2,2,3)
mesh(abs(hest(:,:,1,1)))
title('Perfect Channel Estimate');
subplot(2,2,4)
mesh(abs(recoveredgrid(:,:,1,1)))
title('Recovered Grid');

 lteDLPerfectChannelEstimate

2-177

Comparing the transmitted grid to the recovered grid shows equalization of the received grid with
the perfect channel estimate recovers the transmission.

Perform HST Model Perfect DL Channel Estimation

Perform perfect channel estimation for a high speed train (HST) propagation channel configuration in
the downlink. Include time and frequency offsets in the channel estimation computation.

Configuration initialization

Initialize configuration structures for eNodeB and HST propagation channel.

enb.NDLRB = 6;
enb.NCellID = 1;
enb.CyclicPrefix = 'Normal';
enb.CellRefP = 1;
enb.TotSubframes = 1;

hst.NRxAnts = 2;
hst.Ds = 100;
hst.Dmin = 500;
hst.Velocity = 200;
hst.DopplerFreq = 5.0;
hst.InitTime = 0.0;
hst.ModelType = 'GMEDS';
hst.NormalizeTxAnts = 'On';

2 Functions

2-178

Waveform processing

• Create waveform and add samples for channel delay.
• Pass through an HST channel, generating time-domain receiver samples.

[txwave,txgrid,rmcCfg] = lteRMCDLTool(enb,[1;0;0;1]);
txwave = [txwave; zeros(25,enb.CellRefP)];
hst.SamplingRate = rmcCfg.SamplingRate;
rxwave = lteHSTChannel(hst,txwave);

Determine timing and frequency offsets

• Use lteDLFrameOffset to estimate time offset.
• Account for the timing offset in the received waveform.
• Use lteFrequencyOffset to estimate frequency offset.

toffset = lteDLFrameOffset(enb,rxwave)

toffset = 7

rxwave = rxwave(1+toffset:end,:);
foffset = lteFrequencyOffset(enb,rxwave)

foffset = 0.4953

Demodulation and perfect channel estimation

• Demodulate rxwave to generate frequency-domain receiver data in rxgrid.
• Equalize with perfect channel estimate using time and frequency offsets.

rxgrid = lteOFDMDemodulate(enb,rxwave);
hest = lteDLPerfectChannelEstimate(enb,hst,[toffset,foffset]);
sizeH = size(hest)

sizeH = 1×3

 72 14 2

recoveredgrid = rxgrid./hest;

Perform Perfect DL Channel Estimation for Eight Antenna Planes

Perform perfect channel estimation for eight transmit antenna planes for a given propagation channel
configuration in the downlink.

Initialize eNodeB and propagation channel configuration structures. Define a local variable for the
number of transmit antenna planes.

enb.NDLRB = 6;
enb.CyclicPrefix = 'Normal';
enb.TotSubframes = 1;

chs.Seed = 1;
chs.DelayProfile = 'EPA';

 lteDLPerfectChannelEstimate

2-179

chs.NRxAnts = 2;
chs.DopplerFreq = 5.0;
chs.MIMOCorrelation = 'Low';
chs.InitPhase = 'Random';
chs.InitTime = 0.0;
chs.ModelType = 'GMEDS';
chs.NTerms = 16;
chs.NormalizeTxAnts = 'On';
chs.NormalizePathGains = 'On';

txAntPlanes = 8;

Compute the downlink channel estimate and display the dimension of the output channel estimate.

chest = lteDLPerfectChannelEstimate(enb,chs,[0 0],txAntPlanes);
sizeH = size(chest)

sizeH = 1×4

 72 14 2 8

The dimensionality of chest indicates two receive and eight transmit antenna planes are included in
the channel estimate.

Input Arguments
enb — Cell-wide settings
scalar structure

Cell-wide settings, specified as a structure with the following fields.

Parameter
Field

Required or
Optional

Values Description

NDLRB Required Scalar integer from 6
to 110

Number of downlink resource blocks
(NRB

DL)
CyclicPref
ix

Optional 'Normal' (default),
'Extended'

Cyclic prefix length

CellRefP Required 1, 2, 4 Number of cell-specific reference signal
(CRS) antenna ports

TotSubfram
es

Optional Nonnegative scalar
integer

1 (default)

Total number of subframes to generate

Data Types: struct

propchan — Propagation channel configuration
structure

Propagation channel configuration, specified as a structure that can contain these parameter fields.
propchan must contain the fields required to parameterize the channel model for a fading channel
(lteFadingChannel) or a high-speed train channel (lteHSTChannel).

2 Functions

2-180

Note Before execution of the channel itself, lteDLPerfectChannelEstimate sets SamplingRate
internally to the sampling rate of the time domain waveform passed to lteFadingChannel or
lteHSTChannel for channel filtering. Therefore, the propchan structure does not require the
SamplingRate field. If one is included, it is not used.

propchan structure fields to be included for fading channel model case:

Parameter
Field

Required or
Optional

Values Description

NRxAnts Required Positive scalar integer Number of receive antennas
MIMOCorrel
ation

Required 'Low', 'Medium',
'UplinkMedium',
'High', 'Custom'

Correlation between UE and eNodeB
antennas

• 'Low' correlation is equivalent to no
correlation between antennas.

• 'Medium' correlation level is
applicable to tests defined in TS
36.101 [1].

• 'UplinkMedium' correlation level is
applicable to tests defined in TS
36.104 [2].

NormalizeT
xAnts

Optional 'On' (default), 'Off' Transmit antenna number
normalization.

• 'On', this function normalizes the
model output by 1/sqrt(NTX),
where NTX is the number of transmit
antennas. Normalization by the
number of transmit antennas ensures
that the output power per receive
antenna is unaffected by the number
of transmit antennas.

• 'Off', normalization is not
performed.

 lteDLPerfectChannelEstimate

2-181

Parameter
Field

Required or
Optional

Values Description

DelayProfi
le

Required 'EPA', 'EVA',
'ETU', 'Custom',
'Off'

Delay profile model. For more
information, see “Propagation Channel
Models”.

Setting DelayProfile to 'Off'
switches off fading completely and
implements a static MIMO channel
model. In this case, the antenna
geometry corresponds to
propchan.MIMOCorrelation,
propchan.NRxAnts, and the number of
transmit antennas. The temporal part of
the model for each link between
transmit and receive antennas consists
of a single path with zero delay and
constant unit gain.

The following fields are applicable when DelayProfile is set to a value other than 'Off'.
  
DopplerFre
q

Required Scalar Maximum Doppler frequency, in Hz.

  
InitTime

Required Scalar Fading process time offset, in seconds.

  NTerms Optional 16 (default)

scalar power of 2

Number of oscillators used in fading
path modeling.

  
ModelType

Optional 'GMEDS' (default),
'Dent'

Rayleigh fading model type.

• 'GMEDS', the Rayleigh fading is
modeled using the Generalized
Method of Exact Doppler Spread
(GMEDS), as described in [4].

• 'Dent', the Rayleigh fading is
modeled using the modified Jakes
fading model described in [3].

Note ModelType = 'Dent' is not
recommended. Use ModelType =
'GMEDS' instead.

  
NormalizeP
athGains

Optional 'On' (default), 'Off' Model output normalization.

• 'On', the model output is normalized
such that the average power is unity.

• 'Off', the average output power is
the sum of the powers of the taps of
the delay profile.

2 Functions

2-182

Parameter
Field

Required or
Optional

Values Description

  
InitPhase

Optional 'Random' (default),
scalar (in Radians), or
N-by-L-by-NTX-by-NRX
array

Phase initialization for the sinusoidal
components of the model.

• 'Random', sets the phases randomly
initialized according to Seed.

• A scalar, assumed to be in radians, is
used to initialize the phases of all
components.

• An N-by-L-by-NTX-by-NRX array is
used to explicitly initialize the phase
in radians of each component. In this
case, N is the number of phase
initialization values per path, L is the
number of paths, NTX is the number
of transmit antennas, and NRX is the
number of receive antennas.
(NRxAnts)

Note

• When ModelType is set to 'GMEDS',
N = 2 × NTerms.

• When ModelType is set to 'Dent',
N = NTerms.

The following field is applicable when DelayProfile is set to a value other than 'Off' and
InitPhase is set to 'Random'.
  Seed Required Scalar Random number generator seed. To use

a random seed, set Seed to zero.

Note MathWorks® recommends using
Seed values from 0 to 231 – 1 – (K(K –
1)/2), where K = NTX × NRX, the product
of the number of transmit and receive
antennas. Seed values outside of this
range are not guaranteed to give
distinct results.

The following fields are applicable when DelayProfile is set to 'Custom'.
  
AveragePat
hGaindB

Required Vector Average gains of the discrete paths,
expressed in dB.

  
PathDelays

Required Vector Delays of the discrete paths, expressed
in seconds. This vector must have the
same size as AveragePathGaindB.

The following fields are applicable when MIMOCorrelation is set to 'Custom'.

 lteDLPerfectChannelEstimate

2-183

Parameter
Field

Required or
Optional

Values Description

  
TxCorrelat
ionMatrix

Required Matrix Correlation between each of the
transmit antennas, specified as a NTX-by-
NTX complex matrix.

  
RxCorrelat
ionMatrix

Required Matrix Correlation between each of the receive
antennas, specified as a complex matrix
of size NRX-by-NRX.

propchan structure fields to be included for the high-speed train channel model case:

Parameter
Field

Required or
Optional

Values Description

NRxAnts Required Positive scalar integer Number of receive antennas
Ds Required Scalar Train-to-eNodeB double initial distance,

in meters.

Ds/2 is initial distance between train
and eNodeB, in meters

Dmin Required Scalar eNodeB to railway track distance, in
meters

Velocity Required Scalar Train velocity, in kilometers per hour
DopplerFre
q

Required Scalar Maximum Doppler frequency, in Hz.

InitTime Required Scalar Doppler shift timing offset, in seconds
NormalizeT
xAnts

Optional 'On' (default), 'Off' Transmit antenna number
normalization.

• 'On', lteHSTChannel normalizes
the model output by 1/sqrt(NTX),
where NTX is the number of transmit
antennas. Normalization by the
number of transmit antennas ensures
that the output power per receive
antenna is unaffected by the number
of transmit antennas.

• 'Off', normalization is not
performed.

Data Types: struct

timefreqoffset — Timing and frequency offset
[0, 0] (default) | two element row vector, [toffset, foffset] | nonnegative scalar, toffset |
optional

Timing and frequency offset, specified as a nonnegative scalar providing toffset or two element
row vector providing [toffset, foffset].

toffset — Timing offset
0 (default) | nonnegative scalar | optional

2 Functions

2-184

Timing offset in samples from the start of the output of the channel to the OFDM demodulation
starting point, specified as a nonnegative scalar. The timing offset accounts for delay introduced
during propagation, which is useful to obtain the perfect estimate of the channel seen by a
synchronized receiver. Use lteDLFrameOffset to derive toffset.

foffset — Frequency offset
0 (default) | scalar | optional

Frequency offset in Hertz of the time-domain waveform, specified as a scalar. Use
lteFrequencyOffset to derive foffset.
Example: [3 100] indicates a time offset of three samples and a frequency offset of 100 Hz.

Data Types: double

ntxants — Number of transmit antenna planes
1 (default) | nonnegative integer | optional

Number of transmit antenna planes, specified as a nonnegative integer.

Output Arguments
hest — Perfect channel estimate
4-D array

Perfect channel estimate, returned as an NSC-by-NSYM-by-NRX-by-NTX array.

• NSC is the number of subcarriers.
• NSYM is the number of OFDM symbols.
• NRX is the number of receive antennas as specified by propchan.NRxAnts.
• NTX is the number of transmit antenna planes, specified either by the input ntxants or by

enb.CellRefP. If ntxants is provided as an input, the enb.CellRefP field is not required and, if
included, is not used.

Data Types: double

Version History
Introduced in R2013b

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.104. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio
Transmission and Reception.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

[3] Dent, P., G. E. Bottomley, and T. Croft. “Jakes Fading Model Revisited.” Electronics Letters. Vol. 29,
1993, Number 13, pp. 1162–1163.

 lteDLPerfectChannelEstimate

2-185

https://www.3gpp.org
https://www.3gpp.org

[4] Pätzold, Matthias, Cheng-Xiang Wang, and Bjørn Olav Hogstad. “Two New Sum-of-Sinusoids-Based
Methods for the Efficient Generation of Multiple Uncorrelated Rayleigh Fading Waveforms.”
IEEE Transactions on Wireless Communications. Vol. 8, 2009, Number 6, pp. 3122–3131.

See Also
lteDLChannelEstimate | lteOFDMDemodulate | lteEqualizeMMSE | lteEqualizeZF |
lteFadingChannel | lteULPerfectChannelEstimate

2 Functions

2-186

lteDLPrecode
Downlink precoding of transmission layers

Syntax
out = lteDLPrecode(in,ntxants,txscheme,codebook)
out = lteDLPrecode(enb,chs,in)

Description
out = lteDLPrecode(in,ntxants,txscheme,codebook) performs precoding according to TS
36.211 [1], Section 6.3.4. The out matrix returned is identical to the matrix returned by ltePDSCH
for the same set of parameters. The overall operation of the precoder is the transpose of the matrix
defined in the specification. The symbols for layers and antennas lie in columns rather than rows.

This function performs precoding of the matrix of layers, in, onto P antennas, using the transmission
scheme specified by txscheme. For transmission scheme precoding dependencies, see “Algorithms”
on page 2-191.

out = lteDLPrecode(enb,chs,in) precodes the matrix of layers, in, according to cell-wide
settings enb and channel transmission configurations chs.

Examples

Perform Downlink Precoding on Identity Matrix

Perform downlink precoding using an identity matrix as input.

By precoding an identity matrix, you can gain access to the precoding matrices. Obtain the precoding
matrix having codebook index 1 for three layers and four antennas.

out = lteDLPrecode(eye(3),4,'SpatialMux',1).'

out = 4×3 complex

 0.2887 + 0.0000i 0.0000 - 0.2887i -0.2887 + 0.0000i
 0.0000 + 0.2887i 0.2887 + 0.0000i 0.0000 + 0.2887i
 -0.2887 + 0.0000i 0.0000 - 0.2887i 0.2887 + 0.0000i
 0.0000 - 0.2887i 0.2887 + 0.0000i 0.0000 - 0.2887i

Input Arguments
in — Input layers
matrix

Input layers, specified as an NSYM-by-v matrix, consisting of the NSYM modulation symbols for
transmission on v layers. Generate this matrix using lteLayerMap.

 lteDLPrecode

2-187

Data Types: double
Complex Number Support: Yes

ntxants — Number of antennas
positive integer

Number of antennas, specified as a positive integer.
Data Types: double

txscheme — Transmission scheme
'Port0' | 'TxDiversity' | 'CDD' | 'SpatialMux' | 'MultiUser' | 'Port5' | 'Port7-8' |
'Port8' | 'Port7-14'

PDSCH transmission scheme, specified as one of the following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay diversity scheme
'SpatialMux' Closed loop spatial multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7, when NLayers = 1. Dual

layer transmission, ports 7 and 8, when NLayers = 2.
'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer transmission, ports 7–14

Data Types: char | string

codebook — Codebook index
integer from 0 to 15

Codebook index to select the precoding matrix, specified as an integer from 0 to 15. This input is
ignored for the 'Port0', 'TxDiversity', and 'CDD' transmission schemes. Find the precoding
matrix corresponding to a particular codebook index in the TS 36.211 [1], Section 6.3.4. Since
codebook is a scalar, the syntax that includes this parameter does not support subband precoding or
multiple PMI mode. In the case of 'TxDiversity' and P=1, the function falls back to single port
processing.
Data Types: double

enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields:

2 Functions

2-188

Parameter Field Required or
Optional

Values Description

When chs.TxScheme is set to 'TxDiversity', 'CDD', 'SpatialMux', or 'MultiUser', these parameters
are applicable:
  CellRefP Required 1, 2, 4 Number of cell-specific

reference signal (CRS)
antenna ports

When chs.TxScheme is set to 'SpatialMux', or 'MultiUser' and chs.PMISet is present, these parameters
are applicable:.
  NCellID Required Integer from 0 to 503 Physical layer cell identity
  NSubframe Required 0 (default), nonnegative

scalar integer
Subframe number

  NDLRB Required Scalar integer from 6 to 110 Number of downlink
resource blocks (NRB

DL)
  CFI Required 1, 2, or 3

Scalar or if the CFI varies
per subframe, a vector of
length 10 (corresponding to
a frame).

Control format indicator
(CFI) value. In TDD mode,
CFI varies per subframe for
the RMCs ('R.0', 'R.5',
'R.6', 'R.6-27RB',
'R.12-9RB')

  CyclicPrefix Optional 'Normal' (default),
'Extended'

Cyclic prefix length

  DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as
either:

• 'FDD' for Frequency
Division Duplex

• 'TDD' for Time Division
Duplex

When DuplexMode is set to 'TDD', these parameters are applicable:
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink

configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7,

8, 9
Special subframe
configuration (SSC)

Data Types: struct

chs — Channel-specific transmission configuration
structure | structure array

Channel specific transmission configuration, specified as a structure that can contain the following
parameter fields.

 lteDLPrecode

2-189

Parameter
Field

Require
d or
Optiona
l

Values Description

TxScheme Optional 'Port0' (default),
'TxDiversity', 'CDD',
'SpatialMux',
'MultiUser', 'Port5',
'Port7-8', 'Port8',
'Port7-14'.

PDSCH transmission scheme, specified as one
of the following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay

diversity scheme
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7,

when NLayers = 1. Dual
layer transmission, ports 7
and 8, when NLayers = 2.

'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer

transmission, ports 7–14

When chs.TxScheme is set to 'SpatialMux' or 'MultiUser', these parameters are applicable,
include either Codebookidx or both PMISet and PRBSet:
  
Codebookidx

Optional Integer from 0 to 15 Codebook index used during precoding

  PMISet Optional Integer vector with
element values from 0 to
15.

Precoder matrix indication (PMI) set. It can
contain either a single value, corresponding to
single PMI mode, or multiple values,
corresponding to multiple or subband PMI
mode. The number of values depends on
CellRefP, transmission layers and TxScheme.
For more information about setting PMI
parameters, see ltePMIInfo.

2 Functions

2-190

Parameter
Field

Require
d or
Optiona
l

Values Description

  PRBSet Optional Integer column vector or
two-column matrix

Zero-based physical resource block (PRB)
indices corresponding to the slot wise resource
allocations for this PDSCH. PRBSet can be
assigned as:

• a column vector, the resource allocation is
the same in both slots of the subframe,

• a two-column matrix, this parameter
specifies different PRBs for each slot in a
subframe,

• a cell array of length 10 (corresponding to a
frame, if the allocated physical resource
blocks vary across subframes).

PRBSet varies per subframe for the RMCs
'R.25'(TDD), 'R.26'(TDD), 'R.27'(TDD),
'R.43'(FDD), 'R.44', 'R.45', 'R.48',
'R.50', and 'R.51'.

The fields PMISet and PRBSet determine the frequency-domain position that each precoded symbol
in out occupies to apply the correct subband precoder when multiple PMI mode is being used.
Alternatively, you can provide CodebookIdx field. CodebookIdx is a scalar specifying the codebook
index to use across the entire bandwidth. Therefore, the CodebookIdx field does not support
subband precoding. TS 36.213 [2], Section 7.2.4 specifies the relationship between PMI values and
codebook indices.

Data Types: struct

Output Arguments
out — Precoded downlink output
matrix

Precoded downlink output, returned as an NSYM-by-P matrix. NSYM is the number of symbols per
antenna, and P is the number of transmission antennas. The symbols for layers and antennas lie in
columns rather than rows.
Data Types: double

Algorithms
For transmission schemes 'CDD', 'SpatialMux', and 'MultiUser', and degenerately 'Port0',

• Precoding involves multiplying a P-by-v precoding matrix, denoted as F, by a v-by-NSYM matrix,
representing NSYM symbols on each of v transmission layers, to yield a P-by-NSYM matrix,
consisting of NSYM precoded symbols on each of P antenna ports. Depending on the transmission
scheme, the precoding matrix can be composed of multiple matrices multiplied together, but the
size of the product, F, is always P-by-v.

 lteDLPrecode

2-191

For the 'TxDiversity' transmission scheme,

• A P2-by-2v precoding matrix, F, is multiplied by a 2v-by-NSYM matrix, formed by splitting the real
and imaginary components of a v-by-NSYM matrix of symbols on layers, to yield a P2-by-NSYM matrix
of precoded symbols, which is then reshaped into a P-by-PNSYM matrix for transmission. As v = P
for the 'TxDiversity' transmission scheme, we can consider F be of size P2-by-2P rather than
P2-by-2v.

For the other cases, specifically 'CDD', 'SpatialMux', and 'MultiUser' transmission schemes
with v ≠ P, and the 'TxDiversity' transmission scheme with P = 4,

• The precoding matrix F is not square; it is rectangular with size P-by-v except for the
'TxDiversity' transmission scheme with P = 4 where it is of size P2-by-(2P= 16)-by-8. The
number of rows is always greater than the number of columns that is, the matrix F is size m-by-n
with m-by-n.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteDLDeprecode | lteLayerMap

2 Functions

2-192

https://www.3gpp.org
https://www.3gpp.org

lteDLResourceGrid
Downlink subframe resource array

Syntax
grid = lteDLResourceGrid(enb)
grid = lteDLResourceGrid(enb,p)

Description
grid = lteDLResourceGrid(enb) returns an empty resource array generated from the cell-wide-
specific settings structure enb. For more information on the resource grid and the multidimensional
array used to represent the resource elements for one subframe across all configured antenna ports,
see “Represent Resource Grids”.

grid = lteDLResourceGrid(enb,p) accepts an additional input, p, which directly specifies the
number of antenna planes in the array. In this syntax, CellRefP is not required as a structure field of
enb.

Examples

Create Empty Resource Array

Create an empty resource array representing the resource elements for 10MHz bandwidth, one
subframe, and two antennas.

rgrid = lteDLResourceGrid(struct('NDLRB',50,'CellRefP',2));
size(rgrid)

ans = 1×3

 600 14 2

Create DL Subframe Resource Array Using Optional Antenna Plane Input

Create an empty resource array that represents the downlink resource elements for 5 MHz
bandwidth, one subframe, extended cyclic prefix, and four antenna ports.

cfg = struct('NDLRB',25,'CyclicPrefix','Extended');
p = 4;
griddl = lteDLResourceGrid(cfg,p);
size(griddl)

ans = 1×3

 300 12 4

 lteDLResourceGrid

2-193

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure having the following fields.

NDLRB — Number of downlink resource blocks
scalar integer from 6 to 110

Number of downlink resource blocks, specified as a scalar integer from 6 to 110.
Data Types: double

CyclicPrefix — Cyclic prefix length
'Normal' (default) | optional | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

CellRefP — Number of cell-specific reference signal antenna ports
1 | 2 | 4

Number of cell-specific reference signal antenna ports, specified as 1, 2, or 4.
Data Types: double

Data Types: struct

p — Number of antenna planes
positive scalar integer

Number of antenna planes, specified as a positive scalar integer.
Data Types: double

Output Arguments
grid — Empty downlink resource grid
3-D numeric array

Empty downlink resource grid, returned as a 3-D numeric array. This array is used to represent the
resource elements for one subframe across all configured antenna ports. It has dimensions of:

• When the function has a single input argument, enb, an N-by-M-by-CellRefP array is returned. N
is the number of subcarriers (12×NDLRB). M is the number of OFDM symbols in a subframe (14
for normal cyclic prefix and 12 for extended cyclic prefix). CellRefP is the number of transmit
antenna ports.

• When the function has two input arguments, enb and p, an N-by-M-by-p array is returned. p is the
number of antenna planes.

Data Types: double

2 Functions

2-194

Version History
Introduced in R2014a

See Also
lteDLResourceGridSize | lteResourceGrid | lteResourceGridSize | lteULResourceGrid |
lteULResourceGridSize | lteOFDMModulate

 lteDLResourceGrid

2-195

lteDLResourceGridSize
Size of downlink subframe resource array

Syntax
d = lteDLResourceGridSize(enb)
d = lteDLResourceGridSize(enb,p)

Description
d = lteDLResourceGridSize(enb) returns a three-element row vector of dimension lengths for
the resource array generated from the cell-wide settings structure enb. For more information on the
resource grid and the multidimensional array used to represent the resource elements for one
subframe across all configured antenna ports, see “Represent Resource Grids”.

d = lteDLResourceGridSize(enb,p) returns a three-element row vector, where p directly
specifies the number of antenna planes in the array. In this syntax, CellRefP is not required as a
structure field of enb.

Examples

Determine Downlink Subframe Resource Array Size

Determine the size of a downlink subframe resource array.

Determine the dimensions of a downlink subframe resource array, using cell-wide settings, enb. Then,
use the returned vector directly to create a resource grid as a multidimensional array.

enb = struct('NDLRB',50,'CellRefP',2,'CyclicPrefix','Normal');
rgrid = zeros(lteDLResourceGridSize(enb));
size(rgrid)

ans = 1×3

 600 14 2

The same result can be obtained by calling the lteDLResourceGrid function.

Get Downlink Subframe Resource Array Size Using Optional Antenna Plane Input

Get the downlink subframe resource array size from an downlink configuration structure using the
antenna plane input. Then, use the returned vector to directly create a MATLAB™ array.

cfgdl = struct('NDLRB',50,'CyclicPrefix','Normal');
p = 2;
griddl = zeros(lteDLResourceGridSize(cfgdl,p));
size(griddl)

2 Functions

2-196

ans = 1×3

 600 14 2

The output grid, griddl, is a resource array. This resource array size could be obtained in a similar
manner using the lteResourceGridSize function.

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure having the following fields.

NDLRB — Number of downlink resource blocks
scalar integer from 6 to 110

Number of downlink resource blocks, specified as a scalar integer from 6 to 110. Standard bandwidth
values are 6, 15, 25, 50, 75, and 100.
Data Types: double

CellRefP — Number of cell-specific reference signal antenna ports
1 | 2 | 4

Number of cell-specific reference signal antenna ports, specified as 1, 2, or 4.
Data Types: double

CyclicPrefix — Cyclic prefix length
'Normal' (default) | optional | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char

Data Types: struct

p — Number of antenna planes
positive scalar integer

Number of antenna planes, specified as a positive scalar integer. This argument directly specifies the
number of antenna planes in the array.
Data Types: double

Output Arguments
d — Downlink resource grid dimensions
numeric 1-by-3 row vector

Downlink resource grid dimensions, returned as a numeric 1-by-3 row vector. When the function has
a single argument, d is [N M CellRefP]. N is the number of subcarriers (12×NDLRB). M is the
number of OFDM symbols in a subframe, 14 for normal cyclic prefix and 12 for extended cyclic prefix.

 lteDLResourceGridSize

2-197

CellRefP is the number of transmit antenna ports. When the number of antenna planes, p, is
specified as the second input argument, then d is [N M p] and the input field CellRefP of enb is
not required.
Data Types: double

Version History
Introduced in R2014a

See Also
lteDLResourceGrid | lteResourceGridSize | lteULResourceGridSize

2 Functions

2-198

lteDLSCH
Downlink shared channel

Syntax
[cwout,chinfo] = lteDLSCH(enb,chs,outlen,trblkin)

Description
[cwout,chinfo] = lteDLSCH(enb,chs,outlen,trblkin) applies the complete DL-SCH
transport channel coding chain to the input data, trblkin, and returns the codewords in cwout. The
encoding process includes type-24A CRC calculation, code block segmentation and type-24B CRC
attachment, if any, turbo encoding, rate matching with RV, and code block concatenation. Additional
information about the encoding process is returned in the fields of structure chinfo. For the case of
spatial multiplexing schemes transmitting two codewords, lteDLSCH processes a single transport
block or pairs of blocks, contained in a cell array. The data type for cwout matches the input,
trblkin. Thus, if trblkin is a cell array containing one or two transport blocks, cwout is a cell
array of one or two codewords. If trblkin is a vector of information bits, cwout is a vector also.
Define pairs of modulation schemes and RV indicators in the appropriate parameter fields to encode a
pair of transport blocks.

Examples

Generate DL-SCH Codewords

Generate the DL-SCH codeword as defined by TS36.101 RMC R.7 for FDD duplexing mode

Initialize the rmc structure and generate transport block data. Generate the DL-SCH codewords and
view the first ten.

rmc = lteRMCDL('R.7');
data = randi([0,1],rmc.PDSCH.TrBlkSizes(1),1);

codeWord = lteDLSCH(rmc,rmc.PDSCH,rmc.PDSCH.CodedTrBlkSizes(1),data);
codeWord(1:10)

ans = 10x1 int8 column vector

 1
 0
 0
 1
 1
 1
 0
 0
 0
 0

 lteDLSCH

2-199

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required
or Optional

Values Description

If chs.NSoftBits is defined include:
  DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

When DuplexMode is set to 'TDD' include:
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5,

6
Uplink–downlink configuration

When chs.TxScheme is set to 'TxDiversity' include:
  CellRefP Optional 1, 2, 4 Number of cell-specific reference signal (CRS)

antenna ports

chs — Channel configuration
structure

Channel configuration, specified as a structure. It defines aspects of the PDSCH onto which the
codewords are mapped. It also defines the DL-SCH soft buffer size and redundancy versions of the
generated codewords.

chs can contain the following fields.

Parameter
Field

Required
or Optional

Values Description

Modulation Required 'QPSK', '16QAM',
'64QAM', '256QAM',
'1024QAM'

Modulation type, specified as a character vector, cell
array of character vectors, or string array. If blocks,
each cell is associated with a transport block.

NLayers Required Integer from 1 to 8 Total number of transmission layers associated with
the transport block or blocks.

2 Functions

2-200

Parameter
Field

Required
or Optional

Values Description

TxScheme Optional 'Port0' (default),
'TxDiversity', 'CDD',
'SpatialMux',
'MultiUser', 'Port5',
'Port7-8', 'Port8',
'Port7-14'.

PDSCH transmission scheme, specified as one of the
following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay

diversity scheme
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7,

when NLayers = 1. Dual layer
transmission, ports 7 and 8,
when NLayers = 2.

'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer transmission,

ports 7–14

RV Required Integer vector (0,1,2,3). A
one or two column matrix
(for one or two
codewords).

Specifies the redundancy version for one or two
codewords used in the initial subframe number,
NSubframe. This parameter field is only for
informational purposes and is read-only.

NSoftbits Optional Nonnegative scalar
integer (default 0)

Total number of soft buffer bits. The default setting of
0 signifies that there is no buffer limit.

outlen — Codeword length
numeric vector of one or two elements

Codeword length, specified as a numeric vector of one or two elements. This vector defines the
codeword lengths to which the input transport blocks should be rate matched. It represents the
PDSCH capacity for the associated codeword. Therefore, it also represents the lengths of the vectors
in cwout.

trblkin — Transport block information bits to be encoded
numeric vector | cell array of one or two numeric vectors

Transport block information bits to be encoded, specified as a numeric vector or a cell array of
numeric vectors. trblkin is an input parameter containing the transport block information bits to be
encoded. If it is a cell array, all rate matching calculations assume that the pair is transmitting on a
single PDSCH, distributed across the total number of layers defined in chs, as per TS 36.211 [2]. The
lowest order information bit of trblkin maps to the most significant bit of the transport block, as
defined in TS 36.321 [3], Section 6.1.1 .

 lteDLSCH

2-201

Output Arguments
cwout — DL-SCH encoded codewords
numeric column vector | cell array of one or two numeric column vectors

DL-SCH encoded codewords, returned as a numeric column vector or a cell array of one or two
numeric column vectors. It reflects the data type and size of the input data, trblkin.
Data Types: int8 | cell

chinfo — Additional information about encoding process
structure array | optional

Additional information about encoding process, returned as a structure array. It contains parameter
fields related to code block segmentation and rate matching. If two transport blocks are encoded,
chinfo is a structure array of two elements, with one element for each block. The code block
segmentation fields in this structure can also be created independently using the lteDLSCHInfo
function.

chinfo contains the following fields.

Parameter Field Description Values
C Total number of code blocks Nonnegative scalar integer
Km Lower code block size (K–) Nonnegative scalar integer
Cm Number of code blocks of size Km (C–) Nonnegative scalar integer
Kp Upper code block size (K+) Nonnegative scalar integer
Cp Number of code blocks of size Kp (C+) Nonnegative scalar integer
F Number of filler bits in first block Nonnegative scalar integer
L Number of segment cyclic redundancy check

(CRC) bits
Nonnegative scalar integer

Bout Total number of bits in all segments Nonnegative scalar integer
NLayers Number of transmission layers. Nonnegative scalar integer
NL Number of layers used in rate matching

calculation
Nonnegative scalar integer

Qm Bits per symbol variable used in rate matching
calculation

Nonnegative scalar integer

NIR Number of soft bits associated with transport
block. Soft buffer size for entire input transport
block

Nonnegative scalar integer

RV RV value associated with one codeword

Included if RV is present at the input.

Nonnegative scalar integer

Version History
Introduced in R2014a

2 Functions

2-202

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and
Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[3] 3GPP TS 36.321. “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control
(MAC) protocol specification.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteDLSCHDecode | lteDLSCHInfo | ltePDSCH

 lteDLSCH

2-203

https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org

lteDLSCHDecode
Downlink shared channel decoding

Syntax
[trblkout,blkcrc,stateout] = lteDLSCHDecode(enb,chs,trblklen,cwin,statein)

Description
[trblkout,blkcrc,stateout] = lteDLSCHDecode(enb,chs,trblklen,cwin,statein)
returns the information bits, trblkout, decoded from the input soft LLR codeword data, cwin. The
DL-SCH decoder includes rate recovery, turbo decoding, block concatenation, and CRC calculations.
The function also returns the type-24A transport block CRC decoding result in blkcrc and the HARQ
process decoding state in stateout. The initial HARQ process state can be provided as the optional
statein parameter. The function is capable of processing both a single codeword or pairs of
codewords, contained in a cell array, for the case of spatial multiplexing schemes transmitting two
codewords. The type of the return variable, trblkout, is the same as the input, cwin. If cwin is a
cell array containing one or two codewords, trblkout is a cell array of one or two transport blocks.
If cwin is a vector of soft data, trblkout is a vector also. If you are decoding a pair of codewords,
you must provide pairs of modulation schemes and RV indicators in the appropriate parameter fields.

enb is an input parameter structure that may include optional fields defining the duplex mode. Since
the duplex mode defaults to 'FDD', if the 'DuplexMode' field is absent, enb can be an empty
structure.

chs is an input parameter structure defining aspects of the PDSCH onto which the codewords are
mapped and the DL-SCH soft buffer size and redundancy versions of the received codewords.

trblklen is an input vector, one or two elements in length, defining the transport block lengths to
which the input code blocks are rate recovered and decoded.

cwin is an input parameter containing the floating point soft LLR data of the codewords to be
decoded. It is either a single vector or a cell array containing one or two vectors. If it is a cell array,
all rate matching calculations assume that the pair is transmitting on a single PDSCH, distributed
across the total number of layers defined in chs, as per TS 36.211 [1].

statein is an optional input structure array, empty or one or two elements, which can input the
current decoder buffer state for each transport block in an active HARQ process. If statein is not an
empty array and it contains a non-empty field, CBSBuffers, this field should contain a cell array of
vectors representing the LLR soft buffer states for the set of code blocks at the input to the turbo
decoder, after explicit rate recovery. The updated buffer states after decoding are returned in the
CBSBuffers field in the output parameter, stateout. The statein array would normally be
generated and recycled from the stateout of previous calls to lteDLSCHDecode as part of a
sequence of HARQ transmissions.

trblkout is the output parameter containing the decoded information bits. It is either a single
vector or a cell array containing one or two vectors, depending on the class and dimensionality of
cwin.

2 Functions

2-204

blkcrc is an output array, one or two elements, containing the result of the type-24A transport block
CRC decoding for the transport blocks.

stateout, the final output parameter, is a one- or two-element structure array containing the
internal state of each transport block decoder. The stateout array is normally reapplied via the
statein variable of subsequent lteDLSCHDecode function calls as part of a sequence of HARQ
retransmissions.

Examples

Generate and Decode DL-SCH Transmissions

This example generates and decodes 2 transmissions, one with RV set to 0 and one with RV set to 1,
as part of a single codeword HARQ process for RMC R.7.

Set subframe number. Get the definition of RMC R.7. Generate transport block data. Apply DL-SCH
transport channel coding chain to trBlkData. Create a codeword with RV = 0. Turn logical bits into
'LLR' data

nsf = 1;

rmc = lteRMCDL('R.7');

trBlkSize = rmc.PDSCH.TrBlkSizes(nsf);
codedTrBlkSize = rmc.PDSCH.CodedTrBlkSizes(nsf);
trBlkData = randi([0,1],trBlkSize,1);

rmc.PDSCH.RV = 0;
cw = lteDLSCH(rmc,rmc.PDSCH,codedTrBlkSize,trBlkData);

cw(cw == 0) = -1;

Initialize the decoder states for the first HARQ transmission. The returned decState contains the
decoder buffer state for each transport block for an active HARQ process with RV = 1

decState = [];
[rxTrBlk,~,decState] = lteDLSCHDecode(rmc,rmc.PDSCH,trBlkSize,cw,decState);

Create a second retransmitted codeword. Turn logical bits into 'LLR' data. Use the previous
transmission decoder buffer state, decState, as part of the sequence of active HARQ transmissions

rmc.PDSCH.RV = 1;
cw = lteDLSCH(rmc,rmc.PDSCH,codedTrBlkSize,trBlkData);

cw(cw == 0) = -1;
rxTrBlk = lteDLSCHDecode(rmc,rmc.PDSCH,trBlkSize,cw,decState);

size(rxTrBlk)

ans = 1×2

 28336 1

rxTrBlk(1:10)

 lteDLSCHDecode

2-205

ans = 10x1 int8 column vector

 1
 1
 0
 1
 1
 0
 0
 1
 1
 1

Input Arguments
enb — Cell-wide settings
scalar structure

Cell-wide settings, specified as a structure with the following fields.

Parameter
Field

Required or
Optional

Values Description

If chs.NSoftBits is defined include:
  
DuplexMode

Optional 'FDD' (default),
'TDD'

Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

Because the duplex mode defaults to
'FDD', if this field is absent, enb can be
an empty structure.

When DuplexMode is set to 'TDD' include:
  
TDDConfig

Optional 0, 1 (default), 2, 3, 4,
5, 6

Uplink–downlink configuration

Only required for 'TDD' duplex mode.

Data Types: struct

chs — Channel configuration
structure

Channel configuration, specified as a structure having the following fields.

Parameter
Field

Required or
Optional

Values Description

Modulation Required 'QPSK', '16QAM',
'64QAM', '256QAM',
'1024QAM'

Modulation type associated with each
transport block, specified as a character
vector, cell array of character vectors
for 2 blocks, or string array.

2 Functions

2-206

Parameter
Field

Required or
Optional

Values Description

NLayers Required 1, 2, 3, 4 Total number of transmission layers
associated with the transport block or
blocks.

TxScheme Optional 'Port0' (default),
'TxDiversity',
'CDD',
'SpatialMux',
'MultiUser',
'Port5',
'Port7-8',
'Port8',
'Port7-14'.

PDSCH transmission scheme, specified
as one of the following options.

Transmission scheme Description
'Port0' Single antenna port,

port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay

diversity scheme
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port,

port 5
'Port7-8' Single-antenna port,

port 7, when
NLayers = 1. Dual
layer transmission,
ports 7 and 8, when
NLayers = 2.

'Port8' Single-antenna port,
port 8

'Port7-14' Up to eight layer
transmission, ports 7–14

RV Required 0, 1, 2, 3

2-element numeric
vector

Redundancy version indicator, specified
as a numeric vector of 1 or 2 values.
Possible values are 0, 1, 2, or 3.

NSoftbits Optional Nonnegative scalar
integer (default 0)

Total number of soft buffer bits. The
default setting of 0 signifies that there is
no buffer limit.

If NSoftbits is absent, no limit is
placed on the number of soft bits.

NTurboDecI
ts

Optional 5 (default)

Integer from 1 to 30

Number of turbo decoder iteration
cycles

Data Types: struct

trblklen — Transport block lengths
one- or two-element numeric vector

 lteDLSCHDecode

2-207

Transport block lengths, specified as a one- or two-element numeric vector. It defines the transport
block lengths to which the input code blocks should be rate-recovered and decoded.
Data Types: double

cwin — Soft LLR codeword data
numeric vector | cell array of one or two numeric vectors

Soft LLR data of the codewords to be decoded, specified as either a numeric vector or a cell array
containing one or two vectors.
Data Types: double

statein — Initial HARQ process state
optional | structure array

Initial HARQ process state, specified as a structure array. Optional. This structure array, which can be
empty or contain one or two elements, can input the current decoder buffer state for each transport
block in an active HARQ process.
Data Types: struct

Output Arguments
trblkout — Decoded information bits
numeric vector | cell array of one or two numeric vectors

Decoded information bits, returned as a numeric vector or a cell array of one or two numeric vectors.
trblkout reflects the data type and size of cwin.
Data Types: int8 | cell

blkcrc — Type-24A transport block CRC decoding result
logical vector of one or two elements

Type-24A transport block CRC decoding result, returned as a logical vector of one or two elements.
Data Types: logical

stateout — HARQ process decoding state
structure array of one or two elements

HARQ process decoding state, returned as a structure array of one or two elements. It contains the
internal state of each transport block in the following fields.

Parameter
Field

Values Description

CBSBuffers Cell array of vectors Cell array of vectors representing the LLR soft
buffer states for the set of code blocks associated
with a single transport block. The buffers are
positioned at the input to the turbo decoder, after
explicit rate recovery.

CBSCRC Logical vector Array of type-24B code block set CRC decoding
results

2 Functions

2-208

Parameter
Field

Values Description

BLKCRC Logical scalar Type-24A transport block CRC decoding error

Data Types: struct

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteDLSCH | lteDLSCHInfo | ltePDSCHDecode

 lteDLSCHDecode

2-209

https://www.3gpp.org

lteDLSCHInfo
DL-SCH segmentation information

Syntax
info = lteDLSCHInfo(blklen)
info = lteDLSCHInfo(enb,chs,blklen)

Description
info = lteDLSCHInfo(blklen) returns a structure containing the Downlink Shared Channel (DL-
SCH) code block segmentation information for the given transport block length.

info = lteDLSCHInfo(enb,chs,blklen) returns a structure containing the DL-SCH code block
segmentation information for the given eNodeB cell-wide settings structure, channel configuration
structure, and transport block length.

Examples

Display DL-SCH Segmentation Information

Show the sizing information before turbo coding for an input transport block of length 132. The info
structure fields shows that there are 4 filler bits and the total size of the one segment after CRC
addition is 160.

lteDLSCHInfo(132)

ans = struct with fields:
 C: 1
 Km: 0
 Cm: 0
 Kp: 160
 Cp: 1
 F: 4
 L: 0
 Bout: 160

Display DL-SCH Transport Channel Information for RMC R.11

Show the DL-SCH transport channel sizing information for an R.11 RMC.

rmc = lteRMCDL('R.11');
lteDLSCHInfo(rmc,rmc.PDSCH,rmc.PDSCH.TrBlkSizes(1))

ans = struct with fields:
 C: 3
 Km: 4288

2 Functions

2-210

 Cm: 0
 Kp: 4352
 Cp: 3
 F: 0
 L: 24
 Bout: 13056
 NLayers: 2
 NL: 2
 Qm: 4
 NIR: 0
 RV: 0

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required
or Optional

Values Description

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

When DuplexMode is set to 'TDD' include:
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5,

6
Uplink–downlink configuration

When chs.TxScheme is set to 'TxDiversity' include:
  CellRefP Optional 1, 2, 4 Number of cell-specific reference signal (CRS)

antenna ports

chs — Channel configuration
structure

Channel configuration, specified as a structure. It defines aspects of the PDSCH onto which the
codewords are mapped. It also defines the DL-SCH soft buffer size and redundancy versions of the
generated codewords.

chs can contain the following fields.

Parameter
Field

Required
or Optional

Values Description

Modulation Required 'QPSK', '16QAM',
'64QAM', '256QAM',
'1024QAM'

Modulation type, specified as a character vector, cell
array of character vectors, or string array. If blocks,
each cell is associated with a transport block.

NLayers Required Integer from 1 to 8 Total number of transmission layers associated with
the transport block or blocks.

 lteDLSCHInfo

2-211

Parameter
Field

Required
or Optional

Values Description

TxScheme Required 'Port0',
'TxDiversity', 'CDD',
'SpatialMux',
'MultiUser', 'Port5',
'Port7-8', 'Port8',
'Port7-14'.

PDSCH transmission scheme, specified as one of the
following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay

diversity scheme
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7,

when NLayers = 1. Dual layer
transmission, ports 7 and 8,
when NLayers = 2.

'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer transmission,

ports 7–14

RV Required Integer vector (0,1,2,3). A
one or two column matrix
(for one or two
codewords).

Specifies the redundancy version for one or two
codewords used in the initial subframe number,
NSubframe. This parameter field is only for
informational purposes and is read-only.

NSoftbits Optional Nonnegative scalar
integer (default 0)

Total number of soft buffer bits. The default setting of
0 signifies that there is no buffer limit.

blklen — Transport block length
positive scalar integer | two-element positive integer vector

Transport block length, specified as a positive integer or a two-element positive integer vector. A two-
element vector defines the length of transport blocks for two codewords.
Data Types: double

Output Arguments
info — DL-SCH code block segmentation information
structure array

DL-SCH code block segmentation information, returned as a structure array including the following
fields.

Parameter Field Description Values
C Total number of code blocks Nonnegative scalar integer

2 Functions

2-212

Parameter Field Description Values
Km Lower code block size (K–) Nonnegative scalar integer
Cm Number of code blocks of size Km (C–) Nonnegative scalar integer
Kp Upper code block size (K+) Nonnegative scalar integer
Cp Number of code blocks of size Kp (C+) Nonnegative scalar integer
F Number of filler bits in first block Nonnegative scalar integer
L Number of segment cyclic redundancy check

(CRC) bits
Nonnegative scalar integer

Bout Total number of bits in all segments Nonnegative scalar integer
When syntax includes enb and chs inputs, output info also includes these fields:
  NLayers Number of layers associated with one codeword Nonnegative scalar integer
  NL Number of layers used in rate matching

calculation
Nonnegative scalar integer

  Qm Bits per symbol variable used in rate matching
calculation

Nonnegative scalar integer

  NIR Number of soft bits associated with transport
block. Soft buffer size for entire input transport
block

Nonnegative scalar integer

  RV RV value associated with one codeword

Included if RV is present at the input.

Nonnegative scalar integer

Version History
Introduced in R2014a

See Also
lteDLSCH | lteDLSCHDecode

 lteDLSCHInfo

2-213

lteDMRS
UE-specific demodulation reference signals

Syntax
sym = lteDMRS(enb,chs)
sym = lteDMRS(enb,chs,opts)

Description
sym = lteDMRS(enb,chs) returns the downlink UE-specific demodulation reference signal (DM-
RS) symbols for transmission in a single subframe, given structures containing the cell-wide settings,
and the PDSCH configuration settings. For more information, see “DM-RS Associated with PDSCH”
on page 2-219.

sym = lteDMRS(enb,chs,opts) allows control of the format of the returned symbols with the
options cell array, opts.

Examples

Map PDSCH DM-RS Symbols to Grid

Map DM-RS symbols for 4 layers onto an 8 antenna grid.

Initialize cell-wide settings for RMC 'R.1' (10 MHz bandwidth, 1 RB allocation) and change to
Release 10 transmission ('Port7-14'). Use enb.PDSCH for the channel configuration structure
input. Generate and map DM-RS without clearing the REs that should not be mapped because of the
DM-RS on other ports.

enb = lteRMCDL('R.1');
enb.PDSCH.TxScheme = 'Port7-14';
enb.PDSCH.NLayers = 4;
ntxants = 8;
enb.PDSCH.W = lteCSICodebook(enb.PDSCH.NLayers,ntxants,[0 0]).';

subframe = ones(lteResourceGridSize(enb,ntxants));
enb.PDSCH.NTxAnts = size(enb.PDSCH.W,2);
dmrsInd = lteDMRSIndices(enb,enb.PDSCH);
dmrs = lteDMRS(enb,enb.PDSCH);
subframe(dmrsInd) = dmrs;

View the size of the output symbols, indices, and the Release 10 transmission subframe.

size(dmrs)

ans = 1×2

 192 1

size(dmrsInd)

2 Functions

2-214

ans = 1×2

 192 1

size(subframe)

ans = 1×3

 600 14 8

Map Non-Precoded DM-RS Symbols to Grid

Map non-precoded DM-RS symbols onto an 4 layer grid, and clear the REs which should not be used
because of the DM-RS of other ports.

Initialize cellwide settings for RMC 'R.1' (10 MHz bandwidth, 1 RB allocation) and change to
Release 10 transmission ('Port7-14'). Generate and map DM-RS clearing the REs that should not
be used because of the DM-RS on other ports.

enb = lteRMCDL('R.1');
enb.PDSCH.TxScheme = 'Port7-14';
enb.PDSCH.NLayers = 4;

subframe = ones(lteResourceGridSize(enb,enb.PDSCH.NLayers));
dmrsInd = lteDMRSIndices(enb,enb.PDSCH,'rs+unused');
dmrs = lteDMRS(enb,enb.PDSCH,'rs+unused');
subframe(dmrsInd) = dmrs;

size(dmrs)

ans = 1×2

 96 1

size(dmrsInd)

ans = 1×2

 96 1

size(subframe)

ans = 1×3

 600 14 4

Input Arguments
enb — eNodeB cell-wide settings
structure

 lteDMRS

2-215

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required
or Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length
DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as

either:

• 'FDD' for Frequency Division
Duplex

• 'TDD' for Time Division
Duplex

The following parameters are dependent upon the condition that DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7, 8, 9 Special subframe configuration

(SSC)

chs — PDSCH-specific channel transmission configuration
structure

PDSCH-specific channel transmission configuration, specified as a structure that can contain these
parameter fields.

2 Functions

2-216

Parameter Field Required or
Optional

Values Description

PRBSet Required Integer column vector or two-
column matrix

Zero-based physical resource block
(PRB) indices corresponding to the slot
wise resource allocations for this
PDSCH. PRBSet can be assigned as:

• a column vector, the resource
allocation is the same in both slots
of the subframe,

• a two-column matrix, this parameter
specifies different PRBs for each
slot in a subframe,

• a cell array of length 10
(corresponding to a frame, if the
allocated physical resource blocks
vary across subframes).

PRBSet varies per subframe for the
RMCs 'R.25'(TDD), 'R.26'(TDD),
'R.27'(TDD), 'R.43'(FDD), 'R.44',
'R.45', 'R.48', 'R.50', and
'R.51'.

TxScheme Optional 'Port5' (default), 'Port7-8',
'Port8', 'Port7-14'

DM-RS-specific transmission scheme,
specified as one of the following
options.

Transmission scheme Description
'Port5' Rel-8 single-antenna

port, port 5
'Port7-8' Rel-9 single-antenna

port, port 7 if NLayers
is 1. Rel-9 dual-layer
transmission, ports 7
and 8 if NLayers is 2.

'Port8' Rel-9 single-antenna
port, port 8

'Port7-14' Rel-10 up to 8 layer
transmission, ports 7–
14 if NLayers a value
from 1 to 8.

NLayers Optional 1 (default), 2, 3, 4, 5, 6, 7, 8 Number of transmission layers.
W Optional Numeric matrix, [] (default) NLayers-by-P precoding matrix for the

wideband UE-specific beamforming of
the DM-RS. P is the number of transmit
antennas. An empty matrix, [],
signifies no precoding.

The following parameter is applicable when TxScheme is set to 'Port7-8', 'Port8', or 'Port7-14'.

 lteDMRS

2-217

Parameter Field Required or
Optional

Values Description

  NSCID Optional 0 (default), 1 Scrambling identity (ID)
The following parameter is applicable when TxScheme is set to 'Port5'.
  RNTI Required 0 (default), scalar integer Radio network temporary identifier

(RNTI) value (16 bits)

opts — Symbol generation options
character vector | cell array of character vectors | string array

Symbol generation options, specified as a character vector, cell array of character vectors, or string
array. Values for opts when specified as a character vector include (use double quotes for string):

Option Values Description
Symbol
style

'ind' (default),
'mat'

Style for returning DM-RS symbols, specified as one of the following options.

• 'ind' — returns the DM-RS symbols as an NRE-by-1 vector (default)
• 'mat' — returns the DM-RS symbols as a matrix. To form a matrix, a

column may contain duplicate entries. In this style, each column contains
symbols for —

• an individual port or layer, if symbols are not precoded,
• or the projected layers per transmit antenna if symbols are precoded.

NRE is the number of resource elements.
Symbol
format

'rsonly'
(default), 'rs
+unused'

Format for returning DM-RS symbols, specified as one of the following
options.

• 'rsonly' — returns only active DM-RS symbols (default)
• 'rs+unused' — returns include zeros for the RE locations that should be

unused because of DM-RS transmission on another port or layer. This
format is equivalent to precoding with W set to eye(NLayers).

Example: {'ind','rs+unused'}, returns the DM-RS symbols as a column vector that includes
zeros for the RE locations that should be unused because of DM-RS transmission on another port or
layer.
Data Types: char | string | cell

Output Arguments
sym — DM-RS symbol sequences
NRE-by-1 numeric column vector (default) | numeric matrix

DM-RS symbol sequences, returned as an NRE-by-1 numeric column vector, or a numeric matrix. NRE
is the number of resource elements. The opts input offers alternative output styles or formats.

sym contains the non-precoded or precoded DM-RS symbol sequences concatenated for all the layers,
or the transmit antennas for the transmission scheme. The symbols are always ordered as they should
be mapped using lteDMRSIndices into an M-by-N-by-P array representing the subframe grid across

2 Functions

2-218

either the non-precoded PDSCH layers or precoded transmit antennas. M is the number of
subcarriers, N is the number of symbols, and P is the number of layers, or antennas.

Since precoding projects the DM-RS in each PDSCH layer onto all NTxAnts transmit antennas, the
output contains the concatenation of all DM-RS across all layers, which are then duplicated in all
chs.NTxAnts planes of the 3-D grid.

• The output is returned empty unless chs.TxScheme is set to one of the schemes related to DM-
RS, specifically 'Port5', 'Port7-8', 'Port8', or 'Port7-14'.

• If the chs.TxScheme is single port, chs.NLayers = 1 implicitly.
• The output does not include any elements allocated to PBCH, PSS, and SSS. If the subframe

contains no DM-RS, an empty vector is returned.
• If the precoding matrix, field chs.W, is not present or is empty, the output is returned containing

only the concatenated non-precoded DM-RS symbols for the NLayers ports.
• Otherwise, the output, sym, contains all DM-RS symbol values after they are precoded using the

NLayers-by-NTxAnts beamforming matrix, W, onto NTxAnts transmit antennas. The symbols are
ordered by:

• The concatenation of DM-RS symbols per layer/port if not precoded
• The projected layers per transmit antenna if precoded.

For more information, see “DM-RS Associated with PDSCH” on page 2-219.
Data Types: double
Complex Number Support: Yes

More About
DM-RS Associated with PDSCH

As specified in TS 36.211, Section 6.10.3, UE-specific demodulation reference signal (DM-RS)
associated with the physical downlink shared channel (PDSCH):

• are transmitted in a single subframe on antenna ports p=5, p=7, p=8, or p=7, 8,..., (NLayers+6).
• are present and are a valid reference for PDSCH demodulation only if the PDSCH transmission is

associated with the corresponding antenna port according to TS 36.213, Section 7.1.
• are transmitted only on the physical resource blocks upon which the corresponding PDSCH is

mapped.

These DM-RS are for use with Release 8, 9, and 10 non-codebook-based PDSCH transmission
schemes.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

 lteDMRS

2-219

https://www.3gpp.org

[2] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteDMRSIndices | lteCellRS | lteEPDCCHDMRS | ltePRS | lteCSIRS | ltePDSCH | ltePRBS

2 Functions

2-220

https://www.3gpp.org

lteDMRSIndices
UE-specific DM-RS resource element indices

Syntax
ind = lteDMRSIndices(enb,chs)
ind = lteDMRSIndices(enb,chs,opts)

Description
ind = lteDMRSIndices(enb,chs) returns the indices of the downlink UE-specific demodulation
reference signal (DM-RS) resource elements (RE) in a subframe, given structures containing the cell-
wide settings, and the PDSCH settings. For more information, see “DM-RS Associated with PDSCH”
on page 2-225.

ind = lteDMRSIndices(enb,chs,opts) formats the returned indices using options specified by
opts.

Examples

Generate PDSCH DM-RS Indices

Generate DM-RS Resource Element (RE) indices in default format for RMC R.28.

Initialize cell-wide parameters to RMC R.28 using the lteRMCDL function. Use enb.PDSCH for the
channel configuration structure. Generate the RE indices.

enb = lteRMCDL('R.28');
ind = lteDMRSIndices(enb,enb.PDSCH);

View first four rows of index column vector

size(ind)

ans = 1×2

 24 1

ind(1:4)

ans = 4x1 uint32 column vector

 1801
 1805
 1809
 3603

 lteDMRSIndices

2-221

Generate Zero-Based DM-RS Indices

Generate 0-based Resource Element indices in subscript form for RMC R.28. The resultant matrix has
three columns, with each row representing [subcarrier, symbol, antenna port].

Initialize cell-wide parameters to RMC R.28 using the lteRMCDL function.

enb = lteRMCDL('R.28');

Generate zero-based RE indices in subscript form.

ind = lteDMRSIndices(enb,enb.PDSCH,{'0based','sub'});

View first four rows of index matrix.

size(ind)

ans = 1×2

 24 3

ind(1:4,:)

ans = 4x3 uint32 matrix

 0 3 0
 4 3 0
 8 3 0
 2 6 0

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required
or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length

2 Functions

2-222

Parameter Field Required
or
Optional

Values Description

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as
either:

• 'FDD' for Frequency Division
Duplex

• 'TDD' for Time Division Duplex
The following parameters are dependent upon the condition that DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7, 8, 9 Special subframe configuration

(SSC)
The following parameter is only applicable when TxScheme is set to 'Port5'.
NCellID Required Integer from 0 to 503 Physical layer cell identity

chs — PDSCH-specific channel transmission configuration
structure

PDSCH-specific channel transmission configuration, specified as a structure that can contain these
parameter fields.

Parameter Field Required
or
Optional

Values Description

PRBSet Required Integer column vector or two-
column matrix

Zero-based physical resource block (PRB)
indices corresponding to the slot wise
resource allocations for this PDSCH.
PRBSet can be assigned as:

• a column vector, the resource
allocation is the same in both slots of
the subframe,

• a two-column matrix, this parameter
specifies different PRBs for each slot in
a subframe,

• a cell array of length 10
(corresponding to a frame, if the
allocated physical resource blocks vary
across subframes).

PRBSet varies per subframe for the RMCs
'R.25'(TDD), 'R.26'(TDD),
'R.27'(TDD), 'R.43'(FDD), 'R.44',
'R.45', 'R.48', 'R.50', and 'R.51'.

 lteDMRSIndices

2-223

Parameter Field Required
or
Optional

Values Description

TxScheme Optional 'Port5' (default), 'Port7-8',
'Port8', 'Port7-14'

DM-RS-specific transmission scheme,
specified as one of the following options.

Transmission scheme Description
'Port5' Rel-8 single-antenna

port, port 5
'Port7-8' Rel-9 single-antenna

port, port 7 if NLayers is
1. Rel-9 dual-layer
transmission, ports 7 and
8 if NLayers is 2.

'Port8' Rel-9 single-antenna
port, port 8

'Port7-14' Rel-10 up to 8 layer
transmission, ports 7–14
if NLayers a value from
1 to 8.

NLayers Optional 1 (default), 2, 3, 4, 5, 6, 7, 8 Number of transmission layers.
NTxAnts Optional 0 (default), nonnegative integer Number of transmission antenna ports.

This argument is present only for UE-
specific demodulation reference symbols.

opts — Index generation options
character vector | cell array of character vectors | string array

Index generation options, specified as a character vector, cell array of character vectors, or string
array. For convenience, you can specify several options as a single character vector or string scalar
by a space-separated list of values placed inside the quotes. Values for opts when specified as a
character vector include (use double quotes for string):

Option Values Description
Indexing
style

'ind' (default),
'mat', 'sub'

Style for the returned indices, specified as one of the following options.

• 'ind' — returns the indices as an NRE-by-1 vector (default)
• 'mat' — returns the indices as a matrix. If not precoded, each column

contains indices for an individual layer/port. If precoded, each column
contains symbols for a transmit antenna. To form a matrix, a column can
contain duplicate entries.

• 'sub' — returns the indices as an NRE-by-3 matrix. in [subcarrier,
symbol, antenna] subscript row style.

NRE is the number of resource elements.
Index base '1based'

(default),
'0based'

Base value of the returned indices. Specify '1based' to generate indices
where the first value is 1. Specify '0based' to generate indices where the
first value is 0.

2 Functions

2-224

Option Values Description
Indexing
format

'rsonly'
(default), 'rs
+unused'

Format for the returned indices, specified as one of the following options.

• 'rsonly' — returns only active DM-RS symbols (default)
• 'rs+unused' — also includes zeros for the resource element (RE)

locations that should be unused because of DM-RS transmission on another
port or layer. This format is equivalent to precoding with NTxAnts set to
NLayers.

Example: 'ind 1based rs+unused', "ind 1based rs+unused", {"ind","1based","rs
+unused"]or {'ind','1based','rs+unused'} specify the same formatting options.
Example: 'ind rsonly', "ind rsonly", {'ind','rsonly'}, or ["ind","rsonly"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — DM-RS resource element indices
linear indexing NRE-by-1 column vector (default) | linear indexing matrix | numeric 3-column matrix

DM-RS resource element indices, returned as a linear indexing NRE-by-1 column vector, a linear
indexing matrix, or a numeric 3-column matrix. The opts input offers alternative output styles or
formats.

ind can directly index the DM-RS elements in an M-by-N-by-P array representing the subframe grid
across either the non-precoded PDSCH layers, or precoded transmit antennas. M is the number of
subcarriers, N is the number of symbols, and P is the number of layers, or antennas.

For more information, see “DM-RS Associated with PDSCH” on page 2-225.
Data Types: uint32

More About
DM-RS Associated with PDSCH

As specified in TS 36.211, Section 6.10.3, UE-specific demodulation reference signal (DM-RS)
associated with the physical downlink shared channel (PDSCH):

• are transmitted in a single subframe on antenna ports p=5, p=7, p=8, or p=7, 8,..., (NLayers+6).
• are present and are a valid reference for PDSCH demodulation only if the PDSCH transmission is

associated with the corresponding antenna port according to TS 36.213, Section 7.1.
• are transmitted only on the physical resource blocks upon which the corresponding PDSCH is

mapped.

These DM-RS are for use with Release 8, 9, and 10 non-codebook-based PDSCH transmission
schemes.

Version History
Introduced in R2014a

 lteDMRSIndices

2-225

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteDMRS | lteCellRSIndices | lteCSIRSIndices | lteEPDCCHDMRSIndices | ltePRSIndices
| lteSRSIndices

2 Functions

2-226

https://www.3gpp.org
https://www.3gpp.org

lteDuplexingInfo
Duplexing information

Syntax
info = lteDuplexingInfo(enb)

Description
info = lteDuplexingInfo(enb) returns a structure, info, providing information on the
duplexing arrangement. For more information, see “Duplex Mode Configuration” on page 2-229.

Examples

Get TDD Downlink Frame Duplexing Information

Get the number of downlink OFDM symbols in each subframe for a TDD (configuration 0) frame.

A Configuration 0 TDD frame is organized as follows:

• Only subframes 0, 1, 5, and 6 will contain a non-zero number of DL OFDM symbols.
• Subframe 0 and 5 are designated for DL.
• Subframes 1 and 6 are special subframes.
• Subframes 2, 3, 4, 7, 8, and 9 are designated for UL.

Initialize a cell-wide configuration structure for RMC R.0 and a Configuration 0 TDD frame.

enb = lteRMCDL('R.0');
enb.DuplexMode = 'TDD';
enb.SSC = 0;
enb.TDDConfig = 0;

Loop through all subframes in a frame.

for n = 0:9
 enb.NSubframe = n;
 duplexInfo = lteDuplexingInfo(enb);
 fprintf('DL symbols in subframe %d: %d\n',n,duplexInfo.NSymbolsDL)
end

DL symbols in subframe 0: 14
DL symbols in subframe 1: 3
DL symbols in subframe 2: 0
DL symbols in subframe 3: 0
DL symbols in subframe 4: 0
DL symbols in subframe 5: 14
DL symbols in subframe 6: 3
DL symbols in subframe 7: 0
DL symbols in subframe 8: 0
DL symbols in subframe 9: 0

 lteDuplexingInfo

2-227

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields. For more information, see “Duplex
Mode Configuration” on page 2-229.

CyclicPrefix — Cyclic prefix length in downlink
'Normal' (default) | 'Extended' | optional

Cyclic prefix length in downlink, specified as 'Normal' or 'Extended'.
Data Types: char

CyclicPrefixUL — Cyclic prefix length in uplink
'Normal' (default) | 'Extended' | optional

Cyclic prefix length in uplink, specified as 'Normal' or 'Extended'.
Data Types: char | string

DuplexMode — Duplexing mode
'FDD' (default) | 'TDD' | optional

Duplexing mode, specified as 'FDD' or 'TDD'.
Data Types: char | string

TDDConfig — Uplink or downlink configuration
0 (default) | integer from 0 to 6 | optional

Uplink or downlink configuration, specified as an integer from 0 to 6. Required only if DuplexMode is
set to 'TDD'.
Data Types: double

SSC — Special subframe configuration
0 (default) | integer from 0 to 9 | optional

Special subframe configuration, specified as an integer from 0 to 9. Required only if DuplexMode is
set to 'TDD'.
Data Types: double

NSubframe — Subframe number
nonnegative integer

Subframe number, specified as a nonnegative integer. Required only if DuplexMode is set to 'TDD'.
Data Types: double

Data Types: struct

2 Functions

2-228

Output Arguments
info — Duplexing information
structure

Duplexing information, returned as a structure containing the following fields.

NSymbols — Total number of symbols in subframe
nonnegative integer

Total number of symbols in subframe, returned as a nonnegative integer.

SubframeType — Type of subframe
'Downlink' | 'Uplink' | 'Special'

Type of subframe, returned as 'Downlink', 'Uplink', or 'Special'.

NSymbolsDL — Number of symbols used for transmission in downlink
nonnegative integer

Number of symbols used for transmission in downlink, returned as a nonnegative integer.

NSymbolsGuard — Number of symbols in the guard period
nonnegative integer

Number of symbols in the guard period, returned as a nonnegative integer.

NSymbolsUL — Number of symbols used for transmission in uplink
nonnegative integer

Number of symbols used for transmission in uplink (UL), returned as a nonnegative integer.

More About
Duplex Mode Configuration

For FDD duplex mode:

• If CyclicPrefixUL is present, the link direction is assumed to be uplink.
• If CyclicPrefixUL is not present, the link direction is assumed to be downlink, and cyclic prefix

is set according to CyclicPrefix.

• If CyclicPrefix is also not present, the default 'Normal' cyclic prefix is used.

For TDD duplex mode:

• The subframe type can be uplink, downlink, or special. TDDConfig and NSubframe identify the
subframe type as specified in TS 36.211 [1], Table 4.2-2.

• For uplink or downlink subframes, CyclicPrefixUL or CyclicPrefix, respectively, indicate
the relevant cyclic prefix setting.

• For special subframes, the lteDuplexingInfo function uses SSC and CyclicPrefix to
identify the special subframe configuration, as specified in TS 36.211 [1], Table 4.2-1.

 lteDuplexingInfo

2-229

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteResourceGrid | lteDLResourceGrid | lteULResourceGrid

Topics
“FDD and TDD Duplexing”

2 Functions

2-230

https://www.3gpp.org

lteEPDCCH
Enhanced physical downlink control channel

Syntax
sym = lteEPDCCH(enb,chs,cw)

Description
sym = lteEPDCCH(enb,chs,cw) returns a vector sym of complex modulation symbols associated
with a single Enhanced Physical Downlink Control Channel (EPDCCH) transmission in a subframe.
The channel processing includes the stages of scrambling and QPSK modulation. The function is
initialized according to the cell-wide settings, enb, and the channel transmission configuration, chs.
For a given input bit vector, cw, the column output, sym, contains the QPSK symbols ready to be
mapped into the resource elements indicated by lteEPDCCHIndices.

This function performs no precoding. If necessary, apply precoding externally.

You can obtain the EPDCCH transmission capacity from the info structure produced by
lteEPDCCHIndices.

Examples

Generate Complex Modulated EPDCCH Symbols

Specify the cell-wide settings and channel transmission configuration in parameter structures enb
and chs.

enb.NSubframe = 4;
chs.EPDCCHNID = 7;

Generate EPDCCH symbols by encoding the input cw into QPSK symbols.

cw = randi([0 1],100,1);
sym = lteEPDCCH(enb,chs,cw);

Display the size and the first 10 indices of sym. Because these are QPSK symbols, sym contains half
as many symbols as the number of bits that can be transmitted on the EPDCCH.

size(sym)

ans = 1×2

 50 1

sym(1:10)

ans = 10×1 complex

 -0.7071 + 0.7071i

 lteEPDCCH

2-231

 0.7071 + 0.7071i
 -0.7071 + 0.7071i
 -0.7071 - 0.7071i
 -0.7071 + 0.7071i
 0.7071 - 0.7071i
 -0.7071 - 0.7071i
 -0.7071 - 0.7071i
 -0.7071 - 0.7071i
 0.7071 - 0.7071i

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure. This argument must contain the following
parameter field.

NSubframe — Subframe number
nonnegative scalar integer

Subframe number, specified as a nonnegative scalar integer.
Data Types: double

Data Types: struct

chs — Channel-specific transmission configuration
structure

Channel-specific transmission configuration, specified as a structure. This argument must contain the
following parameter field.

EPDCCHNID — EPDCCH scrambling sequence initialization
nonnegative scalar integer

EPDCCH nID parameter for scrambling sequence initialization, specified as a nonnegative scalar
integer.
Data Types: double

Data Types: struct

cw — Input bit vector
vector

Input bit vector containing the bit values of the EPDCCH codeword for modulation.

Output Arguments
sym — EPDCCH modulation symbols
complex-vector

2 Functions

2-232

Given an input bit vector, cw, the output, sym, is returned as a vector of complex modulation symbols
associated with a single EPDCCH transmission in a subframe. sym contains the QPSK symbols ready
to be mapped into the resource elements indicated by lteEPDCCHIndices.

Version History
Introduced in R2014b

See Also
lteEPDCCHIndices | lteEPDCCHPRBS | lteDCIEncode | ltePDCCH

 lteEPDCCH

2-233

lteEPDCCHDMRS
EPDCCH demodulation reference signals

Syntax
sym = lteEPDCCHDMRS(enb,chs)
sym = lteEPDCCHDMRS(enb,chs,opts)

Description
sym = lteEPDCCHDMRS(enb,chs) returns the Enhanced Physical Downlink Control Channel
Demodulation Reference Signal (EPDCCH DM-RS) symbols for transmission in a single subframe. By
default the symbols are returned as a column vector. The order of the symbols is the same as the
order that results when you use lteEPDCCHDMRSIndices to map them into an N-by-M-by-4 array.
This array represents the resource element subframe grid across the four possible EPDCCH antenna
ports (p = 107...110).

The symbols are parameterized in terms of a configured PRB pair set which defines:

• the overall set of possible EPDCCH candidates and
• the aggregation of one or more consecutive enhanced control channel elements (ECCE). This

aggregation identifies the specific EPDCCH instance that the DM-RS is associated with.

The DM-RS symbols are created only for the specific PRB pairs and antenna ports that the
corresponding EPDCCH is mapped to.

For a localized EPDCCH transmission, the EPDCCH is associated with a single antenna port from p =
107...110, dependent on the chs.RNTI and ECCEs selected. Thus, the DM-RS antenna port symbols
are output only for that single port.

For a distributed transmission, the EPDCCH is mapped to two antenna ports in an alternating
fashion. Therefore, the DM-RS symbols are generated for the PRBs in both ports: p = 107,109 for
normal cyclic prefix and p = 107,108 for extended cyclic prefix. The output is ordered so that the
symbols for the lowest antenna ports index come first. This order matches that of the DM-RS RE
indices produced by lteEPDCCHDMRSIndices.

sym = lteEPDCCHDMRS(enb,chs,opts) allows control of the format of the symbols through the
options specified by opts. You can use this syntax to return the symbols as a numeric matrix, where
each column contains symbols for an active antenna port.

This function performs no precoding. If necessary, apply precoding externally.

Examples

Generate EPDCCH DM-RS Symbols

Specify the cell-wide settings and channel transmission configuration in parameter structures enb
and chs.

2 Functions

2-234

enb.NDLRB = 6;
enb.NSubframe = 0;
chs.EPDCCHECCE = [0 7];
chs.EPDCCHType = 'Localized';
chs.EPDCCHPRBSet = 2:3;
chs.EPDCCHNID = 0;
chs.RNTI = 1;

Generate EPDCCH demodulation reference signal symbols.

sym = lteEPDCCHDMRS(enb,chs)

sym = 12×1 complex

 0.7071 - 0.7071i
 0.7071 + 0.7071i
 0.7071 + 0.7071i
 -0.7071 + 0.7071i
 0.7071 - 0.7071i
 0.7071 - 0.7071i
 0.7071 + 0.7071i
 0.7071 - 0.7071i
 0.7071 + 0.7071i
 -0.7071 - 0.7071i
 ⋮

Note: The warning messages generated simply advise you that default values are available and being
used for uninitialized parameters. To suppress warnings for defaulted lte parameter settings, precede
code with the following command: lteWarning('off','DefaultValue')

Generate DM-RS Symbols for EPDCCH Having a Distributed Transmission

Specify the cell-wide settings and channel transmission configuration in parameter structures enb
and chs.

enb.NDLRB = 6;
enb.NSubframe = 0;
chs.EPDCCHECCE = [0,7];
chs.EPDCCHType = 'Distributed';
chs.EPDCCHPRBSet = 2:3;
chs.EPDCCHNID = 0;
chs.RNTI = 1;

Generate DM-RS symbols for an EPDCCH having a distributed transmission. Return the symbols as a
matrix, where each column contains symbols for an active antenna.

sym = lteEPDCCHDMRS(enb,chs,'mat')

sym = 12×2 complex

 0.7071 - 0.7071i 0.7071 - 0.7071i
 -0.7071 - 0.7071i -0.7071 - 0.7071i
 0.7071 + 0.7071i 0.7071 + 0.7071i
 0.7071 - 0.7071i 0.7071 - 0.7071i

 lteEPDCCHDMRS

2-235

 0.7071 - 0.7071i 0.7071 - 0.7071i
 -0.7071 + 0.7071i -0.7071 + 0.7071i
 -0.7071 - 0.7071i -0.7071 - 0.7071i
 0.7071 - 0.7071i 0.7071 - 0.7071i
 -0.7071 - 0.7071i -0.7071 - 0.7071i
 -0.7071 - 0.7071i -0.7071 - 0.7071i
 ⋮

Note: The warning messages generated simply advise you that default values are available and being
used for uninitialized parameters. To suppress warnings for defaulted lte parameter settings, precede
code with the following command: lteWarning('off','DefaultValue')

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as one of
the following:

• 'FDD' — Frequency division
duplex (default)

• 'TDD' — Time division duplex
The following parameters apply when DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7, 8, 9 Special subframe configuration

(SSC)

chs — Channel-specific channel transmission configuration
structure

Channel-specific transmission configuration, specified as a structure that can contain the following
parameter fields.

2 Functions

2-236

Parameter Field Required or Optional Values Description
EPDCCHECCE Required 1-element or 2-element

vector specifying the 0-
based ECCE index or
inclusive [begin, end]
ECCE index range
according to the
aggregation level L (L =
end – begin + 1). The
number of ECCEs in the
candidate must be a power
of 2.

If no transmission is
required, leave this
parameter empty.

The set of one or several
consecutive ECCEs
defining the EPDCCH
transmission candidate in
the overall EPDCCH set.

EPDCCHType Required 'Localized',
'Distributed'

EPDCCH transmission
type

EPDCCHPRBSet Required Vector of zero-based
indices for the PRB pairs
corresponding to the
EPDCCH PRB set. The
number of PRB pair
indices must be a power of
2.

If no transmission is
required, leave this
parameter empty.

EPDCCH PRB pair indices

EPDCCHNID Required Nonnegative scalar integer EPDCCH nID parameter
for scrambling sequence
initialization

The following parameters apply when EPDCCHType is set to 'Localized'.
RNTI Required 0 (default), scalar integer Radio network temporary

identifier (RNTI) value (16
bits)

opts — Symbol generation options
character vector | cell array of character vectors | string array

Symbol generation options, specified as a character vector, cell array of character vectors, or string
array. For convenience, you can specify several options as a single character vector or string scalar
by a space-separated list of values placed inside the quotes. Values for opts when specified as a
character vector include (use double quotes for string):

 lteEPDCCHDMRS

2-237

Option Values Description
Symbol
style

'ind' (default),
'mat'

Style for the returned symbols, specified as one of the following:

• 'ind' — returns the symbols as a column vector (default)
• 'mat' — returns the symbols as a matrix in which each column

contains symbols for an active antenna port from the set p =
107...110

Symbol
format

'rsonly'
(default), 'rs
+unused'

Format of the returned symbols.

• 'rsonly' — returns only active DM-RS symbols (default)
• 'rs+unused' — also returns zeros for the RE locations, which

should be unused because of EPDCCH DM-RS transmission on
other EPDCCH antenna ports p = 107...110 that are not used by
this EPDCCH transmission.

Example: 'ind rs+unused', "ind rs+unused", {'ind','rs+unused'}, or {"ind","rs
+unused"} specify the same formatting options.
Data Types: char | string | cell

Output Arguments
sym — EPDCCH DM-RS symbols
numeric column vector | numeric matrix

EPDCCH demodulation reference signal symbols, returned as a column vector containing the non-
precoded DM-RS symbol sequences concatenated for all active PRB pairs and antenna ports.
Optionally, the function returns sym as a numeric matrix, where each column contains symbols for an
active antenna port.
Data Types: double

Version History
Introduced in R2014b

See Also
lteEPDCCHDMRSIndices | lteCellRS | lteDMRS | lteCSIRS | ltePRS | lteEPDCCH | ltePRBS

2 Functions

2-238

lteEPDCCHDMRSIndices
EPDCCH DM-RS resource element indices

Syntax
ind = lteEPDCCHDMRSIndices(enb,chs)
ind = lteEPDCCHDMRSIndices(enb,chs,opts)

Description
ind = lteEPDCCHDMRSIndices(enb,chs) returns indices of the Enhanced Physical Downlink
Control Channel Demodulation Reference Signal (EPDCCH DM-RS) resource elements (RE)
associated with an EPDCCH transmission candidate in a subframe. By default, ind is a column vector
of indices in one-based linear indexing form. Use this form to directly index the EPDCCH DM-RS REs
of an N-by-M-by-4 array that represents the subframe resource grid across the four possible EPDCCH
antenna ports (p = 107...110). You can also generate alternative index representations. The order of
the indices is the same as required for the complex EPDCCH DM-RS symbols mapping.
lteEPDCCHDMRS generates these symbols.

The indices are parameterized in terms of a configured PRB pair set which defines:

• the overall set of possible EPDCCH candidates and
• the aggregation of one or more consecutive enhanced control channel elements (ECCE). This

aggregation identifies the specific EPDCCH instance that the DM-RS are associated with.

The DM-RS indices are created only for the specific PRB pairs and antenna ports that the
corresponding EPDCCH is mapped to. They do not account for any external precoding operations.

For a localized EPDCCH transmission, the EPDCCH is associated with a single antenna port from p =
107...110, dependent on the RNTI and ECCEs selected. Thus, the DM-RS antenna port indices (1...4
respectively, if one-based) are output for that single port.

For a distributed transmission, the EPDCCH is mapped to two antenna ports in an alternating
fashion. Therefore, the DM-RS indices are generated for the PRBs in both ports: p = 107,109 for
normal cyclic prefix and p = 107,108 for extended cyclic prefix. The output is ordered so that the
symbols for the lowest antenna index plane come first. These indices are suitable for indexing an N-
by-M-by-4 array representing the subframe resource grid across the four possible EPDCCH antenna
ports (p = 107...110).

This syntax returns an NRE length column vector of one-based linear indices for the DM-RS resource
elements associated with a particular EPDCCH candidate. The function is initialized according to the
cell-wide settings, enb, and the EPDCCH transmission configuration, chs.

ind = lteEPDCCHDMRSIndices(enb,chs,opts) formats the returned indices using options
specified by opts.

Examples

 lteEPDCCHDMRSIndices

2-239

Generate EPDCCH DM-RS Indices

Specify the cell-wide settings and channel transmission configuration in parameter structures enb
and chs.

enb = struct('CyclicPrefix','Normal','DuplexMode','FDD');
enb.NDLRB = 6;
enb.NSubframe = 0;
chs.EPDCCHECCE = [0 7];
chs.EPDCCHType = 'Localized';
chs.EPDCCHPRBSet = 2:3;
chs.RNTI = 1;

Create the EPDCCH DM-RS indices for an EPDCCH having eight ECCEs.

ind = lteEPDCCHDMRSIndices(enb,chs)

ind = 12x1 uint32 column vector

 1898
 1903
 1908
 1910
 1915
 1920
 1970
 1975
 1980
 1982
 ⋮

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as one of
the following:

• 'FDD' — Frequency division
duplex (default)

• 'TDD' — Time division duplex

2 Functions

2-240

Parameter Field Required or
Optional

Values Description

The following parameters apply when DuplexMode is set to 'TDD'.
 TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7, 8, 9 Special subframe configuration

(SSC)

chs — Channel-specific transmission configuration
structure

Channel-specific transmission configuration, specified as a structure that can contain the following
parameter fields.

Parameter Field Required or Optional Values Description
EPDCCHECCE Required 1-element or 2-element

vector specifying the 0-
based ECCE index or
inclusive [begin, end]
ECCE index range
according to the
aggregation level L (L =
end – begin + 1). The
number of ECCEs in the
candidate must be a power
of 2.

If no transmission is
required, leave this
parameter empty.

The set of one or several
consecutive ECCEs
defining the EPDCCH
transmission candidate in
the overall EPDCCH set.

EPDCCHType Required 'Localized',
'Distributed'

EPDCCH transmission
type

EPDCCHPRBSet Required Vector of zero-based
indices for the PRB pairs
corresponding to the
EPDCCH PRB set. The
number of PRB pair
indices must be a power of
2.

If no transmission is
required, leave this
parameter empty.

EPDCCH PRB pair indices

The following parameters apply when EPDCCHType is set to 'Localized'.
RNTI Required 0 (default), scalar integer Radio network temporary

identifier (RNTI) value (16
bits)

opts — Index generation options
character vector | cell array of character vectors | string array

 lteEPDCCHDMRSIndices

2-241

Index generation options, specified as a character vector, cell array of character vectors, or string
array. For convenience, you can specify several options as a single character vector or string scalar
by a space-separated list of values placed inside the quotes. Values for opts when specified as a
character vector include (use double quotes for string):

Option Values Description
Indexing
style

'ind' (default),
'mat', 'sub'

Style for the returned indices, specified as one of the following:

• 'ind' — returns the indices in linear index form as a column
vector (default)

• 'mat' — returns the indices in linear index form as a matrix, where
each column contains indices for an individual port.

• 'sub' — returns the indices in [subcarrier, symbol,
antenna] subscript row style. The number of rows in the output,
ind, is the number of resource elements (NRE). Thus, ind is an
NRE-by-3 matrix.

Index base '1based'
(default),
'0based'

Base value of the returned indices. Specify '1based' to generate
indices where the first value is 1. Specify '0based' to generate
indices where the first value is 0.

Indexing
format

'rsonly'
(default), 'rs
+unused'

RE locations mode of the returned indices.

• 'rsonly' — returns only active DM-RS locations (default)
• 'rs+unused' — also includes all RE locations, which should be

unused because of DM-RS transmission on other EPDCCH antenna
ports p = 107...110 that are not used by this EPDCCH transmission

Example: 'ind rsonly', "ind rsonly", {'ind','rsonly'}, or ["ind","rsonly"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — EPDCCH DM-RS RE indices
numeric column vector | numeric matrix

EPDCCH DM-RS resource element indices, returned by default as a numeric vector of length NRE-
by-1. Optionally, for subscript-specific indexing style [subcarrier, symbol, antenna], ind is
returned as an NRE-by-3 numeric matrix. NRE is the number of subframe resource elements. You can
also return the indices in a linear indexing matrix, where each column contains indices for an
individual antenna port. By default, the indices are returned in one-based linear indexing form, which
you can use to directly index the EPDCCH DM-RS resource elements.
Data Types: double

Version History
Introduced in R2014b

2 Functions

2-242

See Also
lteEPDCCHDMRS | lteEPDCCHIndices | lteDMRSIndices

 lteEPDCCHDMRSIndices

2-243

lteEPDCCHDecode
Enhanced physical downlink control channel (EPDCCH) decoding

Syntax
[bits,symbols] = lteEPDCCHDecode(enb,chs,sym)
[bits,symbols] = lteEPDCCHDecode(enb,chs,rxsym,hest,noiseest)
[bits,symbols] = lteEPDCCHDecode(enb,chs,rxsym,hest,noiseest,alg)

[bits,symbols] = lteEPDCCHDecode(enb,chs,grid)
[bits,symbols] = lteEPDCCHDecode(enb,chs,rxgrid,hestgrid,noiseest,alg)

Description
[bits,symbols] = lteEPDCCHDecode(enb,chs,sym) returns softbits and received constellation
of complex symbols resulting from performing the inverse of enhanced physical downlink control
channel (EPDCCH) processing of a single configured EPDCCH candidate given cell-wide settings
structure, EPDCCH transmission configuration structure, and EPDCCH symbols. The input symbols
are assumed to contain ideal EPDCCH symbols, so no equalization is performed. The output received
EPDCCH symbols are QPSK symbol demodulated and descrambled. For more EPDCCH processing
information, see lteEPDCCH and TS 36.211[1], Section 6.8A.

When using this syntax, the input structures only require enb.NSubframe and chs.EPDCCHNID.

For more information, see “Syntax Dependent Processing” on page 2-251.

[bits,symbols] = lteEPDCCHDecode(enb,chs,rxsym,hest,noiseest) performs EPDCCH
decoding and equalization for a single configured EPDCCH candidate given cell-wide settings
structure, EPDCCH transmission configuration structure, received EPDCCH symbols rxsym, channel
estimate hest, and noise estimate noiseest. The output received EPDCCH symbols are equalized,
and QPSK symbol demodulated and descrambled.

[bits,symbols] = lteEPDCCHDecode(enb,chs,rxsym,hest,noiseest,alg) performs
EPDCCH decoding and equalization for a single configured EPDCCH candidate and provides control
over weighting the output soft bits with channel state information (CSI) calculated during the
equalization stage using algorithmic configuration structure, alg.

[bits,symbols] = lteEPDCCHDecode(enb,chs,grid) performs EPDCCH decoding for all
possible EPDCCH candidate locations given cell-wide settings structure, EPDCCH transmission
configuration structure, and the resource element grid across all possible EPDCCH antenna ports.
The resource element grid is assumed to contain ideal EPDCCH REs, so no equalization is performed.
The decoding consists of extraction of all EPDCCH REs from grid followed by QPSK symbol
demodulation. Each EPDCCH candidate is descrambled individually during EPDCCH search. For this
syntax, chs.EPDCCHECCE and chs.EPDCCHNID are not required as no candidate-specific resource
extraction or descrambling is performed.

[bits,symbols] = lteEPDCCHDecode(enb,chs,rxgrid,hestgrid,noiseest,alg) performs
EPDCCH decoding and equalization for all possible EPDCCH candidate locations given cell-wide
settings structure, EPDCCH transmission configuration structure, received resource element grid,
channel estimate grid, noise estimate, and provides control over weighting the output soft bits with

2 Functions

2-244

channel state information (CSI) calculated during the equalization stage using algorithmic
configuration structure, alg. EPDCCH RE locations extracted from rxgrid and hestgrid are
equalized, then QPSK symbol demodulated. Each EPDCCH candidate is descrambled individually
during EPDCCH search. For this syntax, chs.EPDCCHECCE and chs.EPDCCHNID are not required as
no candidate-specific resource extraction or descrambling is performed.

Examples

Decode EPDCCH codeword

Modulate and then demodulate EPDCCH symbols for a codeword of random bits.

Initialize the cell-wide settings structure and the EPDCCH transmission channel configuration
structure.

enb.NSubframe = 0;
chs.EPDCCHNID = 1;

Create an input codeword for EPDCCH and generate EPDCCH symbols.

cw = randi([0 1],108,1);
sym = lteEPDCCH(enb,chs,cw);

Decode the symbols and confirm the codeword was successfully recovered.

rxcw = lteEPDCCHDecode(enb,chs,sym);
isequal(cw,rxcw>0)

ans = logical
 1

Decode EPDCCH DCI Message

Perform DCI coding to the capacity of a particular EPDCCH candidate. EPDCCH modulate the coded
message and transmit it. Add EPDCCH demodulation reference signals (DMRS) and perform channel
estimation. Finally, extract the EPDCCH (and corresponding channel estimate) from the resource
grid. Perform EPDCCH demodulation and decode the received DCI message.

Initialize the cell-wide settings structure.

enb.NSubframe = 0;
enb.NDLRB = 15;
enb.CyclicPrefix = 'Extended';
enb.CellRefP = 2;
enb.NCellID = 1;
enb.CFI = 1;

Initialize the EPDCCH transmission channel configuration structure.

chs.EPDCCHNID = 1;
chs.EPDCCHPRBSet = (0:3).';
chs.EPDCCHType = 'Localized';

 lteEPDCCHDecode

2-245

chs.EPDCCHFormat = 2;
chs.ControlChannelType = 'EPDCCH';
chs.DCIFormat = 'Format2D';
chs.RNTI = 11;

Create a set of random bits representing a DCI message and performing DCI coding to the capacity of
a particular EPDCCH candidate.

dciInfo = lteDCIInfo(enb,chs);
dcibits = randi([0 1],dciInfo.(chs.DCIFormat),1);
candidates = lteEPDCCHSpace(enb,chs);
chs.EPDCCHECCE = candidates(1,:);
[ind,info] = lteEPDCCHIndices(enb,chs);
cw = lteDCIEncode(chs,dcibits,info.EPDCCHG);

Generate EPDCCH symbols and resource element grid. Populate the grid.

sym = lteEPDCCH(enb,chs,cw);
grid = lteDLResourceGrid(enb,4);
grid(ind) = sym;
grid(lteEPDCCHDMRSIndices(enb,chs)) = lteEPDCCHDMRS(enb,chs);

Generate channel estimate.

cec.PilotAverage = 'TestEVM';
cec.Reference = 'EPDCCHDMRS';
[hestgrid,noiseest] = lteDLChannelEstimate(enb,chs,cec,grid);
[rxsym,hest] = lteExtractResources(ind,grid,hestgrid);

Decode the symbols and DCI message bits. Confirm the DCI message was successfully recovered.

rxcw = lteEPDCCHDecode(enb,chs,rxsym,hest,noiseest);
rxdcibits = lteDCIDecode(dciInfo.(chs.DCIFormat),rxcw);
isequal(dcibits,rxdcibits>0)

ans = logical
 1

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length

2 Functions

2-246

Parameter Field Required or
Optional

Values Description

CellRefP Required 1, 2, 4 Number of cell-specific reference
signal (CRS) antenna ports

NSubframe Required 0 (default), nonnegative scalar
integer

Subframe number

The following parameter is only read when chs.EPDCCHStart is not present.
  CFI Required 1, 2, or 3

Scalar or if the CFI varies per
subframe, a vector of length 10
(corresponding to a frame).

Control format indicator (CFI)
value. In TDD mode, CFI varies per
subframe for the RMCs ('R.0',
'R.5', 'R.6', 'R.6-27RB',
'R.12-9RB')

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as one of
the following:

• 'FDD' — Frequency division
duplex (default)

• 'TDD' — Time division duplex
The following parameters apply when DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7, 8, 9 Special subframe configuration

(SSC)
NFrame Optional 0 (default), nonnegative scalar

integer
Frame number

CSIRSPeriod Optional 'Off' (default), 'On', Icsi-rs
(0,...,154), [Tcsi-rs Dcsi-rs].
You can also specify values in a cell
array of configurations for each
resource.

CSI-RS subframe configurations for
one or more CSI-RS resources.
Multiple CSI-RS resources can be
configured from a single common
subframe configuration or from a
cell array of configurations for each
resource.

The following CSI-RS resource parameters apply only when CSIRSPeriod sets one or more CSI-RS subframe
configurations to any value other than 'Off'. Each parameter length must be equal to the number of CSI-RS
resources required.
  CSIRSConfig Required Nonnegative scalar integer Array CSI-RS configuration indices.

See TS 36.211, Table 6.10.5.2-1.
  CSIRefP Required 1 (default), 2, 4, 8 Array of number of CSI-RS antenna

ports

 lteEPDCCHDecode

2-247

Parameter Field Required or
Optional

Values Description

ZeroPowerCSIRSP
eriod

Optional 'Off' (default), 'On', Icsi-rs
(0,...,154), [Tcsi-rs Dcsi-rs].
You can also specify values in a cell
array of configurations for each
resource.

Zero power CSI-RS subframe
configurations for one or more zero
power CSI-RS resource
configuration index lists. Multiple
zero power CSI-RS resource lists
can be configured from a single
common subframe configuration or
from a cell array of configurations
for each resource list.

The following zero power CSI-RS resource parameter is only applicable if one or more of the above zero power
subframe configurations are set to any value other than 'Off'.
  
ZeroPowerCSIRSC
onfig

Required 16-bit bitmap character vector or
string scalar (truncated if not 16
bits or '0' MSB extended), or a
numeric list of CSI-RS configuration
indices. You can also specify values
in a cell array of configurations for
each resource.

Zero power CSI-RS resource
configuration index lists (TS 36.211
Section 6.10.5.2). Specify each list
as a 16-bit bitmap character vector
or string scalar (if less than 16 bits,
then '0' MSB extended), or as a
numeric list of CSI-RS configuration
indices from TS 36.211 Table
6.10.5.2-1 in the '4' CSI reference
signal column. Multiple lists can be
defined using a cell array of
individual lists.

chs — EPDCCH-specific channel transmission configuration
structure

EPDCCH-specific channel transmission configuration, specified as a structure that can contain the
following parameter fields.

Parameter Field Required or Optional Values Description
EPDCCHECCE Required 1- or 2- element vector

specifying the zero-based
ECCE index or inclusive
[begin, end] ECCE index
range according to the
aggregation level L, where
L = end – begin + 1. The
number of ECCEs in the
candidate must be a power
of 2.

If no transmission is
required, leave this
parameter empty.

The set of one of several
consecutive ECCEs
defining the EPDCCH
transmission candidate in
the overall EPDCCH set.

EPDCCHType Required 'Localized',
'Distributed'

EPDCCH transmission
type

2 Functions

2-248

Parameter Field Required or Optional Values Description
EPDCCHPRBSet Required Vector of zero-based

indices for the PRB pairs
corresponding to the
EPDCCH PRB set. The
number of PRB pair
indices must be a power of
2.

If no transmission is
required, leave this
parameter empty.

EPDCCH PRB pair indices

EPDCCHStart Optional integer from 0 to 4

If this parameter is not
present, then the cell-wide
CFI parameter is used for
the starting symbol.

EPDCCH starting symbol

EPDCCHNID Required nonnegative scalar integer EPDCCH scrambling
sequence initialization

The following parameter applies when EPDCCHType is set to 'Localized'.
  RNTI Required 0 (default), scalar integer Radio network temporary

identifier (RNTI) value (16
bits)

sym — EPDCCH modulation symbols
complex-vector

EPDCCH modulation symbols associated with a single EPDCCH transmission in a subframe, specified as
a complex vector. This input contains the QPSK symbols.
Data Types: double

rxsym — Received EPDCCH symbols
EPDCCHGd-by-NRxAnts matrix

Received EPDCCH symbols, specified as a EPDCCHGd-by-NRxAnts matrix. EPDCCHGd is the
EPDCCH symbol capacity, given by the info.EPDCCHGd field of lteEPDCCHIndices. NRxAnts is the
number of receive antennas. This matrix contains the elements of the received resource grid in the
locations of the EPDCCH REs for the candidate configured via chs.EPDCCHECCE.
Data Types: double

hest — Channel estimate
EPDCCHGd-by-NRxAnts-by-4 array

Channel estimate, specified as an EPDCCHGd-by-NRxAnts array. EPDCCHGd is the EPDCCH symbol
capacity, given by the info.EPDCCHGd field of lteEPDCCHIndices. NRxAnts is the number of
receive antennas. The third dimension represents the 4 possible EPDCCH antenna ports
(p=107...110). This array contains the elements of the channel estimate array in the locations of the
EPDCCH REs for the candidate configured via chs.EPDCCHECCE.
Data Types: double

 lteEPDCCHDecode

2-249

noiseest — Noise estimate
numeric scalar

Noise estimate of the noise power spectral density per RE on the received subframe, specified as a
numeric scalar. The lteDLChannelEstimate function provides this estimate.
Data Types: double

alg — Algorithmic configuration
structure

Algorithmic configuration, specified as a structure. The structure must have the field:

CSI Optional 'On' (default), 'Off' Flag provides control
over weighting the soft
values that are used to
determine the output
values with the channel
state information (CSI)
calculated during the
equalization process

Data Types: double

grid — Resource grid
K-by-L-by-4 array

Resource grid across the four possible EPDCCH ports, specified as a K-by-L-by-4 array. K is the
number of subcarriers, L is the number of OFDM symbols in one frame, and 4 is all possible EPDCCH
antenna ports (p=107...110).
Data Types: double

rxgrid — Received resource elements grid
K-by-L-by-NRxAnts array

Received resource elements grid, specified as a K-by-L-by-NRxAnts array. K is the number of
subcarriers, L is the number of OFDM symbols in one frame, and NRxAnts is the number of receive
antennas.
Data Types: double

hestgrid — Channel estimate grid
K-by-L-by-NRxAnts-by-4 array

Channel estimate grid, specified as a K-by-L-by-NRxAnts-by-4 array. K is the number of subcarriers, L
is the number of OFDM symbols in one frame, and NRxAnts is the number of receive antennas. The
4th dimension represents the 4 possible EPDCCH antenna ports (p=107...110).
Data Types: double

Output Arguments
bits — Decoded bit estimates
column-vector | MTot-by-4 matrix

2 Functions

2-250

Decoded bit estimates for the candidate configured via chs.EPDCCHECCE, returned as one of the
following:

• a column-vector of length EPDCCHG = EDPCCHGd × 2.
• MTot-by-4 matrix. MTot is the total number of bits associated with EPDCCHs and 4 is all possible

EPDCCH antenna ports (p=107...110). Since the bits output is used as input to
lteEPDCCHSearch, where each ECCE candidate has to be descrambled individually, the bits
output are not descrambled.

symbols — Received QPSK symbols
column-vector | (MTot / 2)-by-4 matrix

Received QPSK symbols corresponding to bits in bits, specified as one of the following:.

• A column-vector of length EPDCCHGd, where EPDCCHGd is the EPDCCH symbol capacity, given
by the info.EPDCCHGd field of lteEPDCCHIndices.

• (MTot / 2)-by-4 matrix, for all EPDCCH ECCEs and all 4 EPDCCH reference signal ports
(p=107...110).

More About
Syntax Dependent Processing

The lteEPDCCHDecode function works with only one EPDCCH-PRB-Set because
lteDLChannelEstimate works with only one EPDCCH-PRB-Set. The lteEPDCCHDecode function
processing performed depends on which input signals are provided to the function. The figures shown
here align available syntaxes with processing performed.

If the symbols for a single configured EPDCCH candidate are input, the function performs symbol
demodulation and descrambling. The function assumes the input symbols were already equalized.

If the symbols for a single configured EPDCCH candidate are input along with channel and noise
estimates, the function performs MMSE equalization, then symbol demodulation and descrambling. If
the optional alg input is provided, CSI weighting is applied to the output bits.

 lteEPDCCHDecode

2-251

If the resource element grid across all possible EPDCCH antenna ports is input, the function extracts
all EPDCCH resource elements and performs EPDCCH decoding for all possible EPDCCH candidate
locations. The function assumes the input symbols were already equalized. Each EPDCCH candidate
is descrambled individually during EPDCCH search.

If the resource element grid is input, along with channel and noise estimates, the function extracts all
EPDCCH resource elements and performs MMSE equalization, then symbol demodulation. If the
optional alg input is provided, CSI weighting is applied to the output bits. Each EPDCCH candidate
is descrambled individually during EPDCCH search.

Version History
Introduced in R2016b

2 Functions

2-252

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteEPDCCH | lteEPDCCHDMRSIndices | lteEPDCCHIndices | lteEPDCCHSearch |
lteEPDCCHSpace | lteEPDCCHPRBS | lteDCIDecode

 lteEPDCCHDecode

2-253

https://www.3gpp.org

lteEPDCCHSearch
Enhanced downlink control information search

Syntax
[dcistr,dcibits] = lteEPDCCHSearch(enb,chs,softbits)

Description
[dcistr,dcibits] = lteEPDCCHSearch(enb,chs,softbits) recovers DCI message
structures, and corresponding vectors of DCI message bits, after blind decoding the multiplexed
EPDCCHs. The multiplexed EPDCCHs are within the received EPDCCH payload given by matrix of
soft bits. This function carries out search for a single EPDCCH set. For more information, see
“EPDCCH Search Processing” on page 2-265.

Examples

Search EPDCCH for DCI Messages

Encode a DCI message and modulate it on the EPDCCH. Perform EPDCCH decoding and then
EPDCCH blind-search to recover the DCI message. For DCI messages sent on the EPDCCH, set the
ControlChannelType to 'EPDCCH'.

Initialize cell-wide settings structure and EPDCCH transmission channel structure.

enb = lteRMCDL('R.43');
chs.RNTI = 42;
chs.ControlChannelType = 'EPDCCH';
chs.EPDCCHType = 'Localized';
chs.EPDCCHPRBSet = [2 3];
chs.EPDCCHNID = 0;
chs.EPDCCHFormat = 1;
chs.DCIFormat = 'Format1A';

Create a DCI message. Generate EPDCCH candidates.

[dci,dciBits] = lteDCI(enb,chs,struct('DCIFormat',chs.DCIFormat));

candidates = lteEPDCCHSpace(enb,chs);
chs.EPDCCHECCE = candidates(1,:);

Generate RE grid indices and EPDCCH info structure. Encode the DCI message into a codeword for
transmission. Generate EPDCCH symbols and populate resource grid.

[ind,info] = lteEPDCCHIndices(enb,chs);
cw = lteDCIEncode(chs,dciBits,info.EPDCCHG);

sym = lteEPDCCH(enb,chs,cw);
grid = lteDLResourceGrid(enb,4);
grid(ind) = sym;

2 Functions

2-254

Decode the EPDCCH transmission. Recover and view DCI message.

rxsoftbits = lteEPDCCHDecode(enb,chs,grid);

rxdci = lteEPDCCHSearch(enb,chs,rxsoftbits);
rxdci{1}

ans = struct with fields:
 DCIFormat: 'Format1A'
 CIF: 0
 AllocationType: 0
 Allocation: [1x1 struct]
 ModCoding: 0
 HARQNo: 0
 NewData: 0
 RV: 0
 TPCPUCCH: 0
 TDDIndex: 0
 SRSRequest: 0
 HARQACKResOffset: 0

Search for multiple EPDCCH sets. The first EPDCCH set is as configured above and the second is of
Distributed type with 8 PRBs.

Transmit the EPDCCH DM-RS for channel estimation.

grid(lteEPDCCHDMRSIndices(enb,chs)) = lteEPDCCHDMRS(enb,chs);

Configure the channel estimation.

cec.PilotAverage = 'TestEVM';
cec.Reference = 'EPDCCHDMRS';

Configure two EPDCCH sets.

chs.EPDCCHTypeList = {'Localized' 'Distributed'};
chs.EPDCCHPRBSetList = {[2; 3] (8:15).'};

Perform the EPDCCH search for each set.

for p = 1:numel(chs.EPDCCHTypeList)
 chs.EPDCCHType = chs.EPDCCHTypeList{p};
 chs.EPDCCHPRBSet = chs.EPDCCHPRBSetList{p};
 [hestgrid,noiseest] = lteDLChannelEstimate(enb,chs,cec,grid);
 rxsoftbits = lteEPDCCHDecode(enb,chs,grid,hestgrid,noiseest);
 rxdci = lteEPDCCHSearch(enb,chs,rxsoftbits);
 X = ['EPDCCH set ' num2str(p)];
 disp([X ', DCI messages found: ' num2str(numel(rxdci))])
 if (~isempty(rxdci))
 rxdci{1}
 end
end

EPDCCH set 1, DCI messages found: 1

ans = struct with fields:
 DCIFormat: 'Format1A'
 CIF: 0

 lteEPDCCHSearch

2-255

 AllocationType: 0
 Allocation: [1x1 struct]
 ModCoding: 0
 HARQNo: 0
 NewData: 0
 RV: 0
 TPCPUCCH: 0
 TDDIndex: 0
 SRSRequest: 0
 HARQACKResOffset: 0

EPDCCH set 2, DCI messages found: 0

A DCI message is found in EPDCCH set 1 but not in EPDCCH set 2.

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)

See “Specifying Number of
Resource Blocks” on page 2-265.

NULRB Required Scalar integer from 6 to 110 Number of uplink resource blocks.
(NRB

UL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length
CellRefP Required 1, 2, 4 Number of cell-specific reference

signal (CRS) antenna ports
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

The following parameter is applicable only when chs.EPDCCHStart is absent.
  CFI Required 1, 2, or 3

Scalar or if the CFI varies per
subframe, a vector of length 10
(corresponding to a frame).

Control format indicator (CFI)
value. In TDD mode, CFI varies per
subframe for the RMCs ('R.0',
'R.5', 'R.6', 'R.6-27RB',
'R.12-9RB')

2 Functions

2-256

Parameter Field Required or
Optional

Values Description

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as one of
the following:

• 'FDD' — Frequency division
duplex (default)

• 'TDD' — Time division duplex
The following parameters apply when DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7, 8, 9 Special subframe configuration

(SSC)
NFrame Optional 0 (default), nonnegative scalar

integer
Frame number

CSIRSPeriod Optional 'Off' (default), 'On', Icsi-rs
(0,...,154), [Tcsi-rs Dcsi-rs].
You can also specify values in a cell
array of configurations for each
resource.

CSI-RS subframe configurations for
one or more CSI-RS resources.
Multiple CSI-RS resources can be
configured from a single common
subframe configuration or from a
cell array of configurations for each
resource.

The following CSI-RS resource parameters apply only when CSIRSPeriod sets one or more CSI-RS subframe
configurations to any value other than 'Off'. Each parameter length must be equal to the number of CSI-RS
resources required.
  CSIRSConfig Required Nonnegative scalar integer Array CSI-RS configuration indices.

See TS 36.211, Table 6.10.5.2-1.
  CSIRefP Required 1 (default), 2, 4, 8 Array of number of CSI-RS antenna

ports
ZeroPowerCSIRSP
eriod

Optional 'Off' (default), 'On', Icsi-rs
(0,...,154), [Tcsi-rs Dcsi-rs].
You can also specify values in a cell
array of configurations for each
resource.

Zero power CSI-RS subframe
configurations for one or more zero
power CSI-RS resource
configuration index lists. Multiple
zero power CSI-RS resource lists
can be configured from a single
common subframe configuration or
from a cell array of configurations
for each resource list.

The following zero power CSI-RS resource parameter is applicable only if one or more of the above zero power
subframe configurations are set to any value other than 'Off'.

 lteEPDCCHSearch

2-257

Parameter Field Required or
Optional

Values Description

  
ZeroPowerCSIRSC
onfig

Required 16-bit bitmap character vector or
string scalar (truncated if not 16
bits or '0' MSB extended), or a
numeric list of CSI-RS configuration
indices. You can also specify values
in a cell array of configurations for
each resource.

Zero power CSI-RS resource
configuration index lists (TS 36.211
Section 6.10.5.2). Specify each list
as a 16-bit bitmap character vector
or string scalar (if less than 16 bits,
then '0' MSB extended), or as a
numeric list of CSI-RS configuration
indices from TS 36.211 Table
6.10.5.2-1 in the '4' CSI reference
signal column. Multiple lists can be
defined using a cell array of
individual lists.

chs — EPDCCH-specific channel transmission configuration
structure

EPDCCH-specific channel transmission configuration, specified as a structure that can contain the
following parameter fields.

Parameter Field Required or Optional Values Description
EPDCCHType Required 'Localized',

'Distributed'
EPDCCH transmission
type

EPDCCHPRBSet Required Vector of zero-based
indices for the PRB pairs
corresponding to the
EPDCCH PRB set. The
number of PRB pair
indices must be a power of
2.

EPDCCH PRB pair indices

EPDCCHStart Optional integer from 0 to 4

If this parameter is not
present, then the cell-wide
CFI parameter is used for
the starting symbol.

EPDCCH starting symbol

RNTI Required 0 (default), scalar integer Radio network temporary
identifier (RNTI) value (16
bits)

EPDCCHNID Required nonnegative scalar integer EPDCCH nID parameter
for scrambling sequence
initialization.

EPDCCHPRBSetList Optional cell array of one or two
vectors

PRB pair indices for one or
two EPDCCH sets.

EPDCCHPRBTypeList Optional cell array of character
vector or string array

EPDCCH transmission
types for one or two
EPDCCH sets.

2 Functions

2-258

Parameter Field Required or Optional Values Description
EnableCarrierIndicat
ion

Optional 'Off' (default), 'On' UE configured with carrier
indication field (affects
presence of CIF)

EnableSRSRequest Optional 'Off' (default), 'On' UE configured for SRS
request (affects presence
of SRS request field in UE-
specific formats 0/1A and
2B/2C/2D TDD)

EnableMultipleCSIReq
uest

Optional 'Off' (default), 'On' UE configured for multiple
CSI requests (multiple
cells/CSI processes)
(affects length of CSI
request field in UE-specific
formats 0/4)

NTxAnts Optional 1 (default), 2, 4 Number of UE
transmission antennas
(affects length of
precoding information
field in format 4)

softbits — Received EPDCCH payload
MTot-by-4 matrix

Received EPDCCH payload containing coded Downlink Control Information (DCI), specified as a
MTot-by-4 matrix. MTot is the total number of bits associated with EPDCCHs, nEPDCCH * NECCE

NECCEPerPRB * 2 .
The matrix contains soft EPDCCH bits estimates for all EPDCCH ECCEs and all EPDCCH reference
signal ports.

If chs.EPDCCHPRBSetList and chs.EPDCCHTypeList are present and each contain two elements,
the creation of the EPDCCH candidate locations support two EPDCCH sets. For more information,
see TS 36.213 [2], Tables 9.1.4-3a to 9.1.4-5b.
Data Types: double

Output Arguments
dcistr — DCI message structure
cell array of structures

DCI message structure, returned as a cell array of structures whose fields match of the fields
associated DCI format.

The field names associated with dcistr depend on the DCI format. The format is expected to be one
of the formats generated by lteDCI.

The following table details the DCI formats and accompanying dcistr parameter fields.

 lteEPDCCHSearch

2-259

DCI Formats DCISTRFields Size Description
'Format0' DCIFormat — 'Format0'

FreqHopping 1-bit PUSCH frequency hopping flag
Allocation variable Resource block assignment/allocation
ModCoding 5-bits Modulation, coding scheme, and

redundancy version
NewData 1-bit New data indicator
TPC 2-bits PUSCH TPC command
CShiftDMRS 3-bits Cyclic shift for DM RS
CQIReq 1-bit CQI request
TDDIndex 2-bits For TDD config 0, this field is the Uplink

Index.

For TDD Config 1-6, this field is the
Downlink Assignment Index.

Not present for FDD.
'Format1' DCIFormat — 'Format1'

AllocationType 1-bit Resource allocation header: type 0, type
1 (only if downlink bandwidth is >10
PRBs)

Allocation variable Resource block assignment/allocation
ModCoding 5-bits Modulation and coding scheme
HARQNo 3-bits (FDD)

4-bits (TDD)

HARQ process number

NewData 1-bit New data indicator
RV 2-bits Redundancy version
TPCPUCCH 2-bits PUCCH TPC command
TDDIndex 2-bits For TDD config 0, this field is not used.

For TDD Config 1-6, this field is the
Downlink Assignment Index. Not
present for FDD.

'Format1A' DCIFormat — 'Format1A'
AllocationType 1-bit VRB assignment flag: 0 (localized), 1

(distributed)
Allocation variable Resource block assignment/allocation
ModCoding 5-bits Modulation and coding scheme
HARQNo 3-bits (FDD)

4-bits (TDD)

HARQ process number

NewData 1-bit New data indicator
RV 2-bits Redundancy version

2 Functions

2-260

DCI Formats DCISTRFields Size Description
TPCPUCCH 2-bits PUCCH TPC command
TDDIndex 2-bits For TDD config 0, this field is not used.

For TDD Config 1-6, this field is the
Downlink Assignment Index. Not
present for FDD.

'Format1B' DCIFormat — 'Format1B'
AllocationType 1-bit VRB assignment flag: 0 (localized), 1

(distributed)
Allocation variable Resource block assignment/allocation
ModCoding 5-bits Modulation and coding scheme
HARQNo 3-bits (FDD)

4-bits (TDD)

HARQ process number

NewData 1-bit New data indicator
RV 2-bits Redundancy version
TPCPUCCH 2-bits PUCCH TPC command
TPMI 2-bits (2 antennas)

4-bits (4 antennas)

PMI information

PMI 1-bit PMI confirmation
TDDIndex 2-bits For TDD config 0, this field is not used.

For TDD Config 1-6, this field is the
Downlink Assignment Index. Not
present for FDD.

'Format1C' DCIFormat — 'Format1C'
Allocation variable Resource block assignment/allocation
ModCoding 5-bits Modulation and coding scheme

'Format1D' DCIFormat — 'Format1D'
AllocationType 1-bit VRB assignment flag: 0 (localized), 1

(distributed)
Allocation variable Resource block assignment/allocation
ModCoding 5-bits Modulation and coding scheme
HARQNo 3-bits (FDD)

4-bits (TDD)

HARQ process number

NewData 1-bit New data indicator
RV 2-bits Redundancy version
TPCPUCCH 2-bits PUCCH TPC command
TPMI 2-bits (2 antennas)

4-bits (4 antennas)

Precoding TPMI information

 lteEPDCCHSearch

2-261

DCI Formats DCISTRFields Size Description
DlPowerOffset 1-bit Downlink power offset
TDDIndex 2-bits For TDD config 0, this field is not used.

For TDD Config 1-6, this field is the
Downlink Assignment Index. Not
present for FDD.

'Format2' DCIFormat — 'Format2'
AllocationType 1-bit Resource allocation header: type 0, type

1 (only if downlink bandwidth is >10
PRBs)

Allocation variable Resource block assignment/allocation
TPCPUCCH 2-bits PUCCH TPC command
HARQNo 3-bits (FDD)

4-bits (TDD)

HARQ process number

SwapFlag 1-bit Transport block to codeword swap flag
ModCoding1 5-bits Modulation and coding scheme for

transport block 1
NewData1 1-bit New data indicator for transport block 1
RV1 2-bits Redundancy version for transport block

1
ModCoding2 5-bits Modulation and coding scheme for

transport block 2
NewData2 1-bit New data indicator for transport block 2
RV2 2-bits Redundancy version for transport block

2
PrecodingInfo 3-bits (2-antennas)

6-bits (4-antennas)

Precoding information

TDDIndex 2-bits For TDD config 0, this field is not used.
For TDD Config 1-6, this field is the
Downlink Assignment Index. Not
present for FDD.

'Format2A' DCIFormat — 'Format2A'
AllocationType 1-bit Resource allocation header: type 0, type

1 (only if downlink bandwidth is >10
PRBs)

Allocation variable Resource block assignment/allocation
TPCPUCCH 2-bits PUCCH TPC command
HARQNo 3-bits (FDD)

4-bits (TDD)

HARQ process number

SwapFlag 1-bit Transport block to codeword swap flag

2 Functions

2-262

DCI Formats DCISTRFields Size Description
ModCoding1 5-bits Modulation and coding scheme for

transport block 1
NewData1 1-bit New data indicator for transport block 1
RV1 2-bits Redundancy version for transport block

1
ModCoding2 5-bits Modulation and coding scheme for

transport block 2
NewData2 1-bit New data indicator for transport block 2
RV2 2-bits Redundancy version for transport block

2
PrecodingInfo 0-bits (2 antennas)

2-bits (4 antennas)

Precoding information

TDDIndex 2-bits For TDD config 0, this field is not used.
For TDD Config 1-6, this field is the
Downlink Assignment Index. Not
present for FDD.

'Format2B' DCIFormat — 'Format2B'
AllocationType 1-bit Resource allocation header: type 0, type

1 (only if downlink bandwidth is >10
PRBs)

Allocation variable Resource block assignment/allocation
TPCPUCCH 2-bits PUCCH TPC command
HARQNo 3-bits (FDD)

4-bits (TDD)

HARQ process number

ScramblingId 1-bit Scrambling identity
ModCoding1 5-bits Modulation and coding scheme for

transport block 1
NewData1 1-bit New data indicator for transport block 1
RV1 2-bits Redundancy version for transport block

1
ModCoding2 5-bits Modulation and coding scheme for

transport block 2
NewData2 1-bit New data indicator for transport block 2
RV2 2-bits Redundancy version for transport block

2
TDDIndex 2-bits For TDD config 0, this field is not used.

For TDD Config 1-6, this field is the
Downlink Assignment Index. Not
present for FDD.

'Format2C' DCIFormat — 'Format2C'

 lteEPDCCHSearch

2-263

DCI Formats DCISTRFields Size Description
CIF variable Carrier indicator
AllocationType 1-bit Resource allocation header: type 0, type

1 (only if downlink bandwidth is >10
PRBs)

Allocation variable Resource block assignment/allocation
TPCPUCCH 2-bits PUCCH TPC command
HARQNo 3-bits (FDD)

4-bits (TDD)

HARQ process number

TxIndication 3-bits Antenna port(s), scrambling identity,
and number of layers indicator

SRSRequest variable SRS request. Only present for TDD.
ModCoding1 5-bits Modulation and coding scheme for

transport block 1
NewData1 1-bit New data indicator for transport block 1
RV1 2-bits Redundancy version for transport block

1
ModCoding2 5-bits Modulation and coding scheme for

transport block 2
NewData2 1-bit New data indicator for transport block 2
RV2 2-bits Redundancy version for transport block

2
TDDIndex 2-bits For TDD config 0, this field is not used.

For TDD Config 1-6, this field is the
Downlink Assignment Index.

Not present for FDD.
'Format3' DCIFormat — 'Format3'

TPCCommands variable TPC commands for PUCCH and PUSCH
'Format3A' DCIFormat — 'Format3A'

TPCCommands variable TPC commands for PUCCH and PUSCH
'Format4' DCIFormat — 'Format4'

CIF variable Carrier indicator
Allocation variable Resource block assignment/allocation
TPC 2-bits PUSCH TPC command
CShiftDMRS 3-bits Cyclic shift for DMRS
TDDIndex 2-bits For TDD config 0, this field is Uplink

Index. For TDD Config 1-6, this field is
the Downlink Assignment Index. Not
present for FDD.

2 Functions

2-264

DCI Formats DCISTRFields Size Description
CQIReq variable CQI request
SRSRequest 2-bits SRS request
AllocationType 1-bit Resource allocation header: non-

hopping PUSCH resource allocation
type 0, type 1

ModCoding 5-bits Modulation, coding scheme and
redundancy version

NewData 1-bit New data indicator
ModCoding1 5-bits Modulation and coding scheme for

transport block 1
NewData1 1-bit New data indicator for transport block 1
ModCoding2 5-bits Modulation and coding scheme for

transport block 2
NewData2 1-bit New data indicator for transport block 2
PrecodingInfo 3-bits (2 antennas)

6-bits (4 antennas)

Precoding information

Data Types: struct

dcibits — Recovered DCI message bit vector
cell array of vectors

Recovered DCI message bit vector, returned as a column vector. The length of dcibits is defined
though structure enb in terms of the DCI message format and the bandwidth.
Data Types: int8

More About
EPDCCH Search Processing

EPDCCH search processing blindly decodes DCI messages based on their lengths. The lengths and
order in which the DCI messages are searched for is provided by lteDCIInfo. For DCI messages
conveyed on the EPDCCH, set ControlChannelType to 'EPDCCH' when calling lteDCIInfo.

If one or more messages have the same length, the first message format in the list is used to decode
the message. The other potential message formats are ignored. The lteEPDCCHSearch function does
not consider transmission mode during blind search, and no DCI message format is filtered based on
transmission mode. It does not search for format 3 and 3A (power adjustment commands for PUSCH
and PUCCH). It also does not search for format 1C as this format is never used in the UE-specific
search space. EPDCCH is never used for common search space messages. For more information on
the association between transmission mode, transmission scheme, DCI format, and search space, see
TS 36.213 [2], Section 7.1 and Table 7.1-5A.

Specifying Number of Resource Blocks

The number of resource blocks specifies the uplink and downlink bandwidth. The LTE Toolbox
implementation assumes symmetric link bandwidth unless you specifically assign different values to

 lteEPDCCHSearch

2-265

NULRB and NDLRB. If the number of resource blocks is initialized in only one link direction, then the
initialized number of resource blocks (NULRB or NDLRB) is used for both uplink and downlink. When
this mapping is used, no warning is displayed. An error occurs if NULRB and NDLRB are both
undefined.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteEPDCCH | lteEPDCCHDecode | lteEPDCCHIndices | lteEPDCCHSpace | lteEPDCCHPRBS

2 Functions

2-266

https://www.3gpp.org
https://www.3gpp.org

lteEPDCCHSpace
EPDCCH search space candidates

Syntax
[ind,info] = lteEPDCCHSpace(enb,chs)

Description
[ind,info] = lteEPDCCHSpace(enb,chs) returns a matrix or cell array of EPDCCH ECCE
candidate indices, and related dimensional information for the given cell-wide settings structure and
EPDCCH transmission configuration structure. Depending on the configuration, the function returns
a matrix of candidates for a single EPDCCH set, or a cell array containing one or two matrices of
candidates for one or two EPDCCH sets.

Examples

EPDCCH Search Space

EPDCCH Search Space for DCI Format 2A and 1.

For a particular configuration, establish the sizes of DCI messages for format 2A and format 1. Note
that for DCI messages conveyed on the EPDCCH, ControlChannelType should be set to 'EPDCCH'.

enb.NDLRB = 50;
enb.CellRefP = 1;
enb.NCellID = 0;
enb.NSubframe = 0;
enb.CFI = 1;
chs.EPDCCHType = 'Localized';
chs.EPDCCHPRBSet = (0:3).';
chs.EPDCCHFormat = 1;
chs.RNTI = 7;
chs.ControlChannelType = 'EPDCCH';

dcisizes = lteDCIInfo(enb,chs);
format2Asize = dcisizes.Format2A

format2Asize = uint64
 42

format1size = dcisizes.Format1

format1size = uint64
 33

Create the EPDCCH search space candidates for a localized EPDCCH transmission of a DCI format
2A message.

chs.DCIFormat = 'Format2A';
[candidates,info] = lteEPDCCHSpace(enb,chs)

 lteEPDCCHSpace

2-267

candidates = 4×2

 4 7
 8 11
 12 15
 0 3

info = struct with fields:
 nEPDCCH: 126
 NECCEPerPRB: 4
 NEREGPerECCE: 4
 NECCEPerEPDCCH: 4
 EPDCCHCase: 1
 NECCE: 16

Create the candidates for a DCI format 1 message for the same configuration. The DCI format 1
message is smaller than the format 2A message, resulting in a change of case number
(info.EPDCCHCase) from 1 to 3. The aggregation level (info.NECCEPerEPDCCH) changes from 4 to
2, resulting in a greater number of candidates.

chs.DCIFormat = 'Format1';
[candidates,info] = lteEPDCCHSpace(enb,chs)

candidates = 6×2

 2 3
 4 5
 6 7
 10 11
 12 13
 14 15

info = struct with fields:
 nEPDCCH: 126
 NECCEPerPRB: 4
 NEREGPerECCE: 4
 NECCEPerEPDCCH: 2
 EPDCCHCase: 3
 NECCE: 16

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

2 Functions

2-268

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length
CellRefP Required 1, 2, 4 Number of cell-specific reference

signal (CRS) antenna ports
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

The following parameter applies only when chs.EPDCCHStart is absent.
  CFI Required 1, 2, or 3

Scalar or if the CFI varies per
subframe, a vector of length 10
(corresponding to a frame).

Control format indicator (CFI)
value. In TDD mode, CFI varies per
subframe for the RMCs ('R.0',
'R.5', 'R.6', 'R.6-27RB',
'R.12-9RB')

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division
Duplex

• 'TDD' for Time Division Duplex
The following parameters apply when DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7, 8, 9 Special subframe configuration

(SSC)
NFrame Optional 0 (default), nonnegative scalar

integer
Frame number

CSIRSPeriod Optional 'Off' (default), 'On', Icsi-rs
(0,...,154), [Tcsi-rs Dcsi-rs].
You can also specify values in a cell
array of configurations for each
resource.

CSI-RS subframe configurations for
one or more CSI-RS resources.
Multiple CSI-RS resources can be
configured from a single common
subframe configuration or from a
cell array of configurations for each
resource.

The following CSI-RS resource parameters apply only when CSIRSPeriod sets one or more CSI-RS subframe
configurations to any value other than 'Off'. Each parameter length must be equal to the number of CSI-RS
resources required.
  CSIRSConfig Required Nonnegative scalar integer Array CSI-RS configuration indices.

See TS 36.211, Table 6.10.5.2-1.
  CSIRefP Required 1 (default), 2, 4, 8 Array of number of CSI-RS antenna

ports

 lteEPDCCHSpace

2-269

Parameter Field Required or
Optional

Values Description

ZeroPowerCSIRSP
eriod

Optional 'Off' (default), 'On', Icsi-rs
(0,...,154), [Tcsi-rs Dcsi-rs].
You can also specify values in a cell
array of configurations for each
resource.

Zero power CSI-RS subframe
configurations for one or more zero
power CSI-RS resource
configuration index lists. Multiple
zero power CSI-RS resource lists
can be configured from a single
common subframe configuration or
from a cell array of configurations
for each resource list.

The following zero power CSI-RS resource parameter is only applicable if one or more of the above zero power
subframe configurations are set to any value other than 'Off'.
  
ZeroPowerCSIRSC
onfig

Required 16-bit bitmap character vector or
string scalar (truncated if not 16
bits or '0' MSB extended), or a
numeric list of CSI-RS configuration
indices. You can also specify values
in a cell array of configurations for
each resource.

Zero power CSI-RS resource
configuration index lists (TS 36.211
Section 6.10.5.2). Specify each list
as a 16-bit bitmap character vector
or string scalar (if less than 16 bits,
then '0' MSB extended), or as a
numeric list of CSI-RS configuration
indices from TS 36.211 Table
6.10.5.2-1 in the '4' CSI reference
signal column. Multiple lists can be
defined using a cell array of
individual lists.

chs — EPDCCH-specific channel transmission configuration
structure

EPDCCH-specific channel transmission configuration, specified as a structure that can contain the
following parameter fields.

Parameter Field Required or Optional Values Description
EPDCCHType Required if the EPDCCH

type list parameter field is
absent

'Localized',
'Distributed'

EPDCCH transmission
type

EPDCCHPRBSet Required if the EPDCCH
Type list parameter field is
absent

Vector of zero-based
indices for the PRB pairs
corresponding to the
EPDCCH PRB set. The
number of PRB pair
indices must be a power of
2.

EPDCCH PRB pair indices

EPDCCHFormat Required 0, 1, 2, 3, or 4 Number of ECCEs per
EPDCCH transmission
(equivalently the
aggregation level L) as
required by TS 36.211
Table 6.8A 1–2.

2 Functions

2-270

Parameter Field Required or Optional Values Description
EPDCCHStart Optional 0, 1, 2, 3, or 4

If this parameter is not
present, then the cell-wide
CFI parameter is used for
the starting symbol.

EPDCCH starting symbol

RNTI Required 0 (default), scalar integer Radio network temporary
identifier (RNTI) value (16
bits)

DCIFormat Optional 'Format0', 'Format1',
'Format1A',
'Format1B',
'Format1C',
'Format1D', 'Format2',
'Format2A',
'Format2B',
'Format2C',
'Format2D', 'Format3',
'Format3A', 'Format4',
'Format5', 'Format5A'

Downlink control
information (DCI) format

EPDCCHPRBSetList Optional cell array of one or two
vectors

PRB pair indices for one or
two EPDCCH sets

EPDCCHTypeList Optional cell array of one or two
arrays

EPDCCH transmission
types for one or two
EPDCCH sets

Output Arguments
ind — EPDCCH ECCE candidate indices
M-by-2 matrix | cell array

EPDCCH ECCE candidate indices, returned as an M-by-2 matrix or a cell array containing 2 M-by-2
matrices. M is the number of EPDCCH candidates monitored for the configuration provided. This
variable is defined in TS 36.213 Tables 9.1.4-1a to 9.1.4-5b. Each two-element row of the matrix ind
(or the rows of each matrix in cell array ind) contains the inclusive indices of a single EPDCCH
candidate location.

• If chs.EPDCCHPRBSetList and chs.EPDCCHTypeList are present and either
chs.EPDCCHPRBSet or chs.EPDCCHType are absent, one or two EPDCCH sets are returned in a
cell array containing one or two matrices, one for each set.

• If both chs.EPDCCHPRBSet and chs.EPDCCHType are present, only the single candidate matrix
which matches the PRB set size and EPDCCH type given by chs.EPDCCHPRBSet and
chs.EPDCCHType is returned. This allows the number of candidates M to be correctly calculated
for TS 36.213 Tables 9.1.4-3a to 9.1.4-5b (corresponding to two EPDCCH sets) while returning a
single set of candidates in matrix form. This format is consistent with the parameterization other
EPDCCH-related functions that take CHS.EPDCCHPRBSet and CHS.EPDCCHType as parameters
and operate on a single EPDCCH set.

• If chs.EPDCCHPRBSetList is absent, then chs.EPDCCHPRBSet is required, and if
chs.EPDCCHTypeList is absent then chs.EPDCCHType is required.

 lteEPDCCHSpace

2-271

info — Dimensional information about the EPDCCH search space candidates
scalar structure

Dimensional information about the EPDCCH search space candidates, returned as a scalar structure
containing:

Parameter Field Description Values
nEPDCCH Number of REs in a PRB pair

configured for possible EPDCCH
transmission. See TS 36.211.
[1], Section 6.8A.1.

Integer

NECCEPerPRB Number of ECCE per PRB pair Integer
NEREGPerECCE Number of EREG per ECCE Integer
NECCEPerEPDCCH Number of ECCES per EPDCCH

transmission (equivalently the
EPDCCH aggregation level L) as
given by TS 36.211 [1] ,Table
6.8A.1-2

Integer

EPDCCHCase Case number (1,2,3). See TS
36.213 [2], Section 9.1.4

Integer

NECCE One or two element vector
containing the number of ECCE
available for transmission of
EPDCCHs in the PRB pair set

Integer

Data Types: struct

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteEPDCCH | lteEPDCCHDecode | lteEPDCCHIndices | lteEPDCCHSearch | lteEPDCCHPRBS

2 Functions

2-272

https://www.3gpp.org
https://www.3gpp.org

lteEPDCCHIndices
Enhanced physical downlink control channel (EPDCCH) resource element indices

Syntax
[ind,info] = lteEPDCCHIndices(enb,chs)
[ind,info] = lteEPDCCHIndices(enb,chs,opts)

Description
[ind,info] = lteEPDCCHIndices(enb,chs) returns the subframe resource element (RE)
indices for the Enhanced Physical Downlink Control Channel (EPDCCH) and information related to
EPDCCH indices, given the cell-wide settings structure, enb, and the EPDCCH transmission
configuration, chs.

[ind,info] = lteEPDCCHIndices(enb,chs,opts) formats the returned indices using options
specified by opts.

Examples

Generate RE Indices of Localized Transmission

This example generates RE Indices of localized transmission in default and subscripted formats.

Specify the cell-wide settings in parameter structure, enb.

enb.NDLRB = 6;
enb.NSubframe = 0;
enb.NCellID = 0;
enb.CellRefP = 1;
enb.CyclicPrefix = 'Normal';
enb.DuplexMode = 'FDD';
enb.NFrame = 0;
enb.CSIRSPeriod = 'Off';
enb.ZeroPowerCSIRSPeriod = 'Off';

Specify the channel transmission configuration in parameter structure, chs.

chs.EPDCCHECCE = [0 7];
chs.EPDCCHType = 'Localized';
chs.EPDCCHPRBSet = 2:3;
chs.EPDCCHStart = 2;
chs.RNTI = 1;

Generate 1-based linear resource element indices of a localized transmission.

[ind,info] = lteEPDCCHIndices(enb,chs);
size(ind)

ans = 1×2

 lteEPDCCHIndices

2-273

 228 1

Display the size and the first 10 indices of ind.

ind(1:10)

ans = 10x1 uint32 column vector

 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186

Generate 1-based resource element indices in the subscript format [subcarrier, symbol,
antenna].

[ind,info] = lteEPDCCHIndices(enb,chs,'sub');
size(ind)

ans = 1×2

 228 3

Display the size and the first 10 indices of ind.

ind(1:10,:)

ans = 10x3 uint32 matrix

 25 3 2
 26 3 2
 27 3 2
 28 3 2
 29 3 2
 30 3 2
 31 3 2
 32 3 2
 33 3 2
 34 3 2

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

2 Functions

2-274

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length
CellRefP Required 1, 2, 4 Number of cell-specific reference

signal (CRS) antenna ports
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

The following parameter is only read when chs.EPDCCHStart is absent.
  CFI Required 1, 2, or 3

Scalar or if the CFI varies per
subframe, a vector of length 10
(corresponding to a frame).

Control format indicator (CFI)
value. In TDD mode, CFI varies per
subframe for the RMCs ('R.0',
'R.5', 'R.6', 'R.6-27RB',
'R.12-9RB')

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as one of
the following:

• 'FDD' — Frequency division
duplex (default)

• 'TDD' — Time division duplex
The following parameters apply when DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7, 8, 9 Special subframe configuration

(SSC)
NFrame Optional 0 (default), nonnegative scalar

integer
Frame number

CSIRSPeriod Optional 'Off' (default), 'On', Icsi-rs
(0,...,154), [Tcsi-rs Dcsi-rs].
You can also specify values in a cell
array of configurations for each
resource.

CSI-RS subframe configurations for
one or more CSI-RS resources.
Multiple CSI-RS resources can be
configured from a single common
subframe configuration or from a
cell array of configurations for each
resource.

The following CSI-RS resource parameters apply only when CSIRSPeriod sets one or more CSI-RS subframe
configurations to any value other than 'Off'. Each parameter length must be equal to the number of CSI-RS
resources required.
  CSIRSConfig Required Nonnegative scalar integer Array CSI-RS configuration indices.

See TS 36.211, Table 6.10.5.2-1.
  CSIRefP Required 1 (default), 2, 4, 8 Array of number of CSI-RS antenna

ports

 lteEPDCCHIndices

2-275

Parameter Field Required or
Optional

Values Description

ZeroPowerCSIRSP
eriod

Optional 'Off' (default), 'On', Icsi-rs
(0,...,154), [Tcsi-rs Dcsi-rs].
You can also specify values in a cell
array of configurations for each
resource.

Zero power CSI-RS subframe
configurations for one or more zero
power CSI-RS resource
configuration index lists. Multiple
zero power CSI-RS resource lists
can be configured from a single
common subframe configuration or
from a cell array of configurations
for each resource list.

The following zero power CSI-RS resource parameter is only applicable if one or more of the above zero power
subframe configurations are set to any value other than 'Off'.
  
ZeroPowerCSIRSC
onfig

Required 16-bit bitmap character vector or
string scalar (truncated if not 16
bits or '0' MSB extended), or a
numeric list of CSI-RS configuration
indices. You can also specify values
in a cell array of configurations for
each resource.

Zero power CSI-RS resource
configuration index lists (TS 36.211
Section 6.10.5.2). Specify each list
as a 16-bit bitmap character vector
or string scalar (if less than 16 bits,
then '0' MSB extended), or as a
numeric list of CSI-RS configuration
indices from TS 36.211 Table
6.10.5.2-1 in the '4' CSI reference
signal column. Multiple lists can be
defined using a cell array of
individual lists.

chs — EPDCCH-specific channel transmission configuration
structure

EPDCCH-specific channel transmission configuration, specified as a structure that can contain the
following parameter fields.

Parameter Field Required or Optional Values Description
EPDCCHECCE Required 1- or 2- element vector

specifying the zero-based
ECCE index or inclusive
[begin, end] ECCE index
range according to the
aggregation level L (L =
end – begin + 1). The
number of ECCEs in the
candidate must be a power
of 2.

If no transmission is
required, leave this
parameter empty.

The set of one of several
consecutive ECCEs
defining the EPDCCH
transmission candidate in
the overall EPDCCH set.

EPDCCHType Required 'Localized',
'Distributed'

EPDCCH transmission
type

2 Functions

2-276

Parameter Field Required or Optional Values Description
EPDCCHPRBSet Required Vector of zero-based

indices for the PRB pairs
corresponding to the
EPDCCH PRB set. The
number of PRB pair
indices must be a power of
2.

If no transmission is
required, leave this
parameter empty.

EPDCCH PRB pair indices

EPDCCHStart Optional integer from 0 to 4

If this parameter is not
present, then the cell-wide
CFI parameter is used for
the starting symbol.

EPDCCH starting symbol

The following parameters apply when EPDCCHType is set to 'Localized'.
RNTI Required only for the

'Localized'
transmission type

0 (default), scalar integer Radio network temporary
identifier (RNTI) value (16
bits)

opts — Index generation options
character vector | cell array of character vectors | string array

Index generation options, specified as a character vector, cell array of character vectors, or string
array. For convenience, you can specify several options as a single character vector or string scalar
by a space-separated list of values placed inside the quotes. Values for opts when specified as a
character vector include (use double quotes for string):

Option Values Description
Indexing
style

'ind' (default),
'sub'

Style for the returned indices, specified as one of the following options.

• 'ind' — returns the indices in linear index form as a column
vector (default)

• 'sub' — returns the indices in [subcarrier, symbol,
antenna] subscript row style. The number of rows in the output,
ind, is the number of resource elements (NRE). Thus, ind is an NRE-
by-3 matrix.

Index base '1based'
(default),
'0based'

Base value of the returned indices. Specify '1based' to generate
indices where the first value is 1. Specify '0based' to generate
indices where the first value is 0.

Whether in linear or subscript format style, the indices are always formed out of [subcarrier,
symbol, antenna] subscripts. These subscripts identify the used resource elements in each
subframe resource grid per antenna port.

For the EPDCCH, the antenna subscripts have the possible range 1...4 (if index is one-based), which
represents antenna ports p = 107...110. For a localized EPDCCH transmission, the antenna

 lteEPDCCHIndices

2-277

subscripts are a single value out of 1...4, dependent on the RNTI and ECCEs selected. For a
distributed EPDCCH transmission, the antenna subscripts alternate between one of two values: {1,3}
(p = 107,109) for normal cyclic prefix, and {1,2} (p = 107,108) for extended cyclic prefix. See TS
36.211 [1], Section 6.8A.5. Use these indices to index the subframe grid directly. The grid comprises
the four possible EPDCCH antenna ports (p = 107...110) and is represented as an.NSC-by-NSYM-by-4
array.
Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — Subframe EPDCCH RE indices
integer column vector | 3-column integer matrix

EPDCCH subframe resource element indices, returned by default in one-based linear indexing form
as a numeric column vector of length NRE-by-1. NRE is the number of subframe resource elements.
Optionally, for subscript-specific indexing style [subcarrier, symbol, antenna], ind is returned as
a numeric matrix of size NRE-by-3. The grid comprises the four possible EPDCCH antenna ports (p =
107,...,110) and is represented as an NSC-by-NSYM-by-4 array. NSC is the number of subcarriers, NSYM is
the number of symbols, and 4 is the number of antenna ports.

The indices are for a single transmission instance of the EPDCCH. The order of the indices is the
same as required for the complex EPDCCH symbols mapping. Generate these symbols using
lteEPDCCH. The indices are parameterized in terms of a configured PRB pair set that defines:

• the overall set of possible EPDCCH candidates and
• the aggregation of one or more consecutive enhanced control channel elements (ECCE). This

aggregation identifies the specific EPDCCH instance within the set of EPDCCH candidates.

The EPDCCH can use either localized or distributed transmission, differing in the mapping of ECCEs
to REs, active PRB pairs, and antenna ports.
Data Types: double

info — Information related to EPDCCH indices
scalar structure

Dimensional information related to EPDCCH indices, returned as a scalar structure. The structure
info contains the following fields.

Parameter Field Description Values Data Type
EPDCCHG EPDCCH data bit

capacity
Integer int32

EPDCCHGd EPDCCH QPSK symbol
capacity

Integer int32

2 Functions

2-278

Parameter Field Description Values Data Type
nEPDCCH Number of REs in a PRB

pair configured for
possible EPDCCH
transmission. See TS
36.211. [1], Section
6.8A.1.

Integer int32

NECCE Number of ECCE
available for
transmission of
EPDCCHs in the PRB
pair set

Integer int32

NECCEPerPRB Number of ECCE per
PRB pair

Integer int32

NEREGPerECCE Number of EREG per
ECCE

Integer int32

EPDCCHPorts A vector indicating the
set of antenna
subscripts used by REs
for this transmission
instance of the
EPDCCH. The
subscripts are one-
based (default) or zero-
based as specified by
opts.

Vector of integers int32

Version History
Introduced in R2014b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteEPDCCH | lteEPDCCHDMRSIndices | lteEPDCCHIndices

 lteEPDCCHIndices

2-279

https://www.3gpp.org

lteEPDCCHPRBS
EPDCCH pseudorandom scrambling sequence

Syntax
[seq,cinit] = lteEPDCCHPRBS(enb,chs,n)
[seq,cinit] = lteEPDCCHPRBS(enb,chs,n,mapping)

[subseq,cinit] = lteEPDCCHPRBS(enb,chs,pn)
[subseq,cinit] = lteEPDCCHPRBS(enb,chs,pn,mapping)

Description
[seq,cinit] = lteEPDCCHPRBS(enb,chs,n) returns the first n outputs of the Enhanced
Physical Downlink Control Channel (EPDCCH) scrambling sequence in seq. It also returns an
initialization value cinit for the pseudorandom binary sequence (PRBS) generator. The function is
initialized according to the cell-wide settings structure, enb, and the channel transmission
configuration structure, chs.

[seq,cinit] = lteEPDCCHPRBS(enb,chs,n,mapping) allows additional control over the format
of the returned sequence, seq, with the input mapping.

[subseq,cinit] = lteEPDCCHPRBS(enb,chs,pn) returns a subsequence of a full PRBS
sequence, specified by pn.

[subseq,cinit] = lteEPDCCHPRBS(enb,chs,pn,mapping) allows additional control over the
format of the returned subsequence, subseq, with the input mapping.

Examples

Generate the EPDCCH Scrambling Sequence

Specify the cell-wide settings and channel transmission configuration in parameter structures enb
and chs.

enb.NSubframe = 0;
chs.EPDCCHNID = 0;

Create the codeword and generate the EPDCCH scrambling sequence.

cw = randi([0 1],100,1);
prbs = lteEPDCCHPRBS(enb,chs,length(cw));

Scramble the DCI coded bits.

scrambled = xor(prbs,cw);
prbs(1:20)

ans = 20x1 logical array

2 Functions

2-280

 0
 0
 0
 0
 0
 0
 1
 0
 0
 0
 ⋮

Generate the EPDCCH scrambling sequence using the 'signed' sequence format.

prbs = lteEPDCCHPRBS(enb,chs,length(cw),'signed');
prbs(1:20)

ans = 20×1

 1
 1
 1
 1
 1
 1
 -1
 1
 1
 1
 ⋮

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure. This argument contains the following parameter
field.

NSubframe — Subframe number
nonnegative scalar integer

Subframe number, specified as a nonnegative scalar integer.
Data Types: double

Data Types: struct

chs — Channel-specific transmission configuration
structure

Channel-specific transmission configuration, specified as a structure. This argument contains the
following parameter field.

 lteEPDCCHPRBS

2-281

EPDCCHNID — EPDCCH scrambling sequence initialization
nonnegative scalar integer

EPDCCH nID parameter for scrambling sequence initialization, specified as a nonnegative scalar
integer.
Data Types: double

Data Types: struct

n — Number of elements in returned sequence
numeric scalar

Number of elements in returned sequence, seq, specified as a numeric scalar.
Data Types: double

pn — Range of elements in returned subsequence
row vector

Range of elements in returned subsequence, subseq, specified as a row vector of [p n]. The
subsequence returns n values of the PRBS generator, starting at position p (0-based).
Data Types: double

mapping — Output sequence formatting
'binary' (default) | 'signed'

Output sequence formatting, specified as 'binary' or 'signed'. mapping controls the format of
the returned sequence.

• 'binary' maps true to 1 and false to 0.
• 'signed' maps true to –1 and false to 1.

Data Types: char | string

Output Arguments
seq — EPDCCH pseudorandom scrambling sequence
logical column vector | numeric column vector

EPDCCH pseudorandom scrambling sequence, returned as a logical column vector or a numeric
column vector. seq contains the first n outputs of the EPDCCH scrambling sequence. If you set
mapping to 'signed', the output data type is double. Otherwise, the output data type is logical.
Data Types: logical | double

subseq — EPDCCH pseudorandom scrambling subsequence
logical column vector | numeric column vector

EPDCCH pseudorandom scrambling subsequence, returned as a logical column vector or a numeric
column vector. subseq contains the values of the PRBS generator specified by pn. If you set mapping
to 'signed', the output data type is double. Otherwise, the output data type is logical.
Data Types: logical | double

2 Functions

2-282

cinit — Initialization value for PRBS generator
numeric scalar

Initialization value for PRBS generator, returned as a numeric scalar.
Data Types: uint32

Version History
Introduced in R2014b

See Also
lteEPDCCH | lteEPDCCHIndices

 lteEPDCCHPRBS

2-283

lteEVM
Error vector magnitude calculation

Syntax
evm = lteEVM(x,r)
evm = lteEVM(ev)

Description
evm = lteEVM(x,r) returns a structure, evm, containing error vector magnitude (EVM)
information for the input array, x, given the reference signal array, r. The EVM is defined using the
error, or difference, between the input values, x, and the reference signal, r.

The EVM values in the RMS and Peak structure fields are linear EVM, not EVM as a percentage. To
obtain EVM as a percentage, multiply the value of the RMS and Peak structure fields by 100.

evm = lteEVM(ev) returns a structure, evm, for the input array, ev, which is taken to be the
normalized error vector given by the expression ev=(x-r)/sqrt(mean(abs(r.^2))). This syntax
allows for peak and RMS EVM calculation for preexisting normalized error vectors. For example, it
can be used to calculate the EVM across an array of previous EVM results, by extracting and
concatenating the EV fields from the array to form the ev input vector.

Examples

Measure LTE Symbol EVM

Generate a random QPSK constellation at a defined EVM level. Measure and confirm the added EVM.

Generate a stream of QPSK symbols.

txSym = lteSymbolModulate(randi([0,1],10000,1),'QPSK');

Add noise at a defined EVM level, evmPercent.

evmPercent = 14.0;
N0 = complex(randn(size(txSym)),randn(size(txSym)));
noise = N0 * (evmPercent/100)/sqrt(2);
rxSym = txSym + noise;

Measure and display the root mean square EVM level in percent.

evm = lteEVM(rxSym,txSym)

evm = struct with fields:
 EV: [5000x1 double]
 Peak: 0.4260
 RMS: 0.1382

evm.RMS*100

2 Functions

2-284

ans = 13.8234

Input Arguments
x — Input array
column vector | matrix | 3-D array

Input array, specified as a column vector, matrix or 3-D array.
Data Types: double | single
Complex Number Support: Yes

r — Reference signal vector
column vector | matrix | 3-D array

Reference signal array, specified as a column vector, matrix or 3-D array.
Data Types: double | single
Complex Number Support: Yes

ev — Normalized error array
column vector

Normalized error array, specified as a column vector, matrix or 3-D array.
Data Types: double | single
Complex Number Support: Yes

Output Arguments
evm — EVM information
structure

EVM information, returned as structure. evm contains the following fields.

RMS — Root mean square (RMS) EVM
positive numeric scalar

Root mean square (RMS) EVM, specified as a positive numeric scalar. It is the square root of the
mean of the squares of all the values of the EVM.
Data Types: double | single

Peak — Peak EVM
positive numeric scalar

Peak EVM, returned as a positive numeric scalar. It is the largest single EVM value calculated across
all input values.
Data Types: double | single

EV — Normalized error vector
numeric column vector

Normalized error vector, returned as a numeric column vector.

 lteEVM

2-285

Data Types: double | single
Complex Number Support: Yes

Data Types: struct

Version History
Introduced in R2014a

See Also
lteSymbolDemodulate

2 Functions

2-286

lteEqualizeMIMO
MMSE-based joint downlink equalization and combining

Syntax
[out,csi] = lteEqualizeMIMO(enb,chs,in,hest,noiseest)

Description
[out,csi] = lteEqualizeMIMO(enb,chs,in,hest,noiseest) performs joint equalization and
combining of the received PDSCH symbols in in, given cell-wide settings structure, enb, PDSCH
configuration structure, chs, channel estimate, hest, and noise power estimate, noiseest. MMSE
equalization is performed on the product of the channel matrix and precoding matrices. Thus, it
performs MMSE equalization between transmit and receive layers and returns the result, out.

Examples

Equalize and Deprecode PDSCH Symbols

Equalize and deprecode the PDSCH symbols for RMC R.11 in a MIMO configuration. The PDSCH
symbols are extracted from a transmit resource grid. An ideal (identity) channel estimate and ideal
(zero) noise estimate are created. The channel and noise estimates are used to equalize and
deprecode the PDSCH symbols.

Initialize cell-wide configuration structure, enb. Generate and populate transmit resource grid for
RMC R.11.

rmccfg.RC = 'R.11';
ncodewords = 2;
enb = lteRMCDL(rmccfg, ncodewords);
enb.TotSubframes = 1;
[~,txGrid] = lteRMCDLTool(enb, {[1;0] [0;1]});

Extract the PDSCH symbols from this transmit grid.

[ind,indInfo] = ltePDSCHIndices(enb, enb.PDSCH, enb.PDSCH.PRBSet);
pdschSym = txGrid(ind);

Create an ideal, or identity, channel estimate and an ideal, or zero, noise estimate.

hest = permute(repmat(eye(enb.CellRefP), [1 1 indInfo.Gd]), [3 1 2]);
nest = 0.0;

Equalize and deprecode the PDSCH symbols, using the channel and noise estimates.

[out,csi] = lteEqualizeMIMO(enb, enb.PDSCH, pdschSym, hest, nest);
deprecoded = lteDLDeprecode(enb,enb.PDSCH,out);

 lteEqualizeMIMO

2-287

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure with the following fields.

Parameter Field Required
or Optional

Values Description

NDLRB Required Scalar integer from 6 to
110

Number of downlink resource blocks (NRB
DL)

NCellID Required Integer from 0 to 503 Physical layer cell identity
CyclicPrefix Optional 'Normal' (default),

'Extended'
Cyclic prefix length

CellRefP Required 1, 2, 4 Number of cell-specific reference signal
(CRS) antenna ports

NSubframe Required 0 (default), nonnegative
scalar integer

Subframe number

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

The following parameters are dependent upon the condition that enb.DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5,

6
Uplink–downlink configuration

  SSC Optional 0 (default), 1, 2, 3, 4, 5,
6, 7, 8, 9

Special subframe configuration (SSC)

The following parameter fields are dependent upon the condition that chs.TxScheme is set to 'SpatialMux'
or 'MultiUser'.
  CFI Required 1, 2, or 3

Scalar or if the CFI
varies per subframe, a
vector of length 10
(corresponding to a
frame).

Control format indicator (CFI) value. In TDD
mode, CFI varies per subframe for the
RMCs ('R.0', 'R.5', 'R.6',
'R.6-27RB', 'R.12-9RB')

Data Types: struct

chs — PDSCH configuration
structure

PDSCH configuration, specified as a structure with the following fields.

Parameter Field Required
or Optional

Values Description

NLayers Required Integer from 1 to 8 Number of transmission layers (downlink
modulation)

2 Functions

2-288

Parameter Field Required
or Optional

Values Description

RNTI Required 0 (default), scalar
integer

Radio network temporary identifier (RNTI)
value (16 bits)

TxScheme Required 'CDD',
'SpatialMux',
'MultiUser'

Transmission scheme, specified as one of the
following options.

Transmission scheme Description
'CDD' Large delay cyclic delay

diversity
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO

The following parameters are dependent upon the condition that TxScheme is set to 'SpatialMux' or
'MultiUser'.
  PMISet Required Integer vector with

element values from 0
to 15.

Precoder matrix indication (PMI) set. It can
contain either a single value, corresponding
to single PMI mode, or multiple values,
corresponding to multiple or subband PMI
mode. The number of values depends on
CellRefP, transmission layers and TxScheme.
For more information about setting PMI
parameters, see ltePMIInfo.

  PRBSet Required Integer column vector
or two-column matrix

Zero-based physical resource block (PRB)
indices corresponding to the slot wise
resource allocations for this PDSCH. PRBSet
can be assigned as:

• a column vector, the resource allocation
is the same in both slots of the subframe,

• a two-column matrix, this parameter
specifies different PRBs for each slot in a
subframe,

• a cell array of length 10 (corresponding
to a frame, if the allocated physical
resource blocks vary across subframes).

PRBSet varies per subframe for the RMCs
'R.25'(TDD), 'R.26'(TDD), 'R.27'(TDD),
'R.43'(FDD), 'R.44', 'R.45', 'R.48',
'R.50', and 'R.51'.

Data Types: struct

in — Received PDSCH input symbols
numeric matrix

Received PDSCH input symbols, specified as a numeric matrix of size M-by-NRxAnts, where M is the
number of received symbols for each of NRxAnts receive antennas.

 lteEqualizeMIMO

2-289

Data Types: double
Complex Number Support: Yes

hest — Channel estimate
3-D numeric array

Channel estimate, specified as a 3-D numeric array of size M-by-NRxAnts-by-enb.CellRefP, where:

• M is the number of received symbols in in,
• NRxAnts is the number of receive antennas,
• enb.CellRefP is the number of cell-specific reference signal antenna ports.

Data Types: double

noiseest — Noise power estimate
numeric scalar

Noise power estimate, specified as a numeric scalar. This argument is an estimate of the noise power
spectral density per RE on rxgrid. Such an estimate is provided by the lteDLChannelEstimate
function.
Data Types: double

Output Arguments
out — Equalized output symbols
numeric matrix

Equalized output symbols, returned as a numeric matrix of size M-by-NU, where

• M is the number of received symbols for each receive antenna
• NU is the number of transmit layers

Data Types: double
Complex Number Support: Yes

csi — Soft channel state information
numeric matrix

Soft channel state information, returned as a numeric matrix of size M-by-NU, the same size as out.
This argument contains soft channel state information and provides an estimate, via MMSE, of the
received gain for each received layer.
Data Types: double

Version History
Introduced in R2014a

See Also
lteDLChannelEstimate | ltePDSCHDecode | lteDLPrecode | lteEqualizeMMSE |
lteEqualizeZF | lteEqualizeULMIMO

2 Functions

2-290

lteEqualizeMMSE
MMSE equalization

Syntax
[out,csi] = lteEqualizeMMSE(rxgrid,channelest,noiseest)

Description
[out,csi] = lteEqualizeMMSE(rxgrid,channelest,noiseest) returns equalized data in
multidimensional array, out. MMSE equalization is applied to the received data resource grid in the
matrix, rxgrid, using the channel information in the channelest matrix. noiseest is an estimate
of the received noise power spectral density.

Alternatively, the input channelest can be provided as a 3-D array of size NRE-by-NRxAnts-by-P,
and the input rxgrid can be provided as a matrix of size NRE-by-NRxAnts. In this case, the first two
dimensions have been reduced to one dimension by appropriate indexing through the frequency and
time locations of the resource elements of interest, typically for a single physical channel. The
outputs, out and csi, are of size (N×M)-by-P.

Examples

Equalize MMSE for RMC R.4

Equalize the received signal for RMC R.4 after channel estimation. Use the MMSE equalizer.

Create cell-wide configuration structure and generate transmit signal. Configure propagation
channel.

enb = lteRMCDL('R.4');
[txSignal,~,info] = lteRMCDLTool(enb,[1;0;0;1]);

chcfg.DelayProfile = 'EPA';
chcfg.NRxAnts = 1;
chcfg.DopplerFreq = 70;
chcfg.MIMOCorrelation = 'Low';
chcfg.SamplingRate = info.SamplingRate;
chcfg.Seed = 1;
chcfg.InitPhase = 'Random';
chcfg.InitTime = 0;

txSignal = [txSignal; zeros(15,1)];
N = length(txSignal);
noise = 1e-3*complex(randn(N,chcfg.NRxAnts),randn(N,chcfg.NRxAnts));
rxSignal = lteFadingChannel(chcfg,txSignal)+noise;

Perform synchronization and OFDM demodulation.

offset = lteDLFrameOffset(enb,rxSignal);
rxGrid = lteOFDMDemodulate(enb,rxSignal(1+offset:end,:));

 lteEqualizeMMSE

2-291

Create channel estimation configuration structure and perform channel estimation.

cec.FreqWindow = 9;
cec.TimeWindow = 9;
cec.InterpType = 'Cubic';
cec.PilotAverage = 'UserDefined';
cec.InterpWinSize = 3;
cec.InterpWindow = 'Causal';
[hest,noiseEst] = lteDLChannelEstimate(enb, cec, rxGrid);

Equalize and plot received and equalized grids.

eqGrid = lteEqualizeMMSE(rxGrid, hest, noiseEst);
subplot(2,1,1)
surf(abs(rxGrid))
title('Received grid')
xlabel('OFDM symbol')
ylabel('Subcarrier')

subplot(2,1,2)
surf(abs(eqGrid))
title('Equalized grid')
xlabel('OFDM symbol')
ylabel('Subcarrier')

2 Functions

2-292

Equalize MMSE for RMC R.5

This example applies MMSE equalization on the received signal for reference measurement channel
(RMC) R.5, after channel estimation.

Set the DL reference measurement channel to R.5

enb = lteRMCDL('R.5');

Set channel estimator configuration PilotAverage field to UserDefined. as follows: averaging
window of 9 resource elements in both frequency and time domain, cubic interpolation with a casual
window.

cec = struct('FreqWindow',9,'TimeWindow',9,'InterpType','cubic');
cec.PilotAverage = 'UserDefined';
cec.InterpWinSize = 1;
cec.InterpWindow = 'Causal';

Generate the txWaveform.

txWaveform = lteRMCDLTool(enb,[1;0;0;1]);
n = length(txWaveform);

Apply some random noise to the transmitted signal and save as the rxWaveform.

rxWaveform = repmat(txWaveform,1,2)+complex(randn(n,2),randn(n,2))*1e-3;

Next, demodulate the received data.

rxGrid = lteOFDMDemodulate(enb,rxWaveform);

Then, perform channel estimation.

[hest,n0] = lteDLChannelEstimate(enb,cec,rxGrid);

Finally, apply the MMSE equalization.

out = lteEqualizeMMSE(rxGrid,hest,n0);

Show scatter plot of one component carrier.

scatterplot(out(:,1))

 lteEqualizeMMSE

2-293

Input Arguments
rxgrid — Received data resource grid
3-D numeric array | 2-D numeric matrix

Received data resource grid, specified as a 3-D numeric array or a 2-D numeric matrix. As a 3-D
numeric array, it has size N-by-M-by-NRxAnts, where N is the number of subcarriers, M is the
number of OFDM symbols, and NRxAnts is the number of receive antennas.

Alternatively, as a 2-D numeric matrix, it has size NRE-by-NRxAnts. In this case, the first two
dimensions have been reduced to one dimension by appropriate indexing through the frequency and
time locations of the resource elements of interest, typically for a single physical channel.
Data Types: double
Complex Number Support: Yes

channelest — Channel information
4-D numeric array | 3-D numeric array

Channel information, specified as a 4-D numeric array or a 3-D numeric array. As a 4-D numeric array,
it has size N-by-M-by-NRxAnts-by-P. N is the number of subcarriers, M is the number of OFDM
symbols, NRxAnts is the number of receive antennas, and P is the number of transmit antennas. Each
element is a complex number representing the narrowband channel for each resource element and
for each link between transmit and receive antennas. This matrix can be obtained using the channel
estimation command lteDLChannelEstimate.

2 Functions

2-294

Alternatively, as a 3-D numeric array, it has size NRE-by-NRxAnts-by-P. In this case, the first two
dimensions have been reduced to one dimension by appropriate indexing through the frequency and
time locations of the resource elements of interest, typically for a single physical channel.
Data Types: double
Complex Number Support: Yes

noiseest — Noise power estimate
numeric scalar

Noise power estimate, specified as a numeric scalar. It is an estimate of the received noise power
spectral density per RE on rxgrid.
Data Types: double

Output Arguments
out — Equalized output data
3-D numeric array | 2-D numeric matrix

Equalized output data, returned as a 3-D numeric array or a 2-D numeric matrix. As a 3-D numeric
array, it has size N-by-M-by-P, where N is the number of subcarriers, M is the number of OFDM
symbols, and P is the number of transmit antennas.

Alternatively, if channelest is provided as a 3-D array, out is a 2-D numeric matrix of size (N×M)-
by-P. In this case, the first two dimensions have been reduced to one dimension by appropriate
indexing through the frequency and time locations of the resource elements of interest, typically for a
single physical channel.
Data Types: double
Complex Number Support: Yes

csi — Soft channel state information
3-D numeric array | 2-D numeric matrix

Soft channel state information, returned as a 3-D numeric array of the same size as out. As a 3-D
numeric array, it has size N-by-M-by-P, where N is the number of subcarriers, M is the number of
OFDM symbols, and P is the number of transmit antennas. csi provides an estimate (via MMSE) of
the received RE gain for each received RE.

Alternatively, if channelest is provided as a 3-D array, csi is a 2-D numeric matrix of size (N×M)-
by-P. In this case, the first two dimensions have been reduced to one dimension by appropriate
indexing through the frequency and time locations of the resource elements of interest, typically for a
single physical channel.
Data Types: double

Version History
Introduced in R2014a

 lteEqualizeMMSE

2-295

See Also
lteDLChannelEstimate | lteEqualizeZF | lteEqualizeMIMO | lteEqualizeULMIMO |
lteOFDMDemodulate | lteSCFDMADemodulate | lteULChannelEstimate

2 Functions

2-296

lteEqualizeULMIMO
MMSE-based joint uplink equalization and combining

Syntax
[out,csi] = lteEqualizeULMIMO(ue,chs,in,hest,noiseest)

Description
[out,csi] = lteEqualizeULMIMO(ue,chs,in,hest,noiseest) performs joint equalization
and combining of the received PUSCH symbols in in, given UE-specific settings structure, ue,
PUSCH configuration structure, chs, channel estimate, hest and noise power estimate, noiseest.
MMSE equalization is performed on the product of the channel matrix and precoding matrices, thus
performing MMSE equalization between transmit and receive layers and returning the result in out.

Examples

Equalize and Deprecode PUSCH Symbols

Extract, equalize, and deprecode PUSCH symbols from an RMC A3-2 grid.

Generate a resource grid using multiple antennas to transmit a single PUSCH codeword.

ue = lteRMCUL('A3-2');
ue.TotSubframes = 1;
ue.NTxAnts = 2;
ue.PUSCH.NLayers = 2;
[~,txGrid] = lteRMCULTool(ue,[1;0;0;1]);

Extract the PUSCH symbols from this transmit grid.

[ind,indInfo] = ltePUSCHIndices(ue,ue.PUSCH);
puschSym = txGrid(ind);

Create an ideal, or identity, channel estimate and an ideal, or zero, noise estimate.

hest = permute(repmat(eye(ue.NTxAnts),[1,1,indInfo.Gd]),[3,1,2]);
nest = 0.0;

Equalize and deprecode the PUSCH symbols, using the channel and noise estimates.

[out,csi] = lteEqualizeULMIMO(ue,ue.PUSCH,puschSym,hest,nest);
NPRB = size(ue.PUSCH.PRBSet,1);
deprecoded = lteULDeprecode(out,NPRB);

Input Arguments
ue — UE-specific settings
structure

 lteEqualizeULMIMO

2-297

UE-specific settings, specified as a structure that can contain the following fields.

Parameter
Field

Required or
Optional

Values Description

NTxAnts Optional 1 (default), 2, 4 Number of transmission antennas.

Data Types: struct

chs — PUSCH configuration structure
structure

PUSCH configuration structure, specified as a structure that can contain the following fields. The PMI
parameter field is only required if ue.NTxAnts is set to 2 or 4.

Parameter
Field

Required or
Optional

Values Description

NLayers Optional 1 (default), 2, 3, 4 Number of transmission layers.
The following parameter is required only when ue.NTxAnts is set to 2 or 4.
 PMI Required Nonnegative scalar

integer from 0
(default) to 23

Precoder matrix indication. This PMI is
to be used during precoding of the DRS
reference symbols. For more
information, see lteULPMIInfo.

Data Types: struct

in — Received PUSCH input symbols
numeric matrix

Received PUSCH input symbols, specified as a numeric matrix of size M-by-NRxAnts, where M is the
number of received symbols for each of the NRxAnts receive antennas.
Data Types: double
Complex Number Support: Yes

hest — Channel estimate
3-D numeric array

Channel estimate, specified as a 3-D numeric array of size M-by-NRxAnts-by-NTxAnts, where M is
the number of received symbols in in, NRxAnts is the number of receive antennas, and NTxAnts is
the number of transmit antenna ports, given by ue.NTxAnts.
Data Types: double

noiseest — Noise power estimate
numeric scalar

Noise power estimate as power spectral density per RE on rxgrid, specified as a numeric scalar.
Such an estimate is provided by the lteULChannelEstimate function.
Data Types: double

2 Functions

2-298

Output Arguments
out — Equalized output symbols
complex-valued numeric matrix

Equalized output symbols, returned as a complex-valued numeric matrix of size M-by-NU, where M is
the number of received symbols for each receive antenna and NU is the number of transmit layers.
Data Types: double
Complex Number Support: Yes

csi — Soft channel state information
numeric matrix

Soft channel state information, returned as a numeric matrix of the same size as out, M-by-NU. This
output provides an estimate, via MMSE, of the received gain for each received layer.
Data Types: double

Version History
Introduced in R2013b

See Also
lteEqualizeZF | lteEqualizeMMSE | lteEqualizeMIMO | ltePUSCHDecode |
ltePUSCHPrecode | lteULChannelEstimate

 lteEqualizeULMIMO

2-299

lteEqualizeZF
Zero-forcing equalization

Syntax
[out,csi] = lteEqualizeZF(rxgrid,channelest)

Description
[out,csi] = lteEqualizeZF(rxgrid,channelest) returns equalized data in multidimensional
array, out, by applying MIMO zero-forcing equalization to the received data resource grid in matrix
rxgrid, using the channel information in the channelest input matrix.

For each resource element, the function calculates the pseudoinverse of the channel and equalizes
the corresponding received signal.

Alternatively, the channelest input can be provided as a 3-D array of size NRE-by-NRxAnts-by-P and
the rxgrid input can be provided as a matrix of size NRE-by-NRxAnts. In this case, the first two
dimensions have been reduced to one dimension by appropriate indexing through the frequency and
time locations of the resource elements of interest, typically for a single physical channel. The
outputs, out and csi, are of size (N × M)-by-P.

Examples

Perform Zero-Forcing Equalization for RMC R.4

Equalize the received signal for RMC R.4 after channel estimation. Use the zero forcing equalizer.

Create cell-wide configuration structure and generate transmit signal. Configure propagation
channel.

enb = lteRMCDL('R.4');
[txSignal,~,info] = lteRMCDLTool(enb,[1;0;0;1]);

chcfg.DelayProfile = 'EPA';
chcfg.NRxAnts = 1;
chcfg.DopplerFreq = 70;
chcfg.MIMOCorrelation = 'Low';
chcfg.SamplingRate = info.SamplingRate;
chcfg.Seed = 1;
chcfg.InitPhase = 'Random';
chcfg.InitTime = 0;

txSignal = [txSignal; zeros(15,1)];
N = length(txSignal);
noise = 1e-3*complex(randn(N,chcfg.NRxAnts),randn(N,chcfg.NRxAnts));
rxSignal = lteFadingChannel(chcfg,txSignal)+noise;

Perform synchronization and OFDM demodulation.

2 Functions

2-300

offset = lteDLFrameOffset(enb,rxSignal);
rxGrid = lteOFDMDemodulate(enb,rxSignal(1+offset:end,:));

Create channel estimation configuration structure and perform channel estimation.

cec.FreqWindow = 9;
cec.TimeWindow = 9;
cec.InterpType = 'Cubic';
cec.PilotAverage = 'UserDefined';
cec.InterpWinSize = 3;
cec.InterpWindow = 'Causal';
hest = lteDLChannelEstimate(enb,cec,rxGrid);

Equalize and plot received and equalized grids.

eqGrid = lteEqualizeZF(rxGrid,hest);

subplot(2,1,1);
surf(abs(rxGrid));
title('Received grid');
xlabel('OFDM symbol');
ylabel('Subcarrier');

subplot(2,1,2);
surf(abs(eqGrid));
title('Equalized grid');
xlabel('OFDM symbol');
ylabel('Subcarrier');

 lteEqualizeZF

2-301

Input Arguments
rxgrid — Received data resource grid
3-D numeric array | 2-D numeric matrix

Received data resource grid, specified as a 3-D numeric array or a 2-D numeric matrix. As a 3-D
numeric array, it has size N-by-M-by-NRxAnts, where N is the number of subcarriers, M is the
number of OFDM symbols, and NRxAnts is the number of receive antennas.

Alternatively, as a 2-D numeric matrix, it has size NRE-by-NRxAnts. In this case, the first two
dimensions have been reduced to one dimension by appropriate indexing through the frequency and
time locations of the resource elements of interest, typically for a single physical channel.
Data Types: double
Complex Number Support: Yes

channelest — Channel information
4-D numeric array | 3-D numeric array

Channel information, specified as a 4-D numeric array or a 3-D numeric array. As a 4-D numeric array,
it has size N-by-M-by-NRxAnts-by-P. N is the number of subcarriers, M is the number of OFDM
symbols, NRxAnts is the number of receive antennas, and P is the number of transmit antennas. Each
element is a complex number representing the narrowband channel for each resource element and
for each link between transmit and receive antennas. This matrix can be obtained using a channel
estimation function, such as lteDLChannelEstimate.

Alternatively, as a 3-D numeric array, it has size NRE-by-NRxAnts-by-P. In this case, the first two
dimensions have been reduced to one dimension by appropriate indexing through the frequency and
time locations of the resource elements of interest, typically for a single physical channel.
Data Types: double
Complex Number Support: Yes

Output Arguments
out — Equalized output data
3-D numeric array | 2-D numeric matrix

Equalized output data, returned as a 3-D numeric array or a 2-D numeric matrix. As a 3-D numeric
array, it has size N-by-M-by-P. N is the number of subcarriers, M is the number of OFDM symbols,
and P is the number of transmit antennas.

Alternatively, if channelest is provided as a 3-D array, out is a 2-D numeric matrix of size (N × M)-
by-P. In this case, the first two dimensions have been reduced to one dimension by appropriate
indexing through the frequency and time locations of the resource elements of interest, typically for a
single physical channel.
Data Types: double
Complex Number Support: Yes

csi — Soft channel state information
3-D numeric array | 2-D numeric matrix

2 Functions

2-302

Soft channel state information, returned as a 3-D numeric array or a 2-D numeric matrix of the same
size as out. As a 3-D numeric array, it has size N-by-M-by-P. N is the number of subcarriers, M is the
number of OFDM symbols, and P is the number of transmit antennas. csi provides an estimate of the
received RE gain for each received RE.

Alternatively, if channelest is provided as a 3-D array, csi is a 2-D numeric matrix of size (N×M)-
by-P. In this case, the first two dimensions have been reduced to one dimension by appropriate
indexing through the frequency and time locations of the resource elements of interest, typically for a
single physical channel.
Data Types: double

Version History
Introduced in R2014a

See Also
lteEqualizeMMSE | lteEqualizeMIMO | lteEqualizeULMIMO | lteOFDMDemodulate |
lteSCFDMADemodulate | lteDLChannelEstimate | lteULChannelEstimate

 lteEqualizeZF

2-303

lteExtractResources
Extract resource elements

Syntax
[re,reind] = lteExtractResources(ind,grid)
[re1,...,reK,reind1,...,reindK] = lteExtractResources(ind,grid1,...,gridK)
re = lteExtractResources(___ ,opts)

Description
[re,reind] = lteExtractResources(ind,grid) extracts resource elements re their indices
reind from resource array grid using resource elements indices ind. You can extract resource
elements from a resource grid with different dimensionality than the resource grid addressed by the
indices. The indices specified and returned are in 1–based linear indexing form. Other indexing
options are available. The resource extraction process is further explained in “Algorithms” on page 2-
315.

In LTE Toolbox, indices are generated for mapping sequences of physical channel and signal symbols
to a resource grid. These indices are generated using channel-or signal-specific functions and address
resource elements in an array sized, M-by-N-by-P. M is the number of subcarriers, N is the number of
OFDM or SC-FDMA symbols and P is the number of planes. The diagram highlights the resource
elements of a resource grid addressed by indices, ind. The indices are in a 1–based linear indexing
form. P = 2 is the number of antenna ports.

Typically the resource array extracts resource elements from one of the following:

• A 3-D received grid, sized M-by-N-by-NRxAnts. NRxAnts is the number of receive antennas. This
grid is created after OFDM or SC-FDMA demodulation.

• A 4-D channel estimation grid, sized M-by-N-by-NRxAnts-by-P. This grid is created by channel
estimation functions (refer “Channel Estimation”).

2 Functions

2-304

You can describe the size of the 3- D received grid as a 4-D grid that has a trailing singleton
dimension.

[re1,...,reK,reind1,...,reindK] = lteExtractResources(ind,grid1,...,gridK)
extracts resource elements from K resource arrays by using the specified resource element indices.

re = lteExtractResources(___ ,opts) specifies the format of the indices and the extraction
method used with a cell array of options, opts.

Examples

Extract PDCCH Symbols and Channel Estimates for Decoding

Extract PDCCH symbols from a received grid and associated channel estimates in preparation for
decoding.

Create a transmit waveform for one subframe.

enb = lteRMCDL('R.12');
enb.TotSubframes = 1;
txWaveform = lteRMCDLTool(enb,[1;0;0;1]);

Receive sum of transmit antenna waveforms on three receive antennas.

NRxAnts = 3;
rxWaveform = repmat(sum(txWaveform,2),1,NRxAnts);
rxGrid = lteOFDMDemodulate(enb,rxWaveform);

Compute the channel estimation.

cec.FreqWindow = 1;
cec.TimeWindow = 1;
cec.InterpType = 'cubic';
cec.PilotAverage = 'UserDefined';
cec.InterpWinSize = 3;
cec.InterpWindow = 'Causal';
[hEstGrid,nEst] = lteDLChannelEstimate(enb,cec,rxGrid);

Generate PDCCH indices and extract symbols from received and channel estimate grids in
preparation for PDCCH decoding.

ind = ltePDCCHIndices(enb);
[pdcchRxSym,pdcchHestSym] = lteExtractResources(ind,rxGrid,hEstGrid);

pdcchRxSym is sized NRE-by-NRxAnts and pdcchHestSym is sized NRE-by-NRxAnts-by-
CellRefP.

rxSymSize = size(pdcchRxSym)

rxSymSize = 1×2

 212 3

hestSymSize = size(pdcchHestSym)

 lteExtractResources

2-305

hestSymSize = 1×3

 212 3 4

Decode PDCCH with extracted resource elements.

pdcchBits = ltePDCCHDecode(enb,pdcchRxSym,pdcchHestSym,nEst);

Extract Resources From 3D Receive Grid and 4D Channel Estimate Grid

Extract resources from a 3D receive grid and 4D channel estimate grid. Show the location of the
indices within the grid.

Setup sizes of the grids: [M N P] and [M N NRxAnts P], where M is the number of subcarriers, N is
the number of OFDM symbols, NRxAnts is the number of rx antennas, and P is the number of tx
antennas.

M = 4;
N = 4;
P = 2;
NRxAnts = 3;

Create indices and show the locations within the transmit grid addressed by these indices. As you will
notice, different resource elements are addressed on each antenna port. Addressed resource element
locations contain 1.

ind = [6 22; 16 29];
txGrid = zeros(M,N,P);
txGrid(ind) = 1;

Visualize locations of indexed resource elements in the transmit grid.

visualizeGrid = zeros(M+1,N+1,P);
visualizeGrid(1:M,1:N,:) = txGrid;

figure

subplot(321)
pcolor(visualizeGrid(:,:,1))
title('Port: 1')
xlabel('N')
ylabel('M')

subplot(323)
pcolor(visualizeGrid(:,:,2))
title('Port: 2')
xlabel('N')
ylabel('M')

2 Functions

2-306

Create a 3D received grid to extract resource elements. Extract resource elements from the received
grid. Show the locations of these extracted resource elements. Addressed resource element locations
contain 1.

rxGrid = zeros(M,N,NRxAnts);

[re, indOut] = lteExtractResources(ind,rxGrid);
rxGrid(indOut) = 1;

Visualize locations of indexed resource elements in the receive grid.

figure
visualizeGrid = zeros(M+1,N+1,NRxAnts);
visualizeGrid(1:M,1:N,:) = rxGrid;

subplot(321)
pcolor(visualizeGrid(:,:,1))
title('Allplanes, RxAnt: 1');
xlabel('N')
ylabel('M')

subplot(323)
pcolor(visualizeGrid(:,:,2))
title('Allplanes, RxAnt: 2')
xlabel('N')
ylabel('M')

 lteExtractResources

2-307

subplot(325)
pcolor(visualizeGrid(:,:,3))
title('Allplanes, RxAnt: 3')
xlabel('N')
ylabel('M')

Create a 4D channel estimate grid to extract resource elements. Extract resource elements from the
channel estimate grid. Show the locations of these extracted resource elements. Addressed resource
element locations contain 1.

hEstGrid = zeros(M,N,NRxAnts,P);

[re, indOut] = lteExtractResources(ind,hEstGrid);
hEstGrid(indOut) = 1;

Visualize locations of the resource elements extracted using 'allplanes' mode from 3D receive
grid.

figure;
visualizeGrid = zeros(M+1,N+1,NRxAnts,P);
visualizeGrid(1:M,1:N,:,:) = hEstGrid;

subplot(321)
pcolor(visualizeGrid(:,:,1,1))
title('Allplanes, RxAnt: 1, Port: 1')
xlabel('N')
ylabel('M')

2 Functions

2-308

subplot(323)
pcolor(visualizeGrid(:,:,2,1))
title('Allplanes, RxAnt: 2, Port: 1')
xlabel('N')
ylabel('M')

subplot(325)
pcolor(visualizeGrid(:,:,3,1))
title('Allplanes, RxAnt: 3, Port: 1')
xlabel('N')
ylabel('M')

subplot(322)
pcolor(visualizeGrid(:,:,1,2))
title('Allplanes, RxAnt: 1, Port: 2')
xlabel('N')
ylabel('M')

subplot(324)
pcolor(visualizeGrid(:,:,2,2))
title('Allplanes, RxAnt: 2, Port: 2')
xlabel('N')
ylabel('M')

subplot(326)
pcolor(visualizeGrid(:,:,3,2))
title('Allplanes, RxAnt: 3, Port: 2')
xlabel('N')
ylabel('M')

 lteExtractResources

2-309

Create a 4D channel estimate grid to extract resource elements. Extract resource elements from the
channel estimate grid using 'direct' extraction mode. Show the locations of these extracted
resource elements. Addressed resource element locations contain 1.

hEstGridDirect = zeros(M,N,NRxAnts,P);

[re, indOut] = lteExtractResources(ind,hEstGridDirect,'direct');
hEstGridDirect(indOut) = 1;

Visualize locations of the resource elements extracted using 'direct' mode from 4D channel
estimate grid.

figure
visualizeGrid = zeros(M+1,N+1,NRxAnts,P);
visualizeGrid(1:M,1:N,:,:) = hEstGridDirect;

subplot(321)
pcolor(visualizeGrid(:,:,1,1))
title('Direct, RxAnt: 1, Port: 1')
xlabel('N')
ylabel('M')

subplot(323)
pcolor(visualizeGrid(:,:,2,1))
title('Direct, RxAnt: 1, Port: 1')
xlabel('N')
ylabel('M')

2 Functions

2-310

subplot(325)
pcolor(visualizeGrid(:,:,3,1))
title('Direct, RxAnt: 1, Port: 1')
xlabel('N')
ylabel('M')

subplot(322)
pcolor(visualizeGrid(:,:,1,2))
title('Direct, RxAnt: 1, Port: 1')
xlabel('N')
ylabel('M')

subplot(324)
pcolor(visualizeGrid(:,:,2,2))
title('Direct, RxAnt: 1, Port: 1')
xlabel('N')
ylabel('M')

subplot(326)
pcolor(visualizeGrid(:,:,3,2))
title('Direct, RxAnt: 1, Port: 1')
xlabel('N')
ylabel('M')

 lteExtractResources

2-311

Extract Cell-Specific Reference Signal (CRS) Symbols

Use 'direct' and 'allplanes' extraction methods and subscript indices to extract cell-specific
reference signal (CRS) symbols in subcarrier 7 from grid.

Generate a resource grid and CRS indices in the subscript form: [subcarrier, OFDM symbol, CRS
port].

enb = lteRMCDL('R.12');
enb.TotSubframes = 1;
enb.CellRefP = 2;
enb.PDSCH.NLayers = 2;
[waveform,grid] = lteRMCDLTool(enb,[1;0;0;1]);
crsInd = lteCellRSIndices(enb,'sub');

There are 2 resource elements used on CRS ports 1 & 2; all are on different OFDM symbols (1, 5, 8,
12).

crsIndSC7 = crsInd(crsInd(:,1)==7,:)

crsIndSC7 = 4x3 uint32 matrix

 7 1 1
 7 8 1
 7 5 2
 7 12 2

Use 'direct' method to extract resource elements. The extracted resource element indices are
same as the generated CRS indices as the resource array indexed by crsInd in grid.

[dirREs,dirInd] = lteExtractResources(crsInd,grid,{'direct','sub'});
directIndSC7 = dirInd(dirInd(:,1)==7,:)

directIndSC7 = 4x3 uint32 matrix

 7 1 1
 7 8 1
 7 5 2
 7 12 2

Use 'allplanes' method to extract resource elements. There are 4 extracted CRS indices as per
the CRS port on subcarrier 7. Indices addressing unique OFDM symbols in the indexed resource grid
are used to extract resource elements from all the CRS ports in 'grid. Therefore indices are
extracted at OFDM symbols (1, 5, 8,12) on both CRS ports.

[apREs,apInd] = lteExtractResources(crsInd,grid,{'allplanes','sub'});
allPlanesIndSC7 = apInd(apInd(:,1)==7,:)

allPlanesIndSC7 = 8x3 uint32 matrix

 7 1 1
 7 8 1
 7 5 1
 7 12 1
 7 1 2
 7 8 2

2 Functions

2-312

 7 5 2
 7 12 2

Input Arguments
ind — Resource elements indices
numeric array

Resource elements indices, specified as a numeric array. The indices address elements of a N-by-M-
by-P resource array. M is the number of subcarriers, N is the number of OFDM or SC-FDMA symbols,
and P is the number of planes.

If you specify an element of this array as a value greater than the number of elements in the grid
input, the function uses the value of mod(ind,numel(grid)).

grid — Resource array
3–D numeric array (default) | 4–D numeric array

Resource array, specified as a 3-D or 4-D numeric array. Typically the resource array to extract
resource elements from in one of the following:

• A 3–D received grid, sized M-by-N-by-NRxAnts. NRxAnts is the number of receive antennas. This
grid is created after OFDM or SC-FDMA demodulation.

• A 4–D channel estimation grid, sized M-by-N-by-NRxAnts-by-P. This grid is created by channel
estimation functions (refer “Channel Estimation”).

You can describe the size of the 3D received grid as a 4D grid that has a trailing singleton dimension.
Data Types: double

opts — Resource elements extraction options
character vector | cell array of character vectors | string array

Resource elements extraction options, specified as a character vector, cell array of character vectors,
or string array. Values for opts when specified as a character vector include (use double quotes for
string):

Parameter
Field

Require
d or
Optiona
l

Values Description

Indexing
Style

Required 'ind' (default) or
'sub'

Indexing style of the specified or returned
indices, ind and reind, specified as one of the
following options:

• 'ind' — linear index form
• 'sub' — subscript form

 lteExtractResources

2-313

Parameter
Field

Require
d or
Optiona
l

Values Description

Index Base Required '1based' (default) or
'0based'

Base value of the specified or returned indices,
ind and reind, specified as one of the
following options:

• '1based' — the first value of index
sequence is one

• '0based' — the first value of the index
sequence is zero

Extraction
Method

Required 'allplanes' (default)
or 'direct'

Resource element extraction methods. The
methods are described in “Algorithms” on page
2-315.

• 'allplanes' — uses indices addressing
unique subcarrier and symbol location over
all planes of the indexed resource array for
extraction.

• 'direct' — only resource elements
relevant to each plane of the indexed
resource grid are extracted.

Output Arguments
re — Extracted resource elements
column vector | numeric array

Extracted resource elements, returned as a column vector or numeric array.

When 'allplanes' extraction method is used, the extracted resource elements array is of size NRE-
by-NRxAnts-by-P where:

• NRE is the number of resource elements per M-by-N plane of grid.
• M is the number of subcarriers.
• N is the number of OFDM or SC-FDMA symbols.
• P is the number of planes.

When using 'direct' extraction method, the size of the extracted resource elements array, re,
depends on the number of indices addressing each plane of the indexed source grid:

• If the same number of indices address each plane then re is of size NRE-by-NRxAnts-by-P.
• If a different number of indices address each plane then re is a column vector containing all

extracted resource elements.

reind — Indices of extracted resource elements
numeric array

Indices of extracted resource elements within grid, returned as numeric array. reind is the same
size as extracted resource elements array re.

2 Functions

2-314

Algorithms
lteExtractResources can extract resource elements using one of two methods. The 'allplanes'
method is used by default. You can optionally specify 'direct' extraction method.

All Planes Extraction Method

The 'allplanes' method extracts resource elements from each M-by-N plane within grid using
indices that address unique subcarrier and symbol locations over all the planes of the indexed
resource array.

The following diagrams illustrate the resource extraction process for a 3D received grid and a 4D
channel estimation grid. The example, “Extract Resources From 3D Receive Grid and 4D Channel
Estimate Grid” on page 2-306 recreates these diagrams.

Indices addressed by unique subcarrier and symbol locations across all planes of the indexed
resource gird are used for the extraction. The diagram highlights the indices used to extract resource
elements address the resource grid with P = 2. In this case, P is the number of antenna ports.

Resource elements are extracted from grid at the symbol and subcarrier locations. The following
diagrams illustrate the resource element extraction from a 3D received grid, grid, with NRxAnts =
3.

The following diagram shows the extraction process for a 4D channel estimate grid, grid, with
NRxAnts = 3 and P= 2. In this case, P is the number for antenna ports. The 4D resource grid consists

 lteExtractResources

2-315

of P M-by-N-by-NRxAnts arrays, each associated with an antenna port. Resource elements are
extracted from all planes within these arrays.

Direct Extraction Method

The 'direct' method extracts resource elements from grid with the assumption that third and
fourth dimension of the grid represents the same property as the planes of the indexed resource
array such as antenna ports, layers, transmit antennas. Therefore the only resource elements
relevant to each plane of the indexed resource grid are extracted:

• For a 3D grid, the 'direct' method extracts elements from each M-by-N plane of grid using
indices addressing the same plane of the indexed resource array. This is the same as the standard
MATLAB operation re = grid(ind). Therefore reind = ind.

• For a 4D grid, the 'direct' method extracts elements from each M-by-N-by-NRxAnts array of
grid using indices addressing the same plane of the indexed resource array. Therefore it is
assumed the property represented by the planes of the indexed resource array is the same as the
fourth dimension of grid.

The extraction of a 4D estimation grid, grid, using the 'direct' method is illustrated in the
following diagram with NRxAnts = 3 and P= 2, which is the number of antenna ports. The 4D
resource grid consists of P M-by-N-by-NRxAnts arrays, each associated with an antenna port.
Therefore the indices corresponding to each individual antenna port in the indexed resource array
are used to extract resource elements from each of these arrays. The example, “Extract Resources
From 3D Receive Grid and 4D Channel Estimate Grid” on page 2-306 creates a version of this
diagram.

2 Functions

2-316

Version History
Introduced in R2014b

See Also
ltePUSCHDecode | ltePUSCHIndices | ltePDCCHDecode | ltePDCCHIndices | ltePBCHDecode
| ltePBCHIndices | ltePDSCHDecode | ltePDSCHIndices | ltePDCCHDecode |
ltePDCCHIndices | ltePCFICHDecode | ltePCFICHIndices | ltePHICHDecode |
ltePHICHIndices | lteCellRSIndices | lteSCFDMADemodulate | lteOFDMDemodulate |
lteDLChannelEstimate | lteULChannelEstimate | ltePUCCH1Decode | ltePUCCH1Indices |
lteULChannelEstimatePUCCH1 | ltePUCCH2Decode | ltePUCCH2Indices |
lteULChannelEstimatePUCCH2 | ltePUCCH3Decode | ltePUCCH3Indices |
lteULChannelEstimatePUCCH3 | lteDLResourceGrid | lteULResourceGrid

 lteExtractResources

2-317

lteFadingChannel
Multipath fading MIMO channel propagation conditions

Syntax
[rx,info] = lteFadingChannel(model,tx)

Description
[rx,info] = lteFadingChannel(model,tx) filters waveform tx through the Rayleigh fading
channel parameterized by model. The function returns channel output waveform rx and channel
model information info. For information about the multiple-input multiple-output (MIMO) multipath
fading channel that this function implements, see “Fading Channel Model Delay” on page 2-326.

Examples

Transmit Multiple Subframes over Fading Channel

Define the channel configuration structure.

model = struct(DelayProfile="EPA",NRxAnts=1, ...
 DopplerFreq = 5,MIMOCorrelation="Low", ...
 Seed=1,InitPhase="Random",ModelType="GMEDS", ...
 NTerms=16,NormalizeTxAnts="On", ...
 NormalizePathGains="On");

Define the transmission waveform configuration structure, initialized to reference measurement
channel (RMC) R.10 and one subframe.

rmc = lteRMCDL("R.10");
rmc.TotSubframes = 1;

Generate ten subframes, one subframe at a time, by following these steps.

1 Define delay, which accounts for a combination of implementation delay and channel delay
spread.

2 Set the subframe number and initialize the subframe start time, allocating 1 ms per subframe.
3 Generate a transmit waveform.
4 Initialize the number of transmit antennas and the waveform sampling rate.
5 Send the waveform through the channel. Append delay zeros to the generated waveform prior

to channel filtering.

delay = 25;
for subframeNumber = 0:9

 rmc.NSubframe = mod(subframeNumber,10);
 model.InitTime = subframeNumber/1000;

 [waveform,txGrid,info] = lteRMCDLTool(rmc,[1; 0; 1; 1]);

2 Functions

2-318

 numTxAnt = size(waveform,2);
 model.SamplingRate = info.SamplingRate;
 tx = [waveform; zeros(delay,numTxAnt)];

 [rx,info] = lteFadingChannel(model,tx);
end

Transmit Two Consecutive Frames over Fading Channel

Transmit two consecutive frames over a fading channel while maintaining continuity in the fading
process between the end of the first frame and the beginning of the second frame.

Initialize a resource grid to RMC R.10 and generate a transmit waveform for the first frame.

rmc = lteRMCDL("R.10");
[waveform,~,info] = lteRMCDLTool(rmc,[1; 0; 1]);

Initialize a propagation channel configuration structure and set the start time for the first frame.

model = struct(DelayProfile="EPA",NRxAnts=1, ...
 DopplerFreq=5,MIMOCorrelation="Low", ...
 SamplingRate=info.SamplingRate,Seed=1, ...
 InitPhase="Random",ModelType="GMEDS", ...
 NTerms=16,NormalizeTxAnts="On", ...
 NormalizePathGains="On",InitTime=0);
nTxAnts = size(waveform,2);

Define delay and append zeros to the generated waveform prior to channel filtering.

delay = 25;
tx = [waveform; zeros(delay,nTxAnts)];

Filter the first frame through the channel.

[rx1,info1] = lteFadingChannel(model,tx);

Update the frame number, and then generate a transmit waveform for the second frame with the
start time set to 10 ms.

model.NFrame = 1;
[waveform,txGrid] = lteRMCDLTool(rmc,[1; 0; 1]);
tx = [waveform; zeros(delay,nTxAnts)];
model.InitTime = 10e-3;

Pass the second frame through the channel.

[rx2,info2] = lteFadingChannel(model,tx);

Input Arguments
model — Multipath fading channel model
structure

 lteFadingChannel

2-319

Multipath fading channel model, specified as a structure containing these fields.

Field Required or
Optional

Values Description Dependencies

NRxAnts Required Positive integer Number of receive antennas Not applicable
MIMOCor
relatio
n

Required "Low",
"Medium",
"UplinkMedium"
, "High",
"Custom"

Correlation between UE and
eNodeB antennas.

• To specify no correlation
between antennas, set this
field to "Low"

• To specify the correlation
level defined in Annex B.2.3.2
of TS 36.101 [1], which
applies to tests defined in TS
36.101, set this field to
"Medium"

• To specify the correlation
level defined in Annex B.5.2 of
TS 36.104 [2], which applies
to tests defined in TS 36.104,
set this field to
"UplinkMedium"

• To specify strong correlation
between antennas, set this
field to "High"

• To specify correlation
between antennas in the
TxCorrelationMatrix and
RxCorrelationMatrix
fields, set this field to
"Custom".

Note Because the "Low" and
"High" correlation levels are the
same for uplink and downlink,
they apply to tests defined in TS
36.101 and TS 36.104.

Normali
zeTxAnt
s

Optional "On" (default),
"Off"

Transmit antenna number
normalization. To normalize the
output waveform by 1/√P, where
P is the number of transmit
antennas, set this field to "On".
Normalization by the number of
transmit antennas ensures that
the number of transmit antennas
does not affect the output power
per receive antenna.

2 Functions

2-320

Field Required or
Optional

Values Description Dependencies

DelayPr
ofile

Required "EPA", "EVA",
"ETU",
"Custom", "Off"

Delay profile model. For more
information, see “Propagation
Channel Models”.

To completely switch off fading
and implement a MIMO channel
model that is constant in time
and frequency, set this field to
"Off". In this case, the number
of columns in the in input
specifies the number of transmit
antennas, the NRxAnts field
specifies the number of receive
antennas, and the
MIMOCorrelation field
specifies the MIMO correlation.
The temporal part of the model
for each link between transmit
and receive antennas consists of
a single path with zero delay and
constant unit gain. This setting
does not implement the channel
model defined in Annex B.1 of
[1].

Doppler
Freq

Required Nonnegative
scalar

Maximum Doppler frequency in
Hz

To enable these
fields, set the
DelayProfile
field to a value
other than
"Off".

Samplin
gRate

Required Positive scalar Input waveform sampling rate

InitTim
e

Required Nonnegative
scalar

Fading process time offset in
seconds

NTerms Optional 16 (default)

Power of 2

Number of oscillators used in
fading path modeling

 lteFadingChannel

2-321

Field Required or
Optional

Values Description Dependencies

ModelTy
pe

Optional "GMEDS"
(default), "Dent"

Rayleigh fading model type.

• To model Rayleigh fading by
using the generalized method
of exact Doppler spread
(GMEDS) described in [4], set
this field to "GMEDS".

• To model Rayleigh fading by
using the modified Jakes
fading model described in [3],
set this field to "Dent".

Note Setting this field to
"Dent" is not recommended.
Use "GMEDS" instead.

Normali
zePathG
ains

Optional "On" (default),
"Off"

Model output normalization.

• To normalize the rx output
such that the average power
is unity, set this field to "On".

• To normalize the rx output
such that the average output
power is the sum of the
powers of the taps of the
delay profile, set this field to
"Off".

2 Functions

2-322

Field Required or
Optional

Values Description Dependencies

InitPha
se

Optional "Random"
(default)

Scalar

4-D array

Phase initialization for the
sinusoidal components of the
model.

• To randomly initialize the
phases according to the value
of the Seed field, set this field
to "Random".

• To specify the same phase, in
radians, of all components,
set this field to a scalar.

• To specify the phase, in
radians, of each component
explicitly, set this field to a 4-
D array of size N-by-L-by-P-
by-NRxAnts.

• N is the number of phase
initialization values per
path.

• L is the number of paths.
• P is the number of

transmit antennas.
• NRxAnts is the number of

receive antennas.

Note

• When you set the ModelType
field to "GMEDS", N is equal
to 2 ×NTerms.

• When you set the ModelType
field to "Dent", N is equal to
NTerms.

 lteFadingChannel

2-323

Field Required or
Optional

Values Description Dependencies

Seed Required Scalar Random number generator seed.
To use a random seed, set this
field to 0.

Note

• To produce distinct results,
set this field to a value in the
interval

[0, 231 – 1 – K(K − 1)/2],

where K = P ×
model.NRxAnts, which is the
product of the number of
transmit and receive
antennas. Avoid using values
outside of this recommended
range, because doing so can
result in random sequences
that repeat results produced
using values inside the
recommended range.

• The state of MATLAB random
number generators, for
example by calls to the rng
function, does not affect
fading channel random seed
behavior.

To enable this
field, set the
DelayProfile
field to a value
other than
"Off" and the
InitPhase field
to "Random".

Average
PathGai
ndB

Required Vector Average gains of the discrete
paths in dB

To enable these
fields, set the
DelayProfile
field to
"Custom".

PathDel
ays

Required Vector Delays of the discrete paths in
seconds. This vector must be the
same size as
AveragePathGaindB. If these
delays are not a multiple of the
sampling period, the function
uses fractional delay filters to
implement them.

 
TxCorre
lationM
atrix

Required Complex-valued
matrix

Correlation between each of the
transmit antennas, specified as a
complex-valued matrix of size P-
by-P.

To enable these
fields, set the
MIMOCorrelati
on field to
"Custom".

2 Functions

2-324

Field Required or
Optional

Values Description Dependencies

 
RxCorre
lationM
atrix

Required Complex-valued
matrix

Correlation between each of the
receive antennas, specified as a
complex-valued matrix of size
NRxAnts-by-NRxAnts.

Data Types: struct

tx — Input samples
complex-valued matrix

Input samples, specified as a complex-valued matrix of size T-by-P, where T is the number of time-
domain samples, and P is the number of transmit antennas. Each column of this input corresponds to
the waveform at one transmit antenna.
Data Types: double | single
Complex Number Support: Yes

Output Arguments
rx — Channel output waveform
complex-valued matrix

Channel output waveform, returned as a complex-valued matrix. Each column of rx corresponds to
the waveform at a receive antenna. This output has the same number of rows as the tx input.
Data Types: double | single
Complex Number Support: Yes

info — Channel modeling information
structure

Channel modeling information, returned as a structure containing these fields.

Parameter
Field

Values Description

ChannelFilter
Delay

Scalar value Implementation delay of the internal channel
filtering, in samples

PathGains Numeric array Complex gain of the discrete channel paths,
returned as a numeric array of size T-by-L-by-P-
by-NRxAnts.

• T is the number of output samples.
• L is the number of paths.
• P is the number of transmit antennas.
• NRxAnts is the number of receive antennas.

PathSampleDel
ays

Row vector Delays of the discrete channel paths, in samples,
returned at the sampling rate specified in the
SamplingRate field of the model input.

 lteFadingChannel

2-325

Parameter
Field

Values Description

AveragePathGa
indB

Row vector Average gains of the discrete paths in dB

Data Types: struct

Algorithms
Fading Channel Model Delay

This function implements the MIMO multipath fading channel model specified in [1] and [2]. The
transmitted waveform passes through the multipath Rayleigh fading channel model specified by the
input structure model. The function resamples the delay profile of the model input to match the
input waveform sampling rate. When the path delays are not a multiple of the sampling rate, the
function uses fractional delay filters to implement them. These filters introduce an implementation
delay of info.ChannelFilterDelay samples. The waveform passing through the channel passes
through these filters and incurs this channel filter delay regardless of the value of the path delays.

Version History
Introduced in R2013b

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

radio transmission and reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. https://www.3gpp.org.

[2] 3GPP TS 36.104. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio
transmission and reception.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. https://www.3gpp.org.

[3] Dent, P., G. E. Bottomley, and T. Croft. “Jakes Fading Model Revisited.” Electronics Letters. 29, no.
13 (1993): 1162–1163.

[4] Pätzold, Matthias, Cheng-Xiang Wang, and Bjørn Olav Hogstad. “Two New Sum-of-Sinusoids-Based
Methods for the Efficient Generation of Multiple Uncorrelated Rayleigh Fading Waveforms.”
IEEE Transactions on Wireless Communications. 8, no. 6 (2009): 3122–3131.

See Also
lteMovingChannel | lteHSTChannel | lteOFDMModulate | lteSCFDMAModulate |
lteDLPerfectChannelEstimate | lte3DChannel

2 Functions

2-326

https://www.3gpp.org
https://www.3gpp.org

lteFrequencyCorrect
Frequency offset correction

Syntax
out = lteFrequencyCorrect(cfg,in,foffset)

Description
out = lteFrequencyCorrect(cfg,in,foffset) corrects for a specified frequency offset,
foffset, in the time-domain waveform, in, by performing simple frequency modulation (FM). The
parameters of the waveform, in, are specified in a settings structure, cfg, which must contain either
the field NDLRB or NULRB to control whether a downlink or uplink signal is expected in in.

The input, foffset is the frequency offset, in hertz, present on the waveform, in. Therefore, the
correction applied is FM modulation by –foffset.

Examples

Correct for Specified Frequency Offset

Perform frequency offset estimation and correction on an uplink signal, to which a frequency offset
has been applied.

Generate uplink RMC A3-2.

[txWaveform,rgrid,cfg] = lteRMCULTool('A3-2',[1;0;0;1],'Fdd',2);

Apply an arbitrary frequency offset of 51.2 Hz.

t = (0:length(txWaveform)-1).'/cfg.SamplingRate;
txWaveform = txWaveform .* exp(1i*2*pi*51.2*t);

Estimate and display the frequency offset.

offset = lteFrequencyOffset(cfg,txWaveform);
disp(['Frequency offset: ' num2str(offset) ' Hz'])

Frequency offset: 51.2 Hz

Correct for the frequency offset.

rxWaveform = lteFrequencyCorrect(cfg,txWaveform,offset);

Finally, perform SC-FDMA demodulation.

rxGrid = lteSCFDMADemodulate(cfg,rxWaveform);

 lteFrequencyCorrect

2-327

Input Arguments
cfg — Waveform parameter settings
structure

Waveform parameter settings, specified as a structure. cfg must contain either the field NDLRB, to
specify a downlink configuration, or the field NULRB, to specify an uplink configuration.

Parameter
Field

Required or
Optional

Values Description

NDLRB Required Positive scalar integer Number of downlink resource blocks
(NRB

DL)

Set this parameter field to specify a
downlink configuration.

CyclicPref
ix

Required 'Normal' (default),
'Extended'

Cyclic prefix length in the downlink

Only set this parameter field if you are
specifying a downlink configuration.

NULRB Required Scalar integer from 6
to 110

Number of uplink resource blocks.
(NRB

UL)

Set this parameter field to specify an
uplink configuration.

CyclicPref
ixUL

Required 'Normal' (default),
'Extended'

Uplink cyclic prefix length. Only set this
parameter field if you are specifying an
uplink configuration.

Data Types: struct

in — Time-domain waveform
numeric column vector

Time-domain waveform, specified as a numeric column vector.
Data Types: double | single
Complex Number Support: Yes

foffset — Waveform frequency offset
scalar value

Waveform frequency offset, specified as a scalar value expressed in Hertz. The correction applied to
in is FM modulation by –foffset.
Data Types: double

Output Arguments
out — Offset-corrected waveform
numeric column vector

Offset-corrected waveform, returned as a numeric column vector.

2 Functions

2-328

Data Types: double | single
Complex Number Support: Yes

Version History
Introduced in R2014a

See Also
lteFrequencyOffset | lteCellSearch | lteDLFrameOffset | lteULFrameOffset |
lteOFDMDemodulate | lteSCFDMADemodulate

 lteFrequencyCorrect

2-329

lteFrequencyOffset
Frequency offset estimation using cyclic prefix

Syntax
foffset = lteFrequencyOffset(cfgdl,waveform)
foffset = lteFrequencyOffset(cfgul,waveform)
[foffset, corr] = lteFrequencyOffset(___)
[foffset, corr] = lteFrequencyOffset(___ ,toffset)

Description
foffset = lteFrequencyOffset(cfgdl,waveform) estimates the average frequency offset,
foffset, of the time-domain waveform, waveform, by calculating correlation of the cyclic prefix.
The parameters of waveform are given in the downlink settings structure, cfgdl. cfgdl must
contain the field NDLRB to specify that a downlink signal is expected in waveform.

foffset = lteFrequencyOffset(cfgul,waveform) estimates the average frequency offset,
foffset, of the time-domain waveform, waveform, by calculating correlation of the cyclic prefix.
The parameters of waveform are given in the uplink settings structure, cfgul. cfgul must contain
the field NULRB to specify that an uplink signal is expected in waveform.

[foffset, corr] = lteFrequencyOffset(___) also returns a complex matrix, corr, spanning
one slot and containing the same number of antennas, or columns, as waveform. corr is the signal
used to extract the timing of the correlation for the estimation of the frequency offset.

[foffset, corr] = lteFrequencyOffset(___ ,toffset) provides control over the position in
the correlator output used to estimate the frequency offset. When present toffset is the timing
offset in samples from the start of the correlator output to the position used for the frequency offset
estimation. This input allows a timing offset to be calculated externally on a signal of longer duration
than the input waveform. Which allows a short-term frequency offset estimate to be obtained while
retaining the benefit of a longer-term timing estimate.

Note If toffset is absent, the quality of the internal timing estimate is subject to the length and
signal quality of the input waveform and, therefore, it may result in inaccurate frequency offset
measurements.

Examples

Estimate Frequency Offset

Perform frequency offset estimation and correction on an uplink signal, to which a frequency offset
has been applied.

Generate uplink RMC A3-2.

[txWaveform,rgrid,cfg] = lteRMCULTool('A3-2',[1;0;0;1],'Fdd',2);

2 Functions

2-330

Apply an arbitrary frequency offset of 51.2 Hz.

t = (0:length(txWaveform)-1).'/cfg.SamplingRate;
txWaveform = txWaveform .* exp(1i*2*pi*51.2*t);

Estimate and display the frequency offset.

offset = lteFrequencyOffset(cfg,txWaveform);
disp(['Frequency offset: ' num2str(offset) ' Hz'])

Frequency offset: 51.2 Hz

Correct for frequency offset.

rxWaveform = lteFrequencyCorrect(cfg,txWaveform,offset);

Perform SC-FDMA demodulation.

rxGrid = lteSCFDMADemodulate(cfg,rxWaveform);

Input Arguments
cfgdl — Downlink configuration
structure

Downlink configuration, specified as a structure having the following fields.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length
DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as

either:

• 'FDD' for Frequency Division
Duplex

• 'TDD' for Time Division
Duplex

The following apply when DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7, 8, 9 Special subframe configuration

(SSC)
  NSubframe Optional 0 (default), nonnegative scalar

integer
Subframe number

Data Types: struct

cfgul — Uplink configuration
structure

 lteFrequencyOffset

2-331

Uplink configuration, specified as a structure having the following fields.

Parameter Field Required or
Optional

Values Description

NULRB Required Scalar integer from 6 to 110 Number of uplink resource blocks.
(NRB

UL)
CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as

either:

• 'FDD' for Frequency Division
Duplex

• 'TDD' for Time Division
Duplex

The following apply when DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7, 8, 9 Special subframe configuration

(SSC)
  NSubframe Optional 0 (default), nonnegative scalar

integer
Subframe number

Data Types: struct

waveform — Input time-domain waveform
numeric column vector

Input time-domain waveform, specified as a numeric column vector.
Data Types: double | single
Complex Number Support: Yes

toffset — Timing offset
scalar value

Timing offset, specified as a scalar value expressed in samples. Use toffset to control the position
in the correlator output used to estimate the frequency offset. If toffset is absent, or empty, the
position of the peak magnitude of the correlator output is used.
Data Types: double | single

Output Arguments
foffset — Average frequency offset estimate
scalar value

Average frequency offset estimate, returned as a scalar value expressed in Hertz. This function can
only accurately estimate frequency offsets of up to ±7.5 kHz (a range of 15 kHz, the subcarrier
spacing).
Data Types: double | single

2 Functions

2-332

corr — Correlation timing signal
numeric matrix

Correlation timing signal, returned as a numeric matrix. corr is a complex matrix that spans one slot
and contains the same number of antennas, or columns, as waveform. It is the signal used to extract
the timing of the correlation for the frequency offset estimation.
Data Types: double | single
Complex Number Support: Yes

Version History
Introduced in R2014a

See Also
lteFrequencyCorrect | lteCellSearch | lteDLFrameOffset | lteULFrameOffset |
lteOFDMDemodulate | lteSCFDMADemodulate

 lteFrequencyOffset

2-333

lteHSTChannel
High-speed train MIMO channel propagation conditions

Syntax
out = lteHSTChannel(model,in)

Description
out = lteHSTChannel(model,in) implements the high-speed train (HST) MIMO channel model
specified in TS 36.101 [1] and TS 36.104 [2]. The high-speed train propagation condition is composed
of a non-fading single path of unit amplitude and zero phase with a changing Doppler shift. The
columns of matrix in correspond to the channel input waveforms at each transmit antenna. The
channel model filters in with the characteristics specified in structure model. The matrix out stores
the filtered waveform. Each column of out corresponds to the waveform at one of the receive
antennas.

Examples

Model High-Speed Train Propagation Channel

Generate a frame and filter it with the high-speed train channel model.

Create a reference channel configuration structure initialized to 'R.10'. Generate a waveform.

rmc = lteRMCDL('R.10');
[txWaveform,txGrid,info] = lteRMCDLTool(rmc,[1;0;1]);

Initialize a propagation channel configuration structure for high-speed train profile. Pass the
transmission waveform through the propagation channel.

chcfg.NRxAnts = 1;
chcfg.Ds = 100;
chcfg.Dmin = 500;
chcfg.Velocity = 350;
chcfg.DopplerFreq = 5;
chcfg.SamplingRate = info.SamplingRate;
chcfg.InitTime = 0;

rxWaveform = lteHSTChannel(chcfg,txWaveform);

Input Arguments
model — High-speed train propagation channel model
structure

High-speed train propagation channel model, specified as a structure containing these fields.

2 Functions

2-334

Parameter
Field

Required or
Optional

Values Description

NRxAnts Required Positive scalar integer Number of receive antennas
Ds Required Numeric scalar Train-to-eNodeB double initial distance,

in meters.

Ds/2 is initial distance between train
and eNodeB, in meters

Dmin Required Scalar value eNodeB to railway track distance, in
meters

Velocity Required Scalar value Train velocity, in kilometers per hour
DopplerFre
q

Required Scalar value Maximum Doppler frequency, in Hz.

SamplingRa
te

Required Scalar value Input signal sampling rate, the rate of
each sample in the rows of the input
matrix, in.

InitTime Required Scalar value Doppler shift timing offset, in seconds
NormalizeT
xAnts

Optional 'On' (default), 'Off' Transmit antenna number
normalization, specified as:

• 'On', lteHSTChannel normalizes
the model output by 1/sqrt(P),
where P is the number of transmit
antennas. Normalization by the
number of transmit antennas ensures
that the output power per receive
antenna is unaffected by the number
of transmit antennas.

• 'Off', normalization is not
performed.

Data Types: struct

in — Channel input waveforms at transmit antennas
numeric matrix

Channel input waveforms at transmit antennas, specified as a numeric matrix. in has size T-by-P,
where P is the number of antennas and T is the number of time-domain samples. These waveforms
are filtered with the high-speed train channel model with the Doppler shift as specified in parameter
structure model.
Data Types: double | single
Complex Number Support: Yes

Output Arguments
out — Filtered waveform
numeric matrix

 lteHSTChannel

2-335

Filtered waveform, returned as a numeric matrix. Each column of out corresponds to the waveform
at one of the receive antennas.
Data Types: double | single
Complex Number Support: Yes

Version History
Introduced in R2013b

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.104. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio
Transmission and Reception.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteFadingChannel | lteMovingChannel | lteOFDMDemodulate | lteSCFDMADemodulate

2 Functions

2-336

https://www.3gpp.org
https://www.3gpp.org

lteLayerDemap
Layer demapping onto scrambled and modulated codewords

Syntax
out = lteLayerDemap(in,ncw)
out = lteLayerDemap(in,ncw,txscheme)
out = lteLayerDemap(chs,in)

Description
out = lteLayerDemap(in,ncw) performs the layer demapping required to undo the processing
described in TS 36.211, Sections 5.3.2A and 6.3.3 [1]. The function returns out, a cell array
containing one, or two vectors of modulation symbols, one for each codeword. The function demaps
the NU layers specified in the input matrix, in, into ncw codewords using 'Port0' transmission
scheme if NU = 1 and 'SpatialMux' transmission scheme otherwise.

out = lteLayerDemap(in,ncw,txscheme) performs the layer demapping using the transmission
scheme, txscheme.

out = lteLayerDemap(chs,in) performs layer demapping according to the parameters specified
in the channel transmission configuration structure, chs.

Examples

Demap Codeword for Transmit Diversity

Map a codeword onto four symbols for 'TxDiversity' transmission scheme. Recover the codeword by
demapping the four layers onto one codeword.

nCodewords = 1;
codeword = ones(16,1);
nLayers = 4;
txScheme = 'TxDiversity';

layerMap = lteLayerMap(codeword,nLayers,txScheme);

out = lteLayerDemap(layerMap,nCodewords,txScheme);

Input Arguments
in — Modulation symbols
numeric matrix

Modulation symbols, specified as an M-by-NU numeric matrix consisting of M modulation symbols for
NU transmission layers. You can generate this matrix using lteDLDeprecode or
ltePUSCHDeprecode.
Data Types: double

 lteLayerDemap

2-337

Complex Number Support: Yes

ncw — Number of codewords
1 | 2

Number of codewords, specified as 1 or 2.
Data Types: double

txscheme — Transmission scheme
'Port0' | 'TxDiversity' | 'CDD' | 'SpatialMux' | 'MultiUser' | 'Port5' | 'Port7-8' |
'Port8' | 'Port7-14'

PDSCH transmission scheme, specified as one of the following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay diversity scheme
'SpatialMux' Closed loop spatial multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7, when NLayers = 1. Dual

layer transmission, ports 7 and 8, when NLayers = 2.
'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer transmission, ports 7–14

When provided as an optional input this setting overrides any setting provided in chs.TxScheme.
Data Types: char | string

chs — Channel-specific transmission configuration
structure

Channel-specific transmission configuration, specified as a structure that can contain the following
parameter fields.

2 Functions

2-338

Parameter Field Required or
Optional

Values Description

TxScheme Optional 'Port0',
'TxDiversity',
'CDD',
'SpatialMux',
'MultiUser',
'Port5',
'Port7-8',
'Port8',
'Port7-14'.

The default
TxScheme is
'Port0' for
NLayers = 1, and
'SpatialMux'
otherwise.

PDSCH transmission scheme, specified as one
of the following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay

diversity scheme
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7,

when NLayers = 1. Dual
layer transmission, ports 7
and 8, when NLayers = 2.

'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer

transmission, ports 7–14

Also specify one of these fields:
  Modulation Required, if

NCodewords
is not set

'QPSK', '16QAM',
'64QAM',
'256QAM',
'1024QAM'

Modulation type, specified as a character
vector, cell array of character vectors, or string
array. If blocks, each cell is associated with a
transport block.

  NCodewords Required, if
Modulation
is not set

1, 2 Number of codewords

1 The number of codewords is established from the number of modulation formats in the Modulation field.
This allows the correct number of codewords to be returned by using the channel transmission
configuration structure chs as provided to the ltePDSCH or ltePUSCH function on the transmit side.
Alternatively the number of codewords can be directly specified in the NCodewords field. The
NCodewords field takes precedence if present.

Output Arguments
out — Modulation symbols
cell array of one or two vectors

Modulation symbols, specified as a cell array of one or two vectors. The cell array contains one or two
vectors of symbols, one for each codeword.
Data Types: cell

 lteLayerDemap

2-339

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteLayerMap | lteDLDeprecode | lteULDeprecode | ltePUSCHDeprecode |
ltePHICHDeprecode | lteSymbolDemodulate

2 Functions

2-340

https://www.3gpp.org

lteLayerMap
Layer mapping of modulated and scrambled codewords

Syntax
out = lteLayerMap(in,nu)
out = lteLayerMap(in,nu,txscheme)
out = lteLayerMap(chs,in)

Description
out = lteLayerMap(in,nu) performs layer mapping of the codeword or codewords, in, onto nu
layers. It carries out the layer mapping according to TS 36.211 [1], Sections 5.3.2A and 6.3.3. The
function returns an M-by-nu matrix consisting of the modulation symbols for transmission upon nu
layers. These transmission layers are formed by multiplexing the modulation symbols from either one
or two codewords. The overall operation of the layer mapper is the transpose of that defined in the
specification. In other words, the symbols for layers lie in columns rather than rows.

out = lteLayerMap(in,nu,txscheme) performs layer mapping using the transmission scheme,
txscheme.

out = lteLayerMap(chs,in) performs layer mapping of the codeword or codewords, in,
according to the parameters in the channel transmission configuration structure, chs.

Examples

Map Codeword for Spatial Multiplexing

Map one codeword to four layers for the spatial multiplexing transmission scheme.

When no transmission scheme is specified, the default layer mapping is spatial multiplexing.

out = lteLayerMap(ones(40,1),4);
sizeOut = size(out)

sizeOut = 1×2

 10 4

Map Codeword for Transmit Diversity

Map one codeword to four layers for the transmit diversity transmission scheme.

out = lteLayerMap(ones(40,1),4,'TxDiversity');
sizeOut = size(out)

sizeOut = 1×2

 lteLayerMap

2-341

 10 4

Input Arguments
in — Scrambled and modulated codeword or codewords
numeric vector | cell array of numeric vectors

Scrambled and modulated codeword or codewords, specified as a numeric vector or a cell array of
numeric vectors. As a cell array, in contains one or two vectors of modulation symbols that result
from the scrambling and modulation of DL-SCH or UL-SCH codewords.

nu — Number of transmission layers
integer from 1 to 8

Number of transmission layers, specified as a scalar integer from 1 to 8.
Data Types: double

txscheme — Transmission scheme
'Port0' | 'TxDiversity' | 'CDD' | 'SpatialMux' | 'MultiUser' | 'Port5' | 'Port7-8' |
'Port8' | 'Port7-14' | optional

PDSCH transmission scheme, specified as one of the following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay diversity scheme
'SpatialMux' Closed loop spatial multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7, when NLayers = 1. Dual

layer transmission, ports 7 and 8, when NLayers = 2.
'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer transmission, ports 7–14

This optional input takes precedence over chs.TxScheme.
Data Types: char | string

chs — Channel-specific transmission configuration
structure

Channel-specific transmission configuration, specified as a structure that can contain the following
parameter fields.

2 Functions

2-342

Parameter Field Required
or Optional

Values Description

NLayers Required Integer from 1 to 8 Number of transmission layers.
TxScheme Optional 'Port0',

'TxDiversity', 'CDD',
'SpatialMux',
'MultiUser', 'Port5',
'Port7-8', 'Port8',
'Port7-14'.

The default TxScheme is
'Port0' for NLayers =
1, and 'SpatialMux'
otherwise.

PDSCH transmission scheme, specified as one of
the following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay

diversity scheme
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7,

when NLayers = 1. Dual
layer transmission, ports 7
and 8, when NLayers = 2.

'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer

transmission, ports 7–14

Output Arguments
out — Modulation symbols
numeric matrix

Modulation symbols, returned as a numeric matrix. out is an M-by-nu matrix consisting of M
modulation symbols for transmission upon nu layers.
Data Types: double

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteLayerDemap | lteSymbolModulate | lteDLPrecode | lteULPrecode | ltePUSCHPrecode |
ltePHICHPrecode

 lteLayerMap

2-343

https://www.3gpp.org

lteMCS
Modulation and coding scheme lookup

Syntax
[itbs,mod,rv]=lteMCS()
[itbs,mod,rv]=lteMCS(imcs)

[itbs,mod,rv]= lteMCS(table)
[itbs,mod,rv]=lteMCS(imcs,table)

Description
Use lteMCS to look up the modulation and coding scheme (MCS) information as defined by MCS
index mapping to modulation and TBS index tables in TS 36.213 [1] Table 7.1.7.1-1, Table 7.1.7.1-1A,
and Table 8.6.1-1.

[itbs,mod,rv]=lteMCS() returns the physical downlink shared channel (PDSCH) MCS
information for all MCS index values specified in Table 7.1.7.1-1 of [1].

The function returns the columns of the indexed MCS table entries as separate outputs. The itbs
output is a vector of the corresponding transport block size (TBS) indices. The mod output is a vector
of the corresponding modulation schemes. The rv output is a vector of the corresponding redundancy
version (RV) indices.

The function returns reserved values of itbs as NaN and reserved values of mod as an empty
character vector. For the PDSCH, the RV is not defined, so the function returns the rv output as a
vector of zeros when you use this syntax.

[itbs,mod,rv]=lteMCS(imcs) returns PDSCH MCS information for one or more MCS index
values, imcs, specified in Table 7.1.7.1-1 of [1].

For the PDSCH, the RV is not defined, so the function returns the rv output as a vector of zeros when
you use this syntax.

[itbs,mod,rv]= lteMCS(table) returns PDSCH or physical uplink shared channel (PUSCH)
MCS information associated with one or more rows of table, the specified table of [1].

[itbs,mod,rv]=lteMCS(imcs,table) returns PDSCH or PUSCH MCS information associated
with one or more rows of the specified table for one or more MCS indices.

Examples

Return TBS Index, Modulation Order, and RV Index

Return the TBS index, modulation order, and RV index for MCS index 17.

imcs = 17;
[itbs,mod,rv] = lteMCS(imcs)

2 Functions

2-344

itbs = 15

mod =
'64QAM'

rv = 0

Get MCS from PDSCH Table 2

Return the PDSCH transport block size index and modulation scheme for the set of indices imcs =
20,...,27 used to configure a first transport block transmission with Release 12 256QAM modulation.

[ITBS,Modulation] = lteMCS(20:27,'PDSCHTable2')

ITBS = 1×8

 25 27 28 29 30 31 32 33

Modulation = 1x8 cell
 Columns 1 through 5

 {'256QAM'} {'256QAM'} {'256QAM'} {'256QAM'} {'256QAM'}

 Columns 6 through 8

 {'256QAM'} {'256QAM'} {'256QAM'}

Input Arguments
imcs — MCS indices
vector of integers in the interval [–1, 31] | integer in the interval [–1, 31]

MCS indices, specified as an integer or vector of integers in the interval [–1, 31].

If you specify any element of this input as -1, the function interprets the value as a discontinuous
transmission. In this case, the function returns the corresponding elements of the itbs and mod
outputs as -1 and 'QPSK', respectively.

If you specify this input as a scalar, the function returns the mod as a single character vector instead
of a single element cell array of character vectors.
Data Types: double

table — MCS index mapping table
'PDSCH' | 'PDSCHTable2' | 'PDSCHTable3 | 'PUSCH'

MCS index mapping table, specified as a character vector or string scalar, identifying the desired
table from [1]:

• 'PDSCH' indicates PDSCH, Table 7.1.7.1-1
• 'PDSCHTable2' indicates Table 2 for PDSCH, Table 7.1.7.1-1A, which was added in 3GPP

Release 12

 lteMCS

2-345

• 'PDSCHTable3' indicates Table 2 for PDSCH, Table 7.1.7.1-1B, which was added in 3GPP
Release 15

• 'PUSCH' indicates PUSCH, Table 8.6.1-1

Data Types: char | string

Output Arguments
itbs — Transport block size indices
vector of integers in the interval [–1, 37] | integer in the interval [–1, 37]

Transport block size indices, returned as an integer or vector of integers in the interval [–1, 37].

If you specify any element of the imcs input as -1, the function interprets the value as a
discontinuous transmission. In this case, the function returns the corresponding element of this
output as -1.

If you specify the itbs input as a scalar, the function returns this output as a single integer instead of
a vector.

mod — Modulation orders
cell array of character vectors | ‘QPSK’ | ‘16QAM’ | ‘64QAM’ | ‘256QAM’ | '1024QAM'

Modulation orders, returned as a cell array of character vectors.

If you specify any element of the imcs input as -1, the function interprets the value as a
discontinuous transmission. In this case, the function returns the corresponding element of this
output as 'QPSK'.

If you specify the itbs input as a scalar, the function returns this output as a single character vector
instead of a single element cell array of character vectors.

rv — Redundancy versions
column vector | 0 | 1 | 2 | 3

Redundancy versions, returned as an integer or vector of integers in the interval [0, 3]. Each entry of
this output corresponds to the values you specify in the imcs input in accordance with Table 8.6.1-1
of [1].

Version History
Introduced in R2014b

References
[1] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer

procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)
Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

2 Functions

2-346

https://www.3gpp.org
https://www.3gpp.org

See Also
lteTBS | lteDLSCH | lteDLSCHDecode | lteULSCH | lteULSCHDecode

 lteMCS

2-347

lteMIB
MIB encoding and decoding

Syntax
mib = lteMIB(enb)
enb = lteMIB(mib)
enb = lteMIB(mib,enb)

Description
mib = lteMIB(enb) allows encoding and decoding of the MIB broadcast control channel (BCCH)
message from cell-wide settings.

It creates the 24-bit-long MIB message, mib, from the fields of cell-wide settings structure, enb. See
TS 36.331 [1], Sections 5.2.1.1 and 6.2.2 for further description of the MIB.

enb = lteMIB(mib) performs the inverse processing of the preceding syntax, taking as input the
MIB message bits, mib, and creating the cell-wide settings structure, enb.

enb = lteMIB(mib,enb) includes in the enb output structure any fields contained in the enb input
structure. For any of the fields already present in the input structure, the value decoded from the
MIB replaces the existing value.

Note Within the MIB, the system frame number (SFN) is stored as floor(SFN/4). Therefore, when
enb is created from an MIB bit sequence, enb.NFrame satisfies mod(enb.NFrame,4)==0 and the
frame number modulo 4 must be established by other means. For example, this can be done by using
the nfmod4 output of ltePBCHDecode.

Examples

Decode MIB Message Bits

Create a column vector of MIB message bits.

mib = [0,1,0,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0].';

Decode MIB message bits.

enb = lteMIB(mib)

enb = struct with fields:
 NDLRB: 25
 PHICHDuration: 'Normal'
 Ng: 'One'
 NFrame: 828

2 Functions

2-348

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure. enb can contain the following fields.

NDLRB — Number of downlink resource blocks
scalar value (6...110)

Number of downlink resource blocks, specified as a positive integer scalar value. NDLRB must be
between 6 and 110.

Note If NDLRB is a nonstandard bandwidth, not one of the set {6,15,25,50,75,100}, all ones are
inserted into the first 3 bits, the dl-Bandwidth bit field, of the MIB message, mib.

Data Types: double

Ng — HICH group multiplier
'Sixth' (default) | optional | 'Half' | 'One' | 'Two'

HICH group multiplier, specified as 'Sixth', 'Half', 'One', or 'Two'.
Data Types: char | string

NFrame — Frame number
0 (default) | optional | nonnegative scalar integer

Frame number, specified as a nonnegative scalar integer.
Data Types: double

PHICHDuration — PHICH duration
'Normal' (default) | optional | 'Extended'

PHICH duration, specified as 'Normal' or 'Extended'.
Data Types: char | string

Data Types: struct

mib — MIB message bit sequence
24-bit column vector

MIB message bit sequence, specified as a 24-bit column vector.

Note If the first 3 bits, the dl-Bandwidth bit field, of the MIB message do not contain the equivalent
of a decimal between 0 and 5 (MSB first, corresponding to the RB set {6,15,25,50,75,100}), the
returned NDLRB is 0.

Data Types: double | int8 | logical

 lteMIB

2-349

Output Arguments
mib — MIB message
24-bit column vector

MIB message, returned as a 24-bit column vector.

Note If the enb.NDLRB input parameter field is a nonstandard bandwidth, not one of the set
{6,15,25,50,75,100}, the first 3 bits of mib, the dl-Bandwidth bit field, are all ones.

Data Types: int8

enb — Cell-wide settings created from MIB
structure

Cell-wide settings created from MIB, returned as a structure. enb contains the following fields.

NDLRB — Number of downlink resource blocks
nonnegative scalar integer

Number of downlink resource blocks, returned as a nonnegative scalar integer.

Note If the first 3 bits, the dl-Bandwidth bit field, of the input MIB message, mib, do not contain the
equivalent of a decimal between 0 and 5 (MSB first, corresponding to the RB set
{6,15,25,50,75,100}), NDLRB is 0. The MIB message should have 24 bits. Longer messages are
truncated to 24 elements, while shorter messages are zero padded.

Data Types: int32

PHICHDuration — PHICH duration
'Normal' | 'Extended'

PHICH duration, returned as 'Normal' or 'Extended'.
Data Types: char

Ng — HICH group multiplier
'Sixth' | 'Half' | 'One' | 'Two'

HICH group multiplier, specified as 'Sixth', 'Half', 'One', or 'Two'.
Data Types: char

NFrame — Frame number
scalar value

Frame number, specified as a scalar value.
Data Types: int32

Data Types: struct

2 Functions

2-350

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.331. “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control

(RRC); Protocol specification.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteBCH | lteBCHDecode | lteSLMIB

 lteMIB

2-351

https://www.3gpp.org

lteMovingChannel
Moving channel propagation conditions

Syntax
out = lteMovingChannel(model,in)

Description
out = lteMovingChannel(model,in) implements the moving propagation conditions specified in
TS 36.104 [1]. The filtered waveform is stored in matrix out, where each column corresponds to the
waveform at each of the receive antennas. The columns of matrix in correspond to the channel input
waveforms at each transmit antenna. The input waveforms are filtered with the delay profiles as
specified in the parameter structure model. The delay profiles are resampled to match the input
signal sampling rate. The modeling process introduces delay on top of the channel group delay.

The time difference between the first multipath component and the reference time (assumed to be 0)
follows a sinusoidal characteristic.

Δτ = A
2 (1 + sin(Δω(t + t0)))

Where the offset t0 is

t0 = InitTime + 3π
2(Δω)

If model.InitTime is 0, the delay of the first multipath component is 0. If t = 0, Δτ = 0. Relative
delay between all multipath components is fixed.

Two moving propagation scenarios are specified in TS 36.104 [1], Annex B.4:

• Scenario 1 implements an extended typical urban with 200 Hz Doppler shift (ETU200) Rayleigh
fading model with changing delays. The Rayleigh fading model can be modeled using two different
methods as described in model.ModelType. For Scenario 1, model.InitTime also controls the
fading process timing offset. Changing this value produces parts of the fading process at different
points in time.

• Scenario 2 consists of a single non-fading path with unit amplitude and zero phase degrees with
changing delay. No AWGN is introduced internally in this model.

Examples

Model Moving Propagation Channel

Generate a frame and filter it with the LTE moving propagation channel.

rmc = lteRMCDL('R.10');
[txWaveform,txGrid,info] = lteRMCDLTool(rmc,[1;0;1]);
chcfg.Seed = 1;

2 Functions

2-352

chcfg.NRxAnts = 1;
chcfg.MovingScenario = 'Scenario1';
chcfg.SamplingRate = 100000;
chcfg.InitTime = 0;
rxWaveform = lteMovingChannel(chcfg,txWaveform);

Input Arguments
model — Moving channel model
structure

Moving channel model, specified as a structure containing these fields.

Parameter
Field

Required or
Optional

Values Description

Seed Required Scalar value Random number generator seed. To use
a random seed, set Seed to zero.

Note

• To produce distinct results, use Seed
values in the range

[0, 231 – 1 – K(K − 1)/2],

Where K = P × model.NRxAnts, the
product of the number of transmit
and receive antennas. Seed values
outside of this recommended range
should be avoided as they may result
in random sequences that repeat
results produced using Seed values
inside the recommended range.

• The moving channel random seed
behavior is not affected by the state
of MATLAB random number
generators, rng.

NRxAnts Required Positive scalar integer Number of receive antennas
MovingScen
ario

Required 'Scenario1',
'Scenario2'

Moving channel scenario

SamplingRa
te

Required Numeric scalar Input signal sampling rate, the rate of
each sample in the rows of the input
matrix, in.

InitTime Required Scalar value Fading process and timing adjustment
offset, in seconds

 lteMovingChannel

2-353

Parameter
Field

Required or
Optional

Values Description

NormalizeT
xAnts

Optional 'On' (default), 'Off' Transmit antenna number
normalization, specified as:

• 'On', lteFadingChannel
normalizes the model output by 1/
sqrt(P), where P is the number of
transmit antennas. Normalization by
the number of transmit antennas
ensures that the output power per
receive antenna is unaffected by the
number of transmit antennas.

• 'Off', normalization is not
performed.

The following fields are required or optional (as indicated) only if MovingScenario is set to
'Scenario1'.
 NTerms Optional 16 (default)

scalar power of 2

Number of oscillators used in fading
path modeling.

 
ModelType

Optional 'GMEDS' (default),
'Dent'

Rayleigh fading model type.

• 'GMEDS', the Rayleigh fading is
modeled using the Generalized
Method of Exact Doppler Spread
(GMEDS), as described in [3].

• 'Dent', the Rayleigh fading is
modeled using the modified Jakes
fading model described in [2]

Note ModelType = 'Dent' is not
recommended. Use ModelType =
'GMEDS' instead.

 
NormalizeP
athGains

Optional 'On' (default), 'Off' Model output normalization.

• 'On', the model output is normalized
such that the average power is unity.

• 'Off', the average output power is
the sum of the powers of the taps of
the delay profile.

Data Types: struct

in — Input samples
numeric matrix

Input samples, specified as a numeric matrix. in has size T-by-P, where P is the number of transmit
antennas and T is the number of time-domain samples. These waveforms are filtered with the delay
profiles as specified in the parameter structure model. These delay profiles are resampled to match

2 Functions

2-354

the input signal sampling rate. Each column of in corresponds to the waveform at each of the
transmit antennas.
Data Types: double | single
Complex Number Support: Yes

Output Arguments
out — Filtered waveform
numeric matrix

Filtered waveform, returned as a numeric matrix. Each column of out corresponds to the waveform
at each of the receive antennas.
Data Types: double | single
Complex Number Support: Yes

Version History
Introduced in R2013b

References
[1] 3GPP TS 36.104. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio

Transmission and Reception.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

[2] Dent, P., G. E. Bottomley, and T. Croft. “Jakes Fading Model Revisited.” Electronics Letters. Vol. 29,
1993, Number 13, pp. 1162–1163.

[3] Pätzold, Matthias, Cheng-Xiang Wang, and Bjørn Olav Hogstad. “Two New Sum-of-Sinusoids-Based
Methods for the Efficient Generation of Multiple Uncorrelated Rayleigh Fading Waveforms.”
IEEE Transactions on Wireless Communications. Vol. 8, 2009, Number 6, pp. 3122–3131.

See Also
lteFadingChannel | lteHSTChannel | lteOFDMModulate | lteSCFDMAModulate

 lteMovingChannel

2-355

https://www.3gpp.org

lteNBDLFrameOffset
Estimate timing offset of first downlink frame

Syntax
offset = lteNBDLFrameOffset(enb,waveform)
[offset,corr] = lteNBDLFrameOffset(enb,waveform)
[___] = lteNBDLFrameOffset(enb,waveform,cfgCorr)

Description
offset = lteNBDLFrameOffset(enb,waveform) returns offset, the timing offset between the
start of waveform, the input time-domain waveform, and the start of the first downlink frame. To
measure offset, the function performs synchronization using the specified synchronization signals
of waveform for specified cell-wide settings enb.

This function estimates the timing offset by performing these steps.

1 Extract the timing of the peak correlation between waveform and internally generated reference
waveforms containing the synchronization signal symbols.

2 Calculate the correlation for each antenna.
3 Compute the offset for the correlation that displays the earliest peak with a magnitude of at least

50% of the maximum correlation across all antennas

[offset,corr] = lteNBDLFrameOffset(enb,waveform) also returns corr, the correlation
matrix that the function uses to estimate the timing offset.

[___] = lteNBDLFrameOffset(enb,waveform,cfgCorr) specifies cfgCorr, reference signal
configuration options, in addition to arguments from any of the previous syntaxes. This input sets the
reference signals that the function uses to estimate the timing offset.

Examples

Estimate Offset of Narrowband Waveform

Create a subframe resource array for the cell-wide settings structure, enb. Map the subframe array
into a frame resource array.

enb.OperationMode = 'Standalone';
enb.NSubframe = 5;
enb.NFrame = 2;
enb.NNCellID = 1;
ue = struct('NBULSubcarrierSpacing','15kHz');
subframeGrid = repmat(lteNBResourceGrid(ue),1,2);
frameGrid = repmat(subframeGrid,1,10);
subframeGrid(lteNPSSIndices(enb)) = lteNPSS(enb);
frameGrid(:,14*enb.NSubframe + (1:14)) = subframeGrid;

2 Functions

2-356

Generate an OFDM-modulated waveform for the resource array and user-equipment-specific settings
ue, specifying a timing offset of 25 samples.

waveform = [zeros(25,1); lteSCFDMAModulate(ue,frameGrid)];

Estimate the timing offset and display the result.

offset = lteNBDLFrameOffset(enb,waveform)

offset = 25

Estimate Offset of Narrowband Waveform with NPSS

Create a subframe resource grid for the cell-wide settings structure, enb. Map the subframe grid into
a frame resource grid.

subframeGrid = zeros(12,14);
frameGrid = zeros(12,14*10);
enb.OperationMode = 'Standalone';
enb.NSubframe = 5;
subframeGrid(lteNPSSIndices(enb)) = lteNPSS(enb);
frameGrid(:,14*enb.NSubframe + (1:14)) = subframeGrid;

Generate an SC-FDMA-modulated waveform for the resource grid and user-equipment-specific
settings ue, specifying a timing offset of five samples.

ue.NBULSubcarrierSpacing = '15kHz'; % NB DL OFDM is the same as NB UL SC-FDMA
 % with 15-kHz subcarrier spacing
modulatedWaveform = lteSCFDMAModulate(ue,frameGrid);
waveform = [zeros(5,1); modulatedWaveform];

Use the NPSS to estimate the timing offset of the waveform, and return the signal used to perform
the estimate. Display the timing offset estimate.

cfgCorr.NPSS = 'On';
cfgCorr.NSSS = 'Off';
cfgCorr.NRS = 'Off';
[offset,corr] = lteNBDLFrameOffset(enb,waveform,cfgCorr);
disp(offset)

 5

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields.

 lteNBDLFrameOffset

2-357

Name Required or
Optional

Values Description Dependencies Data Types

OperationMod
e

Optional 'Standalone'
(default),
'Inband-
SamePCI',
'Inband-
DifferentPCI
',
'Guardband'

NB-IoT
operation mode,
specified as one
of these values:

• 'Standalo
ne' – NB-
IoT
standalone
operation
within any
180-kHz
band outside
any LTE
carrier
bandwidth

• 'Inband-
SamePCI' –
NB-IoT in-
band
operation
with the
same
physical
layer cell
identity
(PCI) as an
LTE carrier

• 'Inband-
Different
PCI' – NB-
IoT in-band
operation
with a
different PCI
to an LTE
carrier

• 'Guardban
d' – NB-IoT
guard-band
operation
utilizing
unused
resource
blocks
within the
guard-band

Not applicable char, string

2 Functions

2-358

Name Required or
Optional

Values Description Dependencies Data Types

of an LTE
carrier

NCellID Required when
you set the
OperationMod
e field to
'Inband-
SamePCI' or
'Inband-
DifferentPCI
'

Integer in the
interval [0, 503]

Physical layer
cell identity
(PCI).

To enable this
field, set the
OperationMod
e field to
'Inband-
SamePCI' or
'Inband-
DifferentPCI
'

double

CellRefP Required when
you set the
OperationMod
e field to
'Inband-
SamePCI' or
'Inband-
DifferentPCI
'

1, 2, 4 Number of cell-
specific antenna
ports

To enable this
field, set the
OperationMod
e field to
'Inband-
SamePCI' or
'Inband-
DifferentPCI
'

double

NNCellID Required when
you set the
NSSS or NRS
field of the
cfgCorr input
to 'On'

Integer in the
interval [0, 503]

Narrowband
PCI

To enable this
field, set the
NSSS or NRS
field of the
cfgCorr input
to 'On'

double

NBRefP Required when
you set the
NSSS or NRS
field of the
cfgCorr input
to 'On'

1, 2 Number of
narrowband
reference signal
(NRS) antenna
ports

To enable this
field, set the
NRS field of the
cfgCorr input
to 'On'

double

Note To exclude cell reference signal (RS) locations, specify the NCellID and CellRefP fields. If
you do not specify the NCellID and CellRefP fields, the function assumes that the cell RS is absent.

Data Types: struct

waveform — Time-domain waveform
complex-valued matrix

Time-domain waveform, specified as a T-by-P complex-valued matrix, where:

• T is the number of time-domain samples.
• P is the number of receive antennas.

 lteNBDLFrameOffset

2-359

You can generate a time-domain waveform by performing OFDM modulation on a signal or by using
one of these channel model functions: lteFadingChannel, lteHSTChannel, or
lteMovingChannel.
Data Types: double
Complex Number Support: Yes

cfgCorr — Reference signal configuration options
structure

Reference signal configuration options, specified as a structure containing these fields.

NPSS — NPSS correlation mode indicator
'On' (default) | 'Off'

Narrowband primary synchronization signal (NPSS) correlation mode indicator, specified as 'On' or
'Off'. To use the NPSSs for estimating the timing offset, specify 'On'. To disable the use of the
NPSSs for estimating the timing offset, specify 'Off'.
Data Types: char | string

NSSS — NSSS correlation mode indicator
'On' (default) | 'Off'

Narrowband secondary synchronization signal (NSSS) correlation mode indicator, specified as 'On'
or 'Off'. To use the NSSSs for estimating the timing offset, specify 'On'. To disable the use of the
NSSSs for estimating the timing offset, specify 'Off'.
Data Types: char | string

NRS — NRS correlation mode indicator
'Off' (default) | 'On'

Narrowband reference signal (NRS) correlation mode indicator, specified as 'On' or 'Off'. To use
the NRSs for estimating the timing offset, specify 'On'. To disable the use of the NRSs for estimating
the timing offset, specify 'Off'.
Data Types: char | string

Data Types: struct

Output Arguments
offset — Timing offset
integer

Timing offset, in samples, between the start of the waveform input and the start of the first downlink
frame within waveform, returned as an integer.
Data Types: double

corr — Correlation matrix used to estimate timing offset
complex-valued matrix

Correlation matrix that the function uses to estimate timing offset, returned as a complex-valued
matrix of the same dimensions as the waveform input.

2 Functions

2-360

Data Types: double
Complex Number Support: Yes

Version History
Introduced in R2019b

References
[1] 3GPP TS 36.104. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio

Transmission and Reception.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

See Also
Functions
lteDLFrameOffset | lteFadingChannel | lteHSTChannel | lteMovingChannel | lteNPSS |
lteNRS | lteNSSS | lteSCFDMAModulate

 lteNBDLFrameOffset

2-361

https://www.3gpp.org

lteNBResourceGrid
Narrowband resource array

Syntax
grid = lteNBResourceGrid(cfg)

Description
grid = lteNBResourceGrid(cfg) generates an empty resource array for the specified
configuration settings. If you specify an uplink transmission, the elements of the grid output
represent elements for one slot of a narrowband internet of things (NB-IoT) resource array, as
described in section 10.1.2.1 of [1]. If you specify a downlink transmission, the elements of the grid
output represent elements for one subframe of an NB-IoT resource array, as described in section
10.2.2.1 of [1].

For more information about resource grids and LTE Toolbox resource element representation by
using multidimensional arrays, see “Represent Resource Grids”.

Examples

Create Empty Narrowband Slot Resource Array for Uplink Transmission

Create a resource array for an uplink NB-IoT transmission with a subcarrier spacing of 3.75 kHz and
a single antenna port.

Configure a transmission with a subcarrier spacing of 3.75 kHz.

cfg = struct('NBULSubcarrierSpacing','3.75kHz');

Create the resource array and display its size.

grid = lteNBResourceGrid(cfg);
disp(size(grid))

 48 7

Create Empty Narrowband Resource Array for Downlink Transmission

Specify a downlink NB-IoT configuration for one subframe and two antenna ports.

cfg = struct('NBRefP',2);

Create the resource array and display its size.

grid = lteNBResourceGrid(cfg);
disp(size(grid))

 12 14 2

2 Functions

2-362

Input Arguments
cfg — Configuration settings
structure

Configuration settings, specified as a structure whose fields depend on the desired configuration.

To generate a resource array for an uplink configuration, the input structure must contain this field.

Field Values Description Data Type
NBULSubcarrierSpac
ing

'3.75kHz', '15kHz' NB-IoT uplink
subcarrier spacing. To
set a subcarrier spacing
of 3.75 kHz, specify this
field as '3.75kHz'. To
set a subcarrier spacing
of 15 kHz, specify this
field as '15kHz'.

char, string

To generate a resource array for a downlink configuration, the input structure must contain this field.

Field Values Description Data Type
NBRefP 1, 2 Number of narrowband

reference signal (NRS)
antenna ports.

double

If you specify both fields, the function ignores the value of the NBRefP field and generates a resource
array for the uplink configuration corresponding to the value of the NBULSubcarrierSpacing field.
Data Types: struct

Output Arguments
grid — Empty resource array
N-by-M-by-P array of zeros

Empty resource array, returned as an N-by-M-by-P array of zeros, where:

• N is the number of subcarriers
• For an uplink transmission, M is the number of single-carrier frequency-division multiple access

(SC-FDMA) symbols in a slot. For a downlink transmission, M is the number of orthogonal
frequency-division multiplexing (OFDM) or SC-FDMA symbols in a subframe.

• P is the number of transmit antenna ports. For an uplink transmission, P is 1. For a downlink
transmission, P is the value of cfg.NBRefP.

If you specify an uplink configuration, the elements of this output represent elements for the slot
resource array described in section 10.1.2.1 of [1]. If you specify a downlink configuration, the
elements of this output represent elements of the subframe resource array described in section
10.2.2.1 of [1].

 lteNBResourceGrid

2-363

Version History
Introduced in R2021a

References
[1] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). https://www.3gpp.org.

See Also
Functions
lteResourceGrid | lteSCFDMAModulate

Topics
“Represent Resource Grids”

2 Functions

2-364

https://www.3gpp.org

lteNDLSCH
Generate NB-IoT DL-SCH codeword

Syntax
cwout = lteNDLSCH(outlen,trblkin)

Description
cwout = lteNDLSCH(outlen,trblkin) applies the complete NB-IoT downlink shared channel
(DL-SCH) transport channel coding chain to the input data, trblkin, and returns the codeword in
cwout. The encoding process includes type-24A CRC calculation, convolutional encoding, and rate
matching. This function applies to a single transport block.

Examples

Generate NB-IoT DL-SCH Codeword Bits

Generate 960 NB-IoT DL-SCH codeword bits with a transport block.

Set the transport block length to 208 and the output codeword length to 960. Generate the transport
block information bits as a random binary sequence.

trblklen = 208;
outlen = 960;
trblkin = randi([0 1],trblklen,1);

Generate the 960 NB-IoT DL-SCH codeword bits given the transport block information bits and the
output codeword length.

cw = lteNDLSCH(outlen,trblkin);

Input Arguments
outlen — Codeword length
nonnegative integer

Codeword length, specified as a nonnegative integer. This input represents the NPDSCH capacity for
the associated codeword and the lengths of the vector in the cwout output. The input transport
blocks are rate-matched to the codeword length.
Data Types: int8 | double

trblkin — Transport block information bits to be encoded
numeric vector

Transport block information bits to be encoded, specified as a numeric vector.
Data Types: int8 | double

 lteNDLSCH

2-365

Output Arguments
cwout — DL-SCH encoded codeword
numeric column vector

DL-SCH encoded codewords, returned as a numeric column vector of size outlen.
Data Types: int8

Version History
Introduced in R2018a

See Also
lteNDLSCHDecode | lteDLSCH

2 Functions

2-366

lteNDLSCHDecode
Decode NB-IoT DL-SCH codeword

Syntax
[trblkout,blkcrc,stateout] = lteNDLSCHDecode(trblklen,cwin)
[trblkout,blkcrc,stateout] = lteNDLSCHDecode(trblklen,cwin,statein)

Description
[trblkout,blkcrc,stateout] = lteNDLSCHDecode(trblklen,cwin) returns the information
bits, trblkout, decoded from the input soft LLR codeword data, cwin. The NB-IoT downlink shared
channel (DL-SCH) decoder includes rate recovery, Viterbi decoding, and CRC calculations. The
function also returns the type-24A transport block CRC decoding result in blkcrc and the HARQ
process decoding state in stateout.

[trblkout,blkcrc,stateout] = lteNDLSCHDecode(trblklen,cwin,statein)specifies the
initial HARQ process state in the statein structure. The initial transmission and the re-transmission
are both bundles containing multiple subframes, defined in Section 5.3.2.1 of [1].

Examples

Generate and Decode NB-IoT DL-SCH Transmissions

This example shows how to transmit a bundle carrying the same transport block twice. The LLR soft
bits from repeated subframes in a bundle are combined in structure dstate, the LLR soft bits from
two bundles are combined in structure state. Note that dstate is reset before the re-transmission
of the bundle.

Specify the cell-wide settings and channel transmission configuration in parameter structures enb
and chs.

enb.NNCellID = 0;
enb.NBRefP = 1;
enb.NFrame = 1;
chs.NSF = 3;
chs.NRep = 4;
chs.RNTI = 0;
chs.NPDSCHDataType = 'NotBCCH';

Set the transport block length to 208 and the output codeword length to 960. Initialize the decoder
states for the first HARQ transmission. Generate transport block data.

trblklen = 208;
outlen = 960;
estate = [];
dstate = [];
state = [];
trblkin = randi([0 1],trblklen,1);

 lteNDLSCHDecode

2-367

Generate the 960 NB-Iot DL-SCH codeword bits.

cw = lteNDLSCH(outlen,trblkin);

Perform the initial transmission of a bundle containing the transport block. Verify if there are errors
in the transmission.

for subframeIdx = 0:(chs.NSF*chs.NRep-1)
 enb.NSubframe = subframeIdx;
 [sym,estate] = lteNPDSCH(enb,chs,cw,estate);
 [rxcw, dstate] = lteNPDSCHDecode(enb,chs,sym,dstate);
end
[trblkout1,blkerr1,state] = lteNDLSCHDecode(trblklen,rxcw,state);
blkerr1

blkerr1 = logical
 0

Perform the re-transmission of the bundle containing the same transport block. The information
obtained from the initial bundle transmission is saved in state and used as an input to
lteNDLSCHDecode. Verify if there are errors in the re-transmission.

for subframeIdx = chs.NSF*chs.NRep:(2*chs.NSF*chs.NRep-1)
 enb.NSubframe = subframeIdx;
 [sym,estate] = lteNPDSCH(enb,chs,cw,estate);
 [rxcw,dstate] = lteNPDSCHDecode(enb,chs,sym,dstate);
end
[trblkout2,blkerr2,state] = lteNDLSCHDecode(trblklen,rxcw,state);
blkerr2

blkerr2 = logical
 0

Input Arguments
trblklen — Transport block length
nonnegative integer

Transport block length, specified as a nonnegative integer. trblklen defines the transport block
lengths to which the input code blocks should be rate-recovered and decoded.
Data Types: double

cwin — Soft LLR codeword data
numeric vector

Soft LLR codeword data, specified as a numeric vector. cwin contains the floating-point soft LLR data
of the codeword to be decoded.
Data Types: double

statein — Initial HARQ process state
structure

Initial HARQ process state, specified as a structure. The structure can be empty or contain this field:

2 Functions

2-368

Name Values Description Data Types
CBSBuffers Cell array of vectors LLR soft buffer state associated with a

single transport block. The buffer is
positioned at the input to the Viterbi
decoder after explicit rate recovery.

cell

The updated buffer states after decoding are returned in the CBSBuffers field of the stateout
output. The statein array is normally generated and recycled from the stateout of previous calls
to lteNDLSCHDecode as part of a sequence of HARQ transmissions.
Data Types: struct

Output Arguments
trblkout — Decoded information bits
numeric vector

Decoded information bits, returned as a numeric vector.
Data Types: int8

blkcrc — Type-24A transport block CRC decoding result
true or 1 | false or 0

Type-24A transport block CRC decoding result, returned as a numeric or logical 1 (true) or 0
(false).
Data Types: logical

stateout — HARQ process decoding state
structure

HARQ process decoding state, returned as a structure containing the internal state of a transport
block in these fields:

Parameter
Field

Values Description Data types

CBSBuffers Cell array of vectors LLR soft buffer states for the set of code
blocks associated with a single transport
block. The buffers are positioned at the
input to the Viterbi decoder after explicit
rate recovery.

cell

BLKCRC true or 1, false or 0 Type-24A transport block CRC decoding
error

logical

Data Types: struct

Version History
Introduced in R2018a

 lteNDLSCHDecode

2-369

References
[1] 3GPP TS 36.321. “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control

(MAC) protocol Specification.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteNDLSCH | lteDLSCHDecode

2 Functions

2-370

https://www.3gpp.org

lteNPBCH
Generate NPBCH symbols

Syntax
sym = lteNPBCH(enb,cw)

Description
sym = lteNPBCH(enb,cw) generates sym, a matrix containing the narrowband physical broadcast
channel (NPBCH) symbols for cell-wide settings enb. The function generates the symbols by applying
NPBCH encoding to and codeword cw, which comprises scrambling, QPSK modulation, layer
mapping, and precoding in accordance with section 10.2.4 of [1].

Examples

Generate NPBCH Symbols

Generate NPBCH symbols using the MIB.

Generate the MIB and pass it through broadcast channel (BCH) encoding to obtain the 1600-bit
codeword.

mib = randi([0 1],34,1);
cw = lteBCH(mib,1600,1);

Specify the cell-wide settings in the structure enb.

enb.NNCellID = 0;
enb.NBRefP = 1;
enb.NSubframe = 10;

Generate the NPBCH symbols for each of the subframes.

sym = lteNPBCH(enb,cw);

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields.

 lteNPBCH

2-371

Parameter Field Require
d or
Optiona
l

Values Description Data Types

NNCellID Required Nonnegative
integer

NB-IoT physical layer cell identity double

NBRefP Required 1, 2 Number of narrowband reference
signal antenna ports

double

NSubframe Required Nonnegative
integer

Subframe number double

NFrame Optional 0 (default),

nonnegative
integer

Frame number double

Data Types: struct

cw — Codeword to be modulated
binary-valued column vector

Codeword to be modulated, specified as a binary-valued column vector of length 1600.
Data Types: double | logical

Output Arguments
sym — NPBCH symbols
100-by-P complex matrix

NPBCH symbols, returned as a 100-by-P complex valued matrix, where 100 is the number of
modulation symbols for one antenna port for one subframe, and P is the number of transmission
antenna ports.
Data Types: double
Complex Number Support: Yes

Version History
Introduced in R2019b

References
[1] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). https://www.3gpp.org.

See Also
lteNPBCHIndices | lteNPBCHDecode | lteBCH

2 Functions

2-372

https://www.3gpp.org

lteNPBCHDecode
Decode NPBCH symbols

Syntax
[bits,stateout,symbols,nfmod64,trblk,NBRefP] = lteNPBCHDecode(enb,sym)
[___] = lteNPBCHDecode(enb,sym,statein)
[___] = lteNPBCHDecode(enb,sym,hest,noiseest)
[___] = lteNPBCHDecode(enb,sym,hest,noiseest,statein)

Description
[bits,stateout,symbols,nfmod64,trblk,NBRefP] = lteNPBCHDecode(enb,sym) decodes
sym, the NB-IoT physical broadcast channel (NPBCH) symbols, for cell-wide settings enb. The
NPBCH decoding inverts the NPBCH encoding process described in section 10.2.4 of [1] and the
broadcast channel (BCH) encoding process described in section 5.3.1 of [2]. The function returns
bits, a codeword of soft bits, the decoder state for reception of a bundle (a full set of repeated
transmissions of a single transport block) stateout, and the received constellation symbols,
symbols, by performing the inverse of NPBCH encoding. Frame number modulo 64 nfmod64,
decoded BCH information bits trblk, and the number of narrowband reference signal (NRS) antenna
ports NBRefP, are returned by performing the inverse of BCH encoding.

[___] = lteNPBCHDecode(enb,sym,statein) decodes the NPBCH symbols for the initial
decode state statein.

[___] = lteNPBCHDecode(enb,sym,hest,noiseest) decodes the NPBCH symbols for the
channel estimate hest and noise estimate noiseest.

[___] = lteNPBCHDecode(enb,sym,hest,noiseest,statein) decodes the NPBCH symbols
for the channel estimate, noise estimate, and the initial decoder state.

Examples

Generate and Decode NPBCH Symbols

Generate and decode the NPBCH symbols subframe-by-subframe for a bundle of 64 NPBCH
subframes.

Specify the cell-wide settings.

enb = struct('NNCellID',0,'NBRefP',1);

To obtain the codeword, generate the MIB and pass it through broadcast channel (BCH) encoding.

mib = randi([0 1],34,1);
cw = lteBCH(mib,1600,enb.NBRefP);

Specify the encoder state as empty.

statein = [];

 lteNPBCHDecode

2-373

Generate the NPBCH symbols for each of the 64 NPBCH subframes and then decode them.

for subframeIdx = 0:63
 enb.NSubframe = subframeIdx*10; % As NPBCH is mapped only on 0th subframe of each frame
 sym = lteNPBCH(enb,cw);
 [decoderOut,stateout,symbols,NfMod64,trblk,NBRefP] = ...
 lteNPBCHDecode(enb,sym,statein);
 statein = stateout;
end

To check whether the decoding is successful, display the value of NBRefP.

NBRefP

NBRefP = uint32
 1

Decode NPBCH Symbols from Generated Waveform

To obtain NPBCH symbols, decode the waveform that is generated using NB-IoT Downlink Waveform
Generator.

Specify the NB-IoT eNodeB configuration with 65 frames.

ngen = NBIoTDownlinkWaveformGenerator;
ngen.Config.NNCellID = 120;
ngen.Config.NBRefP = 2;
ngen.Config.TotSubframes = 650;

Generate the waveform, eNodeBOutput.

[eNodeBOutput,~,ofdmInfo] = ngen.generateWaveform;

Start the decoding process by first initializing the fields of the structure enb.

enb.NNCellID = 120;
enb.NBRefP = 2;

To obtain the resource grid rxgrid, perform OFDM demodulation and generate the NPBCH resource
element (RE) indices.

The NB-IoT Downlink OFDM is the same as UL-SC-FDMA. Use lteSCFDMADemodulate to perform
OFDM demodulation.

enb.NBULSubcarrierSpacing = '15kHz';
rxgrid = lteSCFDMADemodulate(enb,eNodeBOutput); % NB-IoT Downlink OFDM Demodulation
npbchIndices = lteNPBCHIndices(enb);

Extract the REs from the resource grid using the RE indices.

npbchRx = lteExtractResources(...
 npbchIndices, rxgrid(1:12,1:14,:));

Specify the encoder state as empty.

statein = [];

2 Functions

2-374

Decode the NPBCH symbols.

[decoderOut,stateout,symbols,nfmod64,trblk,NBRefP] = lteNPBCHDecode(enb,npbchRx,statein);

To check whether the decoding is successful, display the value of NBRefP.

NBRefP

NBRefP = uint32
 2

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields.

Parameter Field Require
d or
Optiona
l

Values Description Data Types

NNCellID Required Nonnegative
integer

NB-IoT physical layer cell identity double

NBRefP Optional 1, 2 Number of narrowband reference
signal (NRS) antenna ports. The
default is to establish NBRefP by
decoding the input symbols, sym.

double

NSubframe Optional Nonnegative
integer

Subframe number double

NFrame Optional 0 (default),

nonnegative
integer

Initial frame number double

Data Types: struct

sym — Modulated NPBCH symbols
complex-valued matrix

Modulated NPBCH symbols, specified as an NRE-by-NRxAnts complex-valued matrix, where:

• NRE is a multiple of the number of quadrature phase-shift keying (QPSK) symbols per antenna and
per subframe assigned to the NPBCH.

• NRxAnts is the number of receive antennas.

Data Types: double
Complex Number Support: Yes

statein — Initial encoder state
structure

 lteNPBCHDecode

2-375

Initial encoder state for transmission of a bundle, specified as a structure containing the fields listed
in the stateout output. At the start of the bundle transmission, set statein to empty. The
lteNPBCHDecode function manages the state during subsequent calls for the transmissions of the
bundle and resets it automatically at the end of the bundle.
Data Types: struct

hest — Channel estimate
complex-valued 3-D array

Channel estimate, specified as an NRE-by-NRxAnts-by-NNBRefP complex-valued array, where:

• NRE is a multiple of the number of QPSK symbols per antenna and per subframe.
• NRxAnts is the number of receive antennas.
• NNBRefP is the number of NRS antenna ports you specify in the NBRefP field of the enb input.

The lteNPBCHDecode function assumes that this estimate uses the NRSs.
Data Types: double
Complex Number Support: Yes

noiseest — Noise estimate
numeric scalar

Noise estimate, specified as a numeric scalar. It is an estimate of the noise power spectral density per
resource element on the received subframe. This estimate is provided by the
lteDLChannelEstimate function.
Data Types: double

Output Arguments
bits — Codeword of soft bits
binary vector

Codeword of soft bits, returned as an N-by-1 binary vector, where N can be a part of the 1600-bit
codeword length in multiples of 200 or the entire codeword, depending upon the input NPBCH
symbols, sym.
Data Types: double

stateout — Output decoder state
structure

Output decoder state for the next subframe, returned as a structure. This output contains the internal
state of each transport block in these fields.

2 Functions

2-376

Name Values Description Data Types
SubframeIdx Integer in the interval

[0, 63]
Index of a subframe
within a bundle, in zero-
based form, returned as
an integer in the
interval [0,63]. The
lteNPBCHDecode
function returns this
field as the
SubframeIdx field of
the statein input
increased by one. When
the input value of
SubframeIdx in the
statein input reaches
its maximum value, the
function returns this
field as 0. If no input
exists in statein, the
default input is 0. A
value of 0 indicates that
the transmission has
reached the end of a
bundle, which the
function also indicates
by setting the EndOfTx
field to true.

double

CWBuffer 1600-by-1 numeric
vector

Buffer to store the soft-
combined log-likelihood
ratio (LLR) bits after
codeword descrambling,
returned as a 1600-by-1
numeric vector. The
length of this field is the
same as the length of
the codeword. At the
beginning of the bundle,
the lteNPBCHDecode
function resets this
field.

double

 lteNPBCHDecode

2-377

Name Values Description Data Types
EndOfTx Logical 1 (true) or 0

(false)
End of bundle indicator.
The lteNPBCHDecode
function returns this
field as 1 (true) when
the transmission
reaches the end of the
bundle. Otherwise, the
lteNPBCHDecode
function returns this
field as 0 (false). At
the beginning of the
bundle, the
lteNPBCHDecode
function resets this
field.

logical

Data Types: struct

symbols — Received constellation symbols
complex-valued vector

Received constellation symbols, returned as a complex-valued vector.
Data Types: double

nfmod64 — System frame number modulo 64
integer in the interval [0, 63]

System frame number modulo 64, mod(NFrame,64), returned as an integer in the interval [0, 63].
nfmod64 is obtained when determining the scrambling phase of the input NPBCH symbols, sym.
Data Types: double

trblk — Decoded BCH information bits
34-by-1 binary column vector

Decoded BCH information bits, returned as a 34-by-1 binary column vector.
Data Types: int8

NBRefP — Number of NRS ports
0 | 1 | 2

Number of NRS ports, returned as 0, 1, or 2 as determined during the BCH decoding. If the value is
0, a CRC error has been detected, and decoding is unsuccessful.
Data Types: uint32

Tips
To use this function for a bundle transmission, follow these steps:

1 Call the lteNPBCHDecode function and specify the initial encoder state using the statein
input. The stateout output represents the decoder state of the first transmission of the bundle.

2 Functions

2-378

2 Call the lteNPBCHDecode function again and specify the statein input as the stateout
output returned by the previous call to the function.

3 Repeat step 2 until the lteNPBCHDecode function returns the EndOfTx field of the stateout
output as 1 (true), indicating the end of the bundle. The lteNPBCHDecode automatically resets
the state at the end of the bundle transmission.

Version History
Introduced in R2019b

References
[1] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). https://www.3gpp.org.

[2] 3GPP TS 36.212. “Multiplexing and channel coding.” 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). https://www.3gpp.org.

See Also
lteNPBCH | lteNPBCHIndices | lteBCH | ltePBCHDecode

 lteNPBCHDecode

2-379

https://www.3gpp.org
https://www.3gpp.org

lteNPDCCH
Generate NPDCCH symbols

Syntax
[sym,stateout] = lteNPDCCH (enb,chs,cw)
[sym,stateout] = lteNPDCCH (enb,chs,cw,statein)

Description
[sym,stateout] = lteNPDCCH (enb,chs,cw) generates sym, a matrix containing the NB-IoT
physical downlink control channel (NPDCCH) complex symbols in a subframe for cell-wide settings
structure, enb, channel transmission configuration, chs, and codeword, cw. The channel encoding
process comprises stages of scrambling, QPSK modulation, layer mapping, and precoding in
accordance with 3GPP TS 36.211 Section 10.2.5 of [1]. The function also returns stateout, a
structure containing the encoder state of a bundle (a full set of repeated transmissions of a single
downlink control information).

[sym,stateout] = lteNPDCCH (enb,chs,cw,statein) returns the NPDCCH symbols and the
initial encoder state specified by statein.

Examples

Generate NPDCCH Symbols

Generate the NPDCCH symbols subframe-by-subframe for a bundle of 10 subframes.

Specify the cell-wide settings and channel transmission configuration in parameter structures enb
and chs.

enb.NNCellID = 0;
enb.NBRefP = 1;
chs.NRep = 10;

Set the output code length to 320 and generate the codeword bits. Specify the encoder state as
empty at the start of the bundle.

cwLen = 320;
cw = ones(cwLen,1); % Codeword bits
estate = [];

Generate the NPDCCH symbols for each of the 10 subframes.

for nsf=0:chs.NRep-1
 enb.NSubframe=nsf;
 [sym,estate]=lteNPDCCH(enb,chs,cw,estate);
end
estate.EndOfTx

2 Functions

2-380

ans = logical
 1

Display the first seven NPDCCH encoded symbols.

sym(1:7)

ans = 7×1 complex

 0.7071 - 0.7071i
 -0.7071 - 0.7071i
 0.7071 - 0.7071i
 0.7071 - 0.7071i
 -0.7071 + 0.7071i
 0.7071 - 0.7071i
 0.7071 - 0.7071i

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields.

Name Required or
Optional

Values Description Data Types

NNCellID Required Nonnegative
integer

Narrowband
physical layer cell
identity

double

NBRefP Required 1, 2 Number of
narrowband
reference signal
(NRS) antenna
ports.

double

NSubframe Required Nonnegative
integer

Subframe number double

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing this field.

Name Required or
Optional

Values Description Data Types

NRep Required Nonnegative
integer

Number of
repetitions

double

Data Types: struct

 lteNPDCCH

2-381

cw — Codeword to be modulated
binary column vector

Codeword to be modulated, specified as a binary column vector.

statein — Input encoder state
structure

Input encoder state for transmission of a bundle, specified as a structure containing the fields listed
in the stateout output. At the start of the bundle transmission, set statein to empty. The
lteNPDCCH function manages the state during subsequent calls for the transmissions of the bundle
and resets it automatically at the end of the bundle.
Data Types: struct

Output Arguments
sym — NPDCCH symbols
complex-valued matrix

NPDCCH symbols, returned as an N-by-P complex-valued matrix, where N is the number of
modulation symbols for one antenna port and P is the number of transmission antennas.
Data Types: double
Complex Number Support: Yes

stateout — Output encoder state
structure

Output encoder state, returned as a structure. This output contains the internal state of each
transport block in these fields.

2 Functions

2-382

Name Values Description Data Types
SubframeIdx 0 (default),

integer in the interval
[0, chs. NRep – 1]

Index of a subframe
within a bundle, in zero-
based form. The
lteNPDCCH function
returns this field as the
SubframeIdx field of
the statein input
increased by one. When
the input value of
SubframeIdx in the
statein input reaches
its maximum value, the
function returns this
field as 0. If no input
exists in statein, the
default input is 0. A
value of 0 indicates that
the transmission has
reached the end of a
bundle, which the
function also indicates
by setting the EndOfTx
field to 1 (true).

double

InitNSubframe Nonnegative integer Subframe number,
either at the
initialization point of the
scrambling sequence or
reinitialization point of
the sequence done at
every 4th NPDCCH
subframe. When the
subframe being
processed is at the
initialization or
reinitialization point,
this field is equal to the
mod(enb.Nsubframe,
10). Otherwise, it is
equal to the input in
statein. If no input is
provided to statein,
the InitNSubframe is
equal to
mod(enb.NSubframe,
10).

double

 lteNPDCCH

2-383

Name Values Description Data Types
EndOfTx Logical 1 (true) or 0

(false)
End of bundle indicator.
The lteNPDCCH
function returns this
field as 1 (true) when
the transmission
reaches the end of a
bundle. Otherwise, the
lteNPDCCH function
returns this field as 0
(false). At the
beginning of a bundle,
the lteNPDCCH function
resets this field.

logical

Data Types: struct

Tips
To use this function for a bundle transmission, follow these steps:

1 Call the lteNPDCCH function and specify the initial encoder state using the statein input. The
stateout output represents the output encoder state of the first transmission of the bundle.

2 Call the lteNPDCCH function again and specify the statein input as the stateout output
returned by the previous call to the function.

3 Repeat step 2 until the lteNPDCCH function returns the EndOfTx field of the stateout output
as 1 (true), indicating the end of the bundle. The lteNPDCCH automatically resets the state at
the end of the bundle transmission.

Version History
Introduced in R2019b

References
[1] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

See Also
lteNPDCCHIndices | lteNPDCCHDecode | lteNPDSCH | ltePDCCH

2 Functions

2-384

https://www.3gpp.org

lteNPDCCHDecode
Decode NPDCCH symbols

Syntax
[cw,stateout,symbols] = lteNPDCCHDecode(enb,chs,sym)
[___] = lteNPDCCHDecode(enb,chs,sym,statein)
[___] = lteNPDCCHDecode(enb,chs,sym,hest,noiseest)
[___] = lteNPDCCHDecode(enb,chs,sym,hest,noiseest,statein)

Description
[cw,stateout,symbols] = lteNPDCCHDecode(enb,chs,sym) decodes sym, the NB-IoT
physical downlink control channel (NPDCCH) symbols, for cell-wide settings enb and channel-specific
configuration structure chs. The channel decoding comprises deprecoding, layer demapping, soft
demodulation, descrambling, and codeword recovery. The decoding inverts the NPDCCH channel
encoding process described in 3GPP TS 36.211 Section 10.2.5 of [1]. The function returns a codeword
cw of soft bits, the decoder state stateout for reception of a bundle (full set of repeated
transmissions of a single downlink control information), and the received constellation symbols
symbols.

[___] = lteNPDCCHDecode(enb,chs,sym,statein) decodes the NPDCCH symbols for the
initial decoder state statein.

[___] = lteNPDCCHDecode(enb,chs,sym,hest,noiseest) decodes the NPDCCH symbols for
the channel estimate hest and noise estimate noiseest.

[___] = lteNPDCCHDecode(enb,chs,sym,hest,noiseest,statein) decodes the NPDCCH
symbols for the channel estimate, noise estimate, and initial decoder state.

Examples

Generate and Receive NPDCCH Symbols

Generate and receive the NPDCCH symbols subframe by subframe for a bundle of 10 subframes.

Specify the cell-wide settings and channel transmission configuration parameter structures enb and
chs.

enb.NNCellID = 0;
enb.NBRefP = 1;
chs.NRep = 10;

Set the output codeword length to 320 and generate the codeword bits. Specify the encoder and
decoder state as empty at the start of the bundle.

cwLen = 320;
cw = ones(cwLen,1); % Codeword bits
estate = [];
dstate = [];

 lteNPDCCHDecode

2-385

Generate the NPDCCH symbols for each of the 10 subframes and then decode them.

for nsf = 0:chs.NRep-1
 enb.NSubframe = nsf;
 [sym,estate] = lteNPDCCH(enb,chs,cw,estate);
 [rxcw,dstate] = lteNPDCCHDecode(enb,chs,sym,dstate);
end

The value of the field CWSFCount in structure dstate indicates that NPDCCH subframe has been
received ten times.

dstate.EndOfTx

ans = logical
 1

dstate.CWSFCount

ans = 10

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields.

Name Required or
Optional

Values Description Data Types

NNCellID Required Nonnegative
integer

Narrowband
physical layer cell
identity

double

NBRefP Required 1, 2 Number of
narrowband
reference signal
(NRS) antenna
ports.

double

NSubframe Required Nonnegative
integer

Subframe number double

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure that containing these fields.

Name Required or
Optional

Values Description Data Types

NRep Required Nonnegative
integer

Number of
repetitions

double

2 Functions

2-386

Name Required or
Optional

Values Description Data Types

CSI Optional 'On' (default),
'Off'

Channel state
information (CSI).
To scale the soft
bits by CSI during
the equalization
process, specify
this field as 'On'.
Otherwise, specify
this field as 'Off'.

char, string

Data Types: struct

sym — Modulated NPDCCH symbols
complex-valued matrix

Modulated NPDCCH symbols, specified as an NRE-by-NRxAnts complex-valued matrix, where:

• NRE is the number of quadrature phase-shift keying (QPSK) symbols per antenna and per subframe
assigned to the NPDCCH.

• NRxAnts is the number of receive antennas.

Data Types: double
Complex Number Support: Yes

statein — Initial encoder state
structure

Initial encoder state for transmission of a bundle, specified as a structure containing the fields listed
in the stateout output. At the start of the bundle transmission, set statein to empty. The
lteNPDCCHDecode function manages the state during subsequent calls for the transmissions of the
bundle and resets it automatically at the end of the bundle.
Data Types: struct

hest — Channel estimate
complex-valued 3-D array

Channel estimate, specified as an NRE-by-NRxAnts-by-NNBRefP complex-valued array, where:

• NRE is the number of QPSK symbols per antenna and per subframe.
• NRxAnts is the number of receive antennas.
• NNBRefP is the number NRS antenna ports you specify in the NBRefP field of the enb input.

The lteNPDCCHDecode function assumes that this estimate uses the NRSs.
Data Types: double
Complex Number Support: Yes

noiseest — Noise estimate
numeric scalar

Noise estimate of the noise power spectral density per resource element on the received subframe,
specified as a numeric scalar. This estimate is provided by the lteDLChannelEstimate function.

 lteNPDCCHDecode

2-387

Data Types: double

Output Arguments
cw — Codeword of soft bits
numeric vector

Codeword of soft bits, returned as a numeric column vector.
Data Types: double

stateout — Output decoder state
structure

Output decoder state for the next subframe, returned as a structure. This output contains the internal
state of each transport block in these fields.

Name Values Description Data Types
SubframeIdx 0 (default),

integer in the interval
[0, chs. NRep – 1]

Index of a subframe
within a bundle, in zero-
based form. The
lteNPDCCHDecode
function returns this
field as the
SubframeIdx field of
the statein input
increased by one. When
the input value of
SubframeIdx in the
statein input reaches
its maximum value, the
function returns this
field as 0. If no input
exists in statein, the
default input is 0. A
value of 0 indicates that
the transmission has
reached the end of a
bundle, which the
function also indicates
by setting the EndOfTx
field to 1 (true).

double

2 Functions

2-388

Name Values Description Data Types
InitNSubframe Nonnegative integer Subframe number,

either at the
initialization point of the
scrambling sequence or
reinitialization point of
the sequence done at
every 4th NPDCCH
subframe. When the
subframe being
processed is at the
initialization or
reinitialization point,
this field is equal to the
mod(enb.Nsubframe,
10). Otherwise, it is
equal to the input in
statein. If input to
statein is not
provided, the
InitNSubframe is
equal to
mod(enb.NSubframe,
10).

double

CWBuffer Numeric column vector Buffer to store the soft-
combined log-likelihood
ratio (LLR) bits after
codeword descrambling.
The length of this field
is the same as the
length of the codeword,
cw. At the beginning of
a bundle, the
lteNPDCCHDecode
function resets this
field.

double

CWSFCount 0 (default),

nonnegative integer

Repetition counter
which indicates how
many repetitions of cw
the CWBuffer field has
recovered. At the
beginning of a bundle,
the lteNPDCCHDecode
function resets this
field.

double

 lteNPDCCHDecode

2-389

Name Values Description Data Types
EndOfCW Logical 1 (true) or 0

(false)
Codeword receipt
indicator. The
lteNPDCCHDecode
function returns this
field as 1 (true) when
the entire codeword has
been received and the
CWSFCount field is as
least 1. At the beginning
of a bundle, the
lteNPDCCHDecode
function resets this
field.

logical

EndOfTx Logical 1 (true) or 0
(false)

End of bundle indicator.
The lteNPDCCHDecode
function returns this
field as 1 (true) when
the transmission
reaches the end of a
bundle. Otherwise, the
lteNPDCCHDecode
function returns this
field as 0 (false). At
the beginning of a
bundle, the
lteNPDCCHDecode
function resets this
field.

logical

Data Types: struct

symbols — Received constellation symbols
complex-valued vector

Received constellation symbols, returned as a complex-valued vector.
Data Types: double
Complex Number Support: Yes

Tips
To use this function for transmission of a bundle, follow these steps:

1 Call the lteNPDCCHDecode function and specify the initial encoder state using the statein
input. The stateout output represents the output decoder state of the first transmission of the
bundle.

2 Call the lteNPDCCHDecode function again and specify the statein input as the stateout
output returned by the previous call to the function.

3 Repeat step 2 until the lteNPDCCHDecode function returns the EndOfTx field of the stateout
output as 1 (true), indicating the end of the bundle. The lteNPDCCHDecode automatically
resets the state at the end of the bundle transmission.

2 Functions

2-390

Version History
Introduced in R2019b

References
[1] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

See Also
lteNPDCCH | lteNPDCCHIndices | lteNPDSCHDecode | ltePDCCHDecode

 lteNPDCCHDecode

2-391

https://www.3gpp.org

lteNPDCCHIndices
Generate NPDCCH RE indices

Syntax
[ind,info] = lteNPDCCHIndices(enb,chs)
[ind,info] = lteNPDCCHIndices(enb,chs,opts)

Description
[ind,info] = lteNPDCCHIndices(enb,chs) returns ind, a matrix containing narrowband
physical downlink control channel (NPDCCH) resource element (RE) indices, and info, a structure
containing information related to the indices. You can use ind to index elements of the subframe
resource grid directly for all antenna ports in accordance with 3GPP TS 36.211 Section 10.2.5.5 of
[1]. Initialize this function with cell-wide settings enb and channel transmission configuration chs.

[ind,info] = lteNPDCCHIndices(enb,chs,opts) formats the returned indices using options
specified by opts.

Examples

Generate NPDCCH RE Indices and Info Structure

Generate the NPDCCH RE indices mapping and display related information.

Create the eNodeB structure cell-wide settings for one antenna.

enb.NNCellID = 10;
enb.NBRefP = 1;

Create the channel transmission configuration. Specify the value of narrowband control channel
element (NCCE).

chs.NCCE = 0; % NPDCCH Format 0

Generate the NPDCCH RE indices column vector. Display the first seven indices.

[ind,info] = lteNPDCCHIndices(enb,chs);
ind(1:7)

ans = 7×1

 1
 2
 3
 4
 5
 6
 13

2 Functions

2-392

Display the fields contained in the info structure.

info.G

ans = 160

info.Gd

ans = 80

Generate NPDCCH RE Indices

Generate the NPDCCH RE 0-based indices mapping in linear index form for two antennas.

Create the eNodeB structure cell-wide settings for two antennas.

enb.NNCellID = 10;
enb.NBRefP = 2;

Create the channel transmission configuration.

chs.NCCE = [0 1]; % NPDCCH Format 1

Generate the NPDCCH RE indices matrix. Display the first seven indices.

ind = lteNPDCCHIndices(enb,chs,{'0based','ind'});
ind(1:7,:)

ans = 7×2

 0 168
 1 169
 2 170
 3 171
 4 172
 5 173
 6 174

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields.

Name Required or
Optional

Values Description Dependencies Data Types

NNCellID Required Nonnegative
integer

Narrowband
physical layer
cell identity

— double

 lteNPDCCHIndices

2-393

Name Required or
Optional

Values Description Dependencies Data Types

NBRefP Required 1, 2 Number of
narrowband
reference signal
(NRS) antenna
ports

— double

2 Functions

2-394

Name Required or
Optional

Values Description Dependencies Data Types

OperationMod
e

Optional 'Standalone'
(default),
'Inband-
SamePCI',
'Inband-
DifferentPCI
',
'Guardband'

NB-IoT
operation mode,
specified as one
of these values:

• 'Standalo
ne' – NB-
IoT
standalone
operation
within any
180-kHz
band outside
any LTE
carrier
bandwidth

• 'Inband-
SamePCI' –
NB-IoT in-
band
operation
with the
same PCI as
an LTE
carrier

• 'Inband-
Different
PCI' – NB-
IoT in-band
operation
with a
different PCI
to an LTE
carrier

• 'Guardban
d' – NB-IoT
guard-band
operation
utilizing
unused
resource
blocks
within the
guard-band
of an LTE
carrier

— char, string

 lteNPDCCHIndices

2-395

Name Required or
Optional

Values Description Dependencies Data Types

CellRefP Optional 1, 2, 4 Number of cell-
specific
reference signal
(CRS) antenna
ports. The value
of this field
must be either
the value to
which you set
the NBRefP
field (default) or
4.

This field
applies only
when you
specify the
OperationMod
e field as
'Inband-
SamePCI' or
'Inband-
DifferentPCI
'. When you
specify the
OperationMod
e field as
'Inband-
SamePCI', the
lteNPDCCHInd
ices function
sets this field to
the value of the
NBRefP field.

double

ControlRegio
nSize

See
Dependencies
column

3 (default),
scalar in the
interval [0, 13]

LTE control
region size. This
field sets the
starting OFDM
symbol index
(zero-based) in
a subframe.

• Required
when you
specify the
Operation
Mode field as
'Inband-
SamePCI'
or
'Inband-
Different
PCI'.

• The
lteNPDCCH
Indices
function sets
this field to
0 when you
specify the
Operation
Mode field as
'Standalo
ne' or
'Guardban
d'.

double

Data Types: struct

2 Functions

2-396

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing this field.

Name Required or
Optional

Values Description Data Types

NCCE Required 0, 1 Narrow band
control channel
element (NCCE)
corresponds to six
consecutive
subcarriers in a
subframe. NCCE 0
occupies
subcarriers from 0
to 5 and NCCE 1
occupies
subcarriers from 6
to 11. Aggregation
of 1 or 2 NCCE is
used to transmit
NPDCCH in two
formats:

• Format 0 - has
one NCCE and
the value is
either 0 or 1.

• Format 1 - has
two NCCE and
the value is [0
1].

double

Data Types: struct

opts — Output format and index base of generated indices
character vector | cell array of character vectors | string array

Output format and index base of generated indices, specified as a character vector, a cell array of
character vectors, or a string array. You can specify these options as a single character vector or
string scalar by a space-separated list of values placed inside quotation marks. This field can contain
any of these values.

Option Values Description

 lteNPDCCHIndices

2-397

Output format 'ind' (default), 'sub' Output format of generated indices,
specified as 'ind' or 'sub'. The
function returns the indices as an
NRE-by-NBRefP matrix when you
specify 'ind'. NRE is the number of
resource elements. The function
returns the indices as an NRE-by-3
matrix when you specify 'sub',
where each row of the matrix
contains the subcarrier, symbol, and
antenna port as its first, second, and
third entries, respectively.

Index base '1based' (default), '0based' Index base, specified as '1based'
or '0based'. To generate indices
whose first value is 1, specify
'1based'. To generate indices
whose first value is 0, specify
'0based'.

Example: 'ind 0based', "ind 0based", {'ind','0based'}, and ["ind","0based"] specify
the same output options.
Data Types: char | string | cell

Output Arguments
ind — NPDCCH RE indices
real-valued matrix

NPDCCH RE indices, returned as an NRE-by-P real-valued matrix, where NRE is the number of
resource elements and P is the number of resource array planes. Each column of ind contains the
per-antenna indices for the NRE resource elements in each of the P resource array planes.
Data Types: double

info — Information related to NPDCCH indices
structure

Information related to NPDCCH indices, returned as a structure containing these fields.

Name Values Description Data Types
G scalar Number of coded and

rate-matched downlink
control information
(DCI) data bits for a
codeword.

double

Gd scalar Number of coded and
rate-matched DCI data
symbols per layer.

double

Data Types: struct

2 Functions

2-398

Version History
Introduced in R2019b

References
[1] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

See Also
lteNPDCCH | lteNPDCCHDecode | lteNPDSCHIndices | ltePDCCHIndices

 lteNPDCCHIndices

2-399

https://www.3gpp.org

lteNPDSCH
Generate NPDSCH symbols

Syntax
[sym,stateout] = lteNPDSCH(enb,chs,cw)
[sym,stateout] = lteNPDSCH(___ ,statein)

Description
[sym,stateout] = lteNPDSCH(enb,chs,cw) returns sym, a matrix containing the encoded
narrowband physical downlink shared channel (NPDSCH) symbols for cell-wide settings enb, channel
transmission configuration chs, and codeword cw. The channel encoding process comprises subframe
selection, scrambling, symbol modulation, layer mapping, and precoding in accordance with Section
10.2.3 of [1]. The function also returns stateout, a structure containing the encoder state for
bundle transmission.

[sym,stateout] = lteNPDSCH(___ ,statein) returns the NPDSCH symbols and encoder state
for the initial encoder state specified by statein.

Examples

Generate NPDSCH Symbols

Generate the NPDSCH symbols subframe by subframe for a bundle of 12 subframes.

Specify the cell-wide settings and channel transmission configuration in parameter structures enb
and chs.

enb.NNCellID = 0;
enb.NBRefP = 1;
enb.NFrame = 1;
chs.NSF = 3;
chs.NRep = 4;
chs.RNTI = 0;
chs.NPDSCHDataType = 'NotBCCH';

Set the output codeword length to 960 and generate the codeword bits. Do not provide the encoder
state at the start of the bundle.

cwLen = 960;
cw = ones(cwLen,1);
statein = [];

Generate the NPDSCH symbols for each of the 12 subframes.

for subframeIdx = 0:(chs.NSF*chs.NRep-1)
 enb.NSubframe = subframeIdx;
 [txsym,stateout] = lteNPDSCH(enb,chs,cw,statein);
 statein = stateout;

2 Functions

2-400

end
disp(stateout.EndOfTx)

 1

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields:

Name Required or
Optional

Values Description Data Types

NNCellID Required Nonnegative
integer

Narrowband
physical layer cell
identity (PCI)

double

NSubframe Required Nonnegative
integer

Subframe number double

NFrame Optional 0 (default),
nonnegative
integer

Frame number double

NBRefP Required 1, 2 Number of
narrowband
reference signal
(NRS) antenna
ports. To indicate
transmission on a
single antenna port
(port 0) and use
minimum mean
squared error
(MMSE)
equalization for
reception, specify
this field as 1. To
indicate transmit
diversity and use
an orthogonal
space frequency
block code
(OSFBC) decoder
for deprecoding,
specify this field as
2.

double

Data Types: struct

chs — Channel transmission configuration
structure

 lteNPDSCH

2-401

Channel transmission configuration, specified as a structure containing these fields:

Name Required or
Optional

Values Description Dependencies Data Types

NPDSCHDataTy
pe

Optional 'NotBCCH',
'SIB1NB',
'BCCHNotSIB1
NB'

Type of data
carried by the
NPDSCH,
specified as one
of these values:

• 'NotBCCH'
– The
NPDSCH is
not carrying
the
broadcast
control
channel
(BCCH).

• 'SIB1NB' –
The
NPDSCH is
carrying
system
information
block 1
narrowband
(SIB1-NB).

• 'BCCHNotS
IB1NB' –
The
NPDSCH is
carrying the
BCCH but
not SIB1-
NB.

— char, string

2 Functions

2-402

Name Required or
Optional

Values Description Dependencies Data Types

NSF See
Dependencies
column

Nonnegative
integer

Number of
subframes to
which a
codeword is
mapped, not
including
repetitions

• This field is
required
when you
specify the
NPDSCHDat
aType field
as a value
other than
'SIB1NB'
and return
the info
output.

• The
lteNPDSCH
function sets
this field to
8 when you
specify the
NPDSCHDat
aType field
as
'SIB1NB'
and return
the info
output.

• If you do not
return the
info output,
the
lteNPDSCH
function
ignores this
field.

double

NRep Required Nonnegative
integer

Number of
repetitions

— double

 lteNPDSCH

2-403

Name Required or
Optional

Values Description Dependencies Data Types

RNTI See
Dependencies
column

Nonnegative
integer

16-bit radio
network
temporary
identifier
(RNTI)

• This field is
required
when you
specify the
NPDSCHDat
aType field
as a value
other than
'SIB1NB'.

• The
lteNPDSCH
function sets
this field to
the system
information
RNTI (SI-
RNTI) value
of 65535
when you
specify the
NPDSCHDat
aType field
as
'SIB1NB'.

double

CSI Optional 'On' (default),
'Off'

Channel state
information
(CSI). To scale
the soft bits by
CSI during the
equalization
process, specify
this field as
'On'.
Otherwise,
specify this field
as 'Off'.

— char, string

Data Types: struct

cw — Codeword to be modulated
binary column vector

Codeword to be modulated, specified as a binary column vector.
Data Types: double

statein — Initial encoder state
structure

2 Functions

2-404

Initial encoder state for the transmission of a bundle, specified as a structure containing the fields
listed in the stateout output. This argument can be empty only when no information is provided,
such as at the first subframe of a bundle.
Data Types: struct

Output Arguments
sym — NPDSCH symbols
complex-valued matrix

NPDSCH symbols, returned as an N-by-P complex-valued matrix, where N is the number of
modulation symbols for one antenna port and P is the number of transmission antennas.
Data Types: double
Complex Number Support: Yes

stateout — Output encoder state
structure

Output encoder state, returned as a structure. This output contains the internal state of each
transport block in these fields:

Name Values Description Data Types
SubframeIdx integer in the interval

[0, NSF x NRep – 1]
Index of a subframe
within a bundle, in zero-
based form. The
lteNPDSCH function
returns this field as the
SubframeIdx field of
the statein input
increased by one. When
the input value of
SubframeIdx in the
statein input reaches
its maximum value, the
function returns this
field as 0. If you do not
specify an input value in
the statein input, the
lteNPDSCH function
returns this field as 0. A
value of 0 indicates that
the transmission has
reached the end of a
bundle, which the
function also indicates
by setting the EndOfTx
field to 1 (true).

double

 lteNPDSCH

2-405

Name Values Description Data Types
InitNFrame Nonnegative integer Frame number at

initialization point of
scrambling sequence.
When the subframe
being processed is at
the initialization point,
this field is equal to the
NFrame field of the enb
input. Otherwise, the
lteNPDSCH function
returns this field as one
of these values:

• The value of the
InitNFrame field of
the statein
argument

• 0 when you do not
specify the
InitNFrame field of
the statein input

double

InitNSubrame Nonnegative integer Subframe number at
initialization point.
When the subframe
being processed is at
the initialization point,
this field is equal to the
NSubframe field of the
enb input. Otherwise,
the lteNPDSCH function
returns this field as one
of these values:

• The value of the
InitNSubframe
field of the statein
argument

• The NSubframe field
of the enb input
when you do not
specify the
InitNSubframe
field of the statein
input

double

2 Functions

2-406

Name Values Description Data Types
CWBuffer NSF-by-1 binary vector Buffer to store the soft-

combined log-likelihood
ratio (LLR) bits after
codeword descrambling.
The length of this field
is the same as the
length of the codeword,
cw. At the beginning of
a bundle, the
lteNPDSCH function
resets this field.

double

CWSFCount NSF-by-1 integer-valued
vector

Repetition counter. The
length of this field is the
same as the length of
the codeword, cw. Each
element of this field
indicates how many
repetitions of the
corresponding element
of cw the CWBuffer
field has recovered. At
the beginning of a
bundle, the lteNPDSCH
function resets this
field.

double

EndOfCW Logical 1 (true) or 0
(false)

Codeword receipt
indicator. The
lteNPDSCH function
returns this field as 1
(true) when the entire
codeword has been
received, that is, when
each element of the
CWSFCount field is as
least 1. At the beginning
of a bundle, the
lteNPDSCH function
resets this field.

logical

 lteNPDSCH

2-407

Name Values Description Data Types
EndOfTx Logical 1 (true) or 0

(false)
End of bundle indicator.
The lteNPDSCH
function returns this
field as 1 (true) when
the transmission
reaches the end of a
bundle. Otherwise, the
lteNPDSCH function
returns this field as 0
(false). At the
beginning of a bundle,
the lteNPDSCH function
resets this field.

logical

Data Types: struct

More About
Bundle

A bundle in the medium access control (MAC) layer refers to the repeated transmissions of a
transport block.

For more information, see Section 5.3.2.1 of [2]

Tips
To use this function for transmission of a bundle, follow these steps:

1 Call the lteNPDSCH function, optionally specifying the initial encoder state using the statein
input; the stateout output represents the first transmission of the transport block.

2 Call the lteNPDSCH function again, specifying the statein input as the stateout output
returned by the previous call to the function.

3 Repeat step 2 until the lteNPDSCH function returns the EndOfTx field of the stateout output
as 1 (true), indicating the end of the bundle.

Version History
Introduced in R2018a

References
[1] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

[2] 3GPP TS 36.321. “Medium Access Control (MAC) protocol specification.” 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal
Terrestrial Radio Access (E-UTRA). URL: https://www.3gpp.org.

2 Functions

2-408

https://www.3gpp.org
https://www.3gpp.org

See Also
lteNPDSCHIndices | lteNPDSCHDecode | lteNDLSCH | ltePDSCH

 lteNPDSCH

2-409

lteNPDSCHDecode
Decode NPDSCH symbols

Syntax
[cw,stateout,symbols] = lteNPDSCHDecode(enb,chs,sym)
[cw,stateout,symbols] = lteNPDSCHDecode(enb,chs,sym,statein)
[cw,stateout,symbols] = lteNPDSCHDecode(enb,chs,sym,hest,noiseest)
[cw,stateout,symbols] = lteNPDSCHDecode(enb,chs,sym,hest,noiseest,statein)

Description
[cw,stateout,symbols] = lteNPDSCHDecode(enb,chs,sym) decodes sym, the NB-IoT
physical downlink shared channel (NPDSCH) symbols, for cell-wide settings enb and channel-specific
configuration structure chs. The channel decoding comprises deprecoding, layer demapping, soft
demodulation, descrambling, and codeword recovery. The decoding inverts the NPDSCH channel
encoding process described in Section 10.2.3 of [1]. The function returns a codeword cw of soft bits,
the decoder state stateout for reception of a bundle transmission, and the received constellation
symbols symbols.

[cw,stateout,symbols] = lteNPDSCHDecode(enb,chs,sym,statein) decodes the NPDSCH
symbols for the initial decoder state statein.

[cw,stateout,symbols] = lteNPDSCHDecode(enb,chs,sym,hest,noiseest) decodes the
NPDSCH symbols for the channel estimate hest and noise estimate noiseest.

[cw,stateout,symbols] = lteNPDSCHDecode(enb,chs,sym,hest,noiseest,statein)
decodes the NPDSCH symbols for the channel estimate, noise estimate, and initial decoder state.

Examples

Generate and Receive NPDSCH Symbols

Generate and receive the NPDSCH symbols subframe by subframe for a bundle of 12 subframes.

Specify the cell-wide settings and channel transmission configuration in parameter structures enb
and chs.

enb.NNCellID = 0;
enb.NBRefP = 1;
enb.NFrame = 1;
chs.NSF = 3;
chs.NRep = 4;
chs.RNTI = 0;
chs.NPDSCHDataType = 'NotBCCH';

Set the output codeword length to 960 and generate the codeword bits. Do not provide the encoder
or decoder states at the start of the bundle.

2 Functions

2-410

cwLen = 960;
eState = [];
statein = [];
txcw = ones(cwLen,1);

Generate the NPDSCH symbols for each of the 12 subframes and then decode them.

for subframeIdx = 0:(chs.NSF*chs.NRep-1)
 enb.NSubframe = subframeIdx;
 [sym,eState] = lteNPDSCH(enb,chs,txcw,eState);
 [cw,stateout] = lteNPDSCHDecode(enb,chs,sym,statein);
 statein = stateout;
end

The value of the field CWSFCount in structure dstate indicates that all three subframes in the
codeword have been received four times.

disp(stateout.EndOfTx)

 1

disp(stateout.CWSFCount)

 4
 4
 4

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields:

Name Required or
Optional

Values Description Data Types

NNCellID Required Nonnegative
integer

Narrowband
physical layer cell
identity (PCI)

double

NSubframe Required Nonnegative
integer

Subframe number double

NFrame Optional 0 (default),
nonnegative
integer

Frame number double

 lteNPDSCHDecode

2-411

Name Required or
Optional

Values Description Data Types

NBRefP Required 1, 2 Number of
narrowband
reference signal
(NRS) antenna
ports. To indicate
transmission on a
single antenna port
(port 0) and use
minimum mean
squared error
(MMSE)
equalization for
reception, specify
this field as 1. To
indicate transmit
diversity and use
an orthogonal
space frequency
block code
(OSFBC) decoder
for deprecoding,
specify this field as
2.

double

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure that containing these fields:

2 Functions

2-412

Name Required or
Optional

Values Description Dependencies Data Types

NPDSCHDataTy
pe

Optional 'NotBCCH',
'SIB1NB',
'BCCHNotSIB1
NB'

Type of data
carried by the
NPDSCH,
specified as one
of these values:

• 'NotBCCH'
– The
NPDSCH is
not carrying
the
broadcast
control
channel
(BCCH).

• 'SIB1NB' –
The
NPDSCH is
carrying
system
information
block 1
narrowband
(SIB1-NB).

• 'BCCHNotS
IB1NB' –
The
NPDSCH is
carrying the
BCCH but
not SIB1-
NB.

— char, string

 lteNPDSCHDecode

2-413

Name Required or
Optional

Values Description Dependencies Data Types

NSF See
Dependencies
column

Nonnegative
integer

Number of
subframes to
which a
codeword is
mapped, not
including
repetitions

• This field is
required
when you
specify the
NPDSCHDat
aType field
as a value
other than
'SIB1NB'
and return
the info
output.

• The
lteNPDSCH
Decode
function sets
this field to
8 when you
specify the
NPDSCHDat
aType field
as
'SIB1NB'
and return
the info
output.

• If you do not
return the
info output,
the
lteNPDSCH
Decode
function
ignores this
field.

double

NRep Required Nonnegative
integer

Number of
repetitions

— double

2 Functions

2-414

Name Required or
Optional

Values Description Dependencies Data Types

RNTI See
Dependencies
column

Nonnegative
integer

16-bit radio
network
temporary
identifier
(RNTI)

• This field is
required
when you
specify the
NPDSCHDat
aType field
as a value
other than
'SIB1NB'.

• The
lteNPDSCH
Decode
function sets
this field to
the system
information
RNTI (SI-
RNTI) value
of 65535
when you
specify the
NPDSCHDat
aType field
as
'SIB1NB'.

double

CSI Optional 'On' (default),
'Off'

Channel state
information
(CSI). To scale
the soft bits by
CSI during the
equalization
process, specify
this field as
'On'.
Otherwise,
specify this field
as 'Off'.

— char, string

Data Types: struct

sym — Modulated NPDSCH symbols
complex-valued matrix

Modulated NPDSCH symbols, specified as an NRE-by-NRxAnts complex-valued matrix, where:

• NRE is the number of quadrature phase-shift keying (QPSK) symbols per antenna and per subframe
assigned to the NPDSCH;

• NRxAnts is the number of receive antennas.

Data Types: double

 lteNPDSCHDecode

2-415

Complex Number Support: Yes

statein — Initial encoder state
structure

Input encoder state for the transmission of a bundle, specified as a structure containing the fields
listed in the stateout output. This argument can be empty only when no information is provided,
such as at the first subframe of a bundle.
Data Types: struct

hest — Channel estimate for a transmission layer
complex-valued 3-D array

Channel estimate for a transmission layer, specified as an NRE-by-NRxAnts-by-NNBRefP complex-valued
array, where:

• NRE is the number of encoded NPDSCH symbols per antenna and per subframe;
• NRxAnts is the number of receive antennas;
• NNBRefP is the number NRS antenna ports you specify in the NBRefP field of the enb input.

The lteNPDSCHDecode function assumes that this estimate uses the NRSs.
Data Types: double

noiseest — Noise estimate
nonnegative scalar

Noise estimate of the noise power spectral density per RE on the received subframe, specified as a
nonnegative scalar.
Data Types: double

Output Arguments
cw — Codeword of soft bits
binary vector

Codeword of soft bits, returned as an NSF-by-1 binary vector, where NSF is the number of subframes.
Data Types: double

stateout — Output decoder state
structure

Output decoder state for the next subframe, returned as a structure. This output contains the internal
state of each transport block in these fields:

2 Functions

2-416

Name Values Description Data Types
SubframeIdx integer in the interval

[0, NSF x NRep – 1]
Index of a subframe
within a bundle, in zero-
based form. The
lteNPDSCHDecode
function returns this
field as the
SubframeIdx field of
the statein input
increased by one. When
the input value of
SubframeIdx in the
statein input reaches
its maximum value, the
function returns this
field as 0. If you do not
specify an input value in
the statein input, the
lteNPDSCHDecode
function returns this
field as 0. A value of 0
indicates that the
transmission has
reached the end of a
bundle, which the
function also indicates
by setting the EndOfTx
field to 1 (true).

double

InitNFrame Nonnegative integer Frame number at
initialization point of
scrambling sequence.
When the subframe
being processed is at
the initialization point,
this field is equal to the
NFrame field of the enb
input. Otherwise, the
lteNPDSCHDecode
function returns this
field as one of these
values:

• The value of the
InitNFrame field of
the statein
argument

• 0 when you do not
specify the
InitNFrame field of
the statein input

double

 lteNPDSCHDecode

2-417

Name Values Description Data Types
InitNSubrame Nonnegative integer Subframe number at

initialization point.
When the subframe
being processed is at
the initialization point,
this field is equal to the
NSubframe field of the
enb input. Otherwise,
the lteNPDSCHDecode
function returns this
field as one of these
values:

• The value of the
InitNSubframe
field of the statein
argument

• The NSubframe field
of the enb input
when you do not
specify the
InitNSubframe
field of the statein
input

double

CWBuffer NSF-by-1 binary vector Buffer to store the soft-
combined log-likelihood
ratio (LLR) bits after
codeword descrambling.
The length of this field
is the same as the
length of the codeword,
cw. At the beginning of
a bundle, the
lteNPDSCHDecode
function resets this
field.

double

2 Functions

2-418

Name Values Description Data Types
CWSFCount NSF-by-1 integer-valued

vector
Repetition counter. The
length of this field is the
same as the length of
the codeword, cw. Each
element of this field
indicates how many
repetitions of the
corresponding element
of cw the CWBuffer
field has recovered. At
the beginning of a
bundle, the
lteNPDSCHDecode
function resets this
field.

double

EndOfCW Logical 1 (true) or 0
(false)

Codeword receipt
indicator. The
lteNPDSCHDecode
function returns this
field as 1 (true) when
the entire codeword has
been received, that is,
when each element of
the CWSFCount field is
as least 1. At the
beginning of a bundle,
the lteNPDSCHDecode
function resets this
field.

logical

EndOfTx Logical 1 (true) or 0
(false)

End of bundle indicator.
The lteNPDSCHDecode
function returns this
field as 1 (true) when
the transmission
reaches the end of a
bundle. Otherwise, the
lteNPDSCHDecode
function returns this
field as 0 (false). At
the beginning of a
bundle, the
lteNPDSCHDecode
function resets this
field.

logical

Data Types: struct

symbols — Received constellation symbols
complex-valued vector

 lteNPDSCHDecode

2-419

Received constellation symbols, returned as a complex-valued vector.
Data Types: double

More About
Bundle

A bundle in the medium access control (MAC) layer refers to the repeated transmissions of a
transport block.

For more information, see Section 5.3.2.1 of [2]

Tips
To use this function for a bundle transmission, follow these steps:

1 Call the lteNPDSCHDecode function, optionally specifying the initial encoder state using the
statein input; the stateout output represents the first transport block in the bundle.

2 Call the lteNPDSCHDecode function again, specifying the statein input as the stateout
output returned by the previous call to the function.

3 Repeat step 2 until the lteNPDSCHDecode function returns the EndOfTx field of the stateout
output as 1 (true), indicating the end of the bundle.

Version History
Introduced in R2018a

References
[1] 3GPP TS 36.211. “Physical Channels and Modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

See Also
lteNPDSCH | lteNPDSCHIndices | lteNDLSCHDecode | ltePDSCHDecode

2 Functions

2-420

https://www.3gpp.org

lteNPBCHIndices
Generate NPBCH RE indices

Syntax
[ind,info] = lteNPBCHIndices(enb)
[ind,info] = lteNPBCHIndices(enb,opts)

Description
[ind,info] = lteNPBCHIndices(enb) generates ind, a matrix containing narrowband physical
broadcast channel (NPBCH) resource element (RE) indices, and info, a structure containing
information related to the indices. You can use ind to index elements of the subframe resource grid
directly for all antenna ports in accordance with section 10.2.4.4 of [1]. Initialize this function with
cell-wide settings enb.

[ind,info] = lteNPBCHIndices(enb,opts) formats the returned indices using options
specified by opts.

Examples

Generate NPBCH RE Indices and Info Structure

Generate the NPBCH RE Indices mapping for one antenna and display related information.

Create the eNodeB structure cell-wide settings for one antenna.

enb.NNCellID=10;
enb.NBRefP=1;

Generate the NPBCH RE Indices column vector. Display the first 10 indices.

[ind,info]=lteNPBCHIndices(enb);
ind(1:10)

ans = 10×1

 37
 38
 39
 40
 41
 42
 43
 44
 45
 46

Display the fields contained in the info structure.

 lteNPBCHIndices

2-421

info.G

ans = 1600

info.Gd

ans = 800

Generate NPBCH Indices

Generate NPBCH RE 0-based Indices in linear index form for two antennas.

Create eNodeB structure cell-wide settings for two antennas.

enb.NNCellID = 10;
enb.NBRefP = 2;

Generate the 0-based NPBCH RE indices in linear index form. The indices matrix has two columns,
one for each antenna port. Display the first 10 indices.

[ind,info] = lteNPBCHIndices(enb,{'0based', 'ind'});
ind(1:10,:)

ans = 10×2

 36 204
 37 205
 38 206
 39 207
 40 208
 41 209
 42 210
 43 211
 44 212
 45 213

Display the fields contained in the info structure.

info.G

ans = 1600

info.Gd

ans = 800

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields.

2 Functions

2-422

Parameter Field Require
d or
Optiona
l

Values Description Data Types

NNCellID Required Nonnegative
integer

NB-IoT physical layer cell identity double

NBRefP Required 1, 2 Number of narrowband reference
signal antenna ports

double

NSubframe Optional 0 (default),

nonnegative
integer

Subframe number double

NFrame Optional 0 (default),

nonnegative
integer

Frame number double

Data Types: struct

opts — Output format and index base of generated indices
character vector | string scalar | cell array of character vectors | string array

Output format and index base of generated indices, specified as one of these forms.

• 'format base'
• "format base"
• {'format','base'}
• ["format","base"]

Where format and base are defined in this table.

Option Values Description
format 'ind' (default), 'sub' Output format of generated indices

To return the indices as a column
vector, specify this option as 'ind'.

To return the indices as an NRE-by-3
matrix, where NRE is the number of
REs, specify this option as 'sub'.
Each row of the matrix contains the
subcarrier, symbol, and antenna
port as its first, second, and third
element, respectively.

 lteNPBCHIndices

2-423

base '1based' (default), '0based' Index base

To generate indices whose first
value is 1, specify this option as
'1based'. To generate indices
whose first value is 0, specify this
option as '0based'.

Example: 'ind 0based', "ind 0based", {'ind','0based'}, and ["ind","0based"] specify
the same output options.
Data Types: char | string | cell

Output Arguments
ind — NPBCH RE indices
real-valued matrix

NPBCH RE indices, returned as a real-valued matrix, depending on the indexing style specified in
opts:

• If you specify linear indexing (default), then ind is an 100-by-NBRefP matrix.
• If you specify subscript row style indexing, then ind is an NRE-by-3 matrix, where NRE is the

number of resource elements per subframe.

Data Types: double

info — Information related to NPBCH indices
structure

Information related to NPBCH indices, returned as a structure containing these fields.

Parameter Field Values Description Data Types
G 1600 Number of coded and rate-

matched NPBCH data bits
for a codeword.

double

Gd 800 Number of coded and rate-
matched NPBCH data
symbols for each of the 8
sub blocks.

double

Data Types: struct

Version History
Introduced in R2019b

References
[1] 3GPP TS 36.211. “Physical channels and modulation (Release 14).” 3rd Generation Partnership

Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial
Radio Access (E-UTRA). URL: https://www.3gpp.org.

2 Functions

2-424

https://www.3gpp.org

See Also
lteNPBCH | lteNPBCHDecode | ltePBCHIndices

 lteNPBCHIndices

2-425

lteNPDSCHIndices
Generate NPDSCH RE indices

Syntax
[ind,info] = lteNPDSCHIndices(enb,chs)
[ind,info] = lteNPDSCHIndices(enb,chs,opts)

Description
[ind,info] = lteNPDSCHIndices(enb,chs) returns ind, an array containing narrowband
physical downlink shared channel (NPDSCH) resource element (RE) indices, and info, a structure
containing information related to the indices. You can use ind to index elements of the subframe
resource grid directly for all antenna ports in accordance with Section 10.2.3.4 of [1]. Initialize this
function with cell-wide settings enb and channel transmission configuration chs.

[ind,info] = lteNPDSCHIndices(enb,chs,opts) formats the returned indices using options
specified by opts.

Examples

Generate NPDSCH RE Indices and Info Structure

Generate the NPDSCH RE indices mapping for one antenna and display related information.

Create the eNodeB structure cell-wide settings for one antenna.

enb.NNCellID = 10;
enb.NBRefP = 1;
enb.OperationMode = 'Inband-SamePCI';

Create the channel transmission configuration. Specify the number of subframes (NSF). The NSF
field is required for returning information related to the NPDSCH indices.

chs.NPDSCHDataType = 'BCCHNotSIB1NB';
chs.NSF = 2;

Generate the NPDSCH RE indices column vector. Display the first seven indices.

[ind,info] = lteNPDSCHIndices(enb,chs);
ind(1:7)

ans = 7×1

 37
 38
 39
 40
 41
 42

2 Functions

2-426

 43

Display the fields contained in the info structure.

info.G

ans = 472

info.Gd

ans = 236

Generate NPDSCH RE Indices

Generate the NPDSCH RE 0-based indices mapping in linear index form for two antennas.

Create the eNodeB structure cell-wide settings for two antennas.

enb.NNCellID = 10;
enb.NBRefP = 2;
enb.OperationMode = 'Standalone';

Create the channel transmission configuration.

chs.NPDSCHDataType = 'SIB1NB';

Generate the 0-based NPDSCH RE indices in linear index form. The indices matrix has two columns,
one for each antenna ports. Display the first seven indices.

ind = lteNPDSCHIndices(enb,chs,{'0based','ind'});
ind(1:7,:)

ans = 7×2

 0 168
 1 169
 2 170
 3 171
 4 172
 5 173
 6 174

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields:

 lteNPDSCHIndices

2-427

Name Required or
Optional

Values Description Dependencies Data Types

NNCellID Required Nonnegative
integer

Narrowband
physical layer
cell identity
(PCI)

— double

NBRefP Required 1, 2 Number of
narrowband
reference signal
(NRS) antenna
ports

— double

2 Functions

2-428

Name Required or
Optional

Values Description Dependencies Data Types

OperationMod
e

Optional 'Standalone'
(default),
'Inband-
SamePCI',
'Inband-
DifferentPCI
',
'Guardband'

NB-IoT
operation mode,
specified as one
of these values:

• 'Standalo
ne' – NB-
IoT
standalone
operation
within any
180-kHz
band outside
any LTE
carrier
bandwidth

• 'Inband-
SamePCI' –
NB-IoT in-
band
operation
with the
same PCI as
an LTE
carrier

• 'Inband-
Different
PCI' – NB-
IoT in-band
operation
with a
different PCI
to an LTE
carrier

• 'Guardban
d' – NB-IoT
guard-band
operation
utilizing
unused
resource
blocks
within the
guard-band
of an LTE
carrier

— char, string

 lteNPDSCHIndices

2-429

Name Required or
Optional

Values Description Dependencies Data Types

CellRefP Optional 1, 2, 4 Number of cell-
specific
reference signal
(CRS) antenna
ports. The value
of this field
must be either
the value to
which you set
the NBRefP
field (default) or
4.

This field
applies only
when you
specify the
OperationMod
e field as
'Inband-
SamePCI' or
'Inband-
DifferentPCI
'. When you
specify the
OperationMod
e field as
'Inband-
SamePCI', the
lteNPDSCHInd
ices function
sets this field to
the value of the
NBRefP field.

double

2 Functions

2-430

Name Required or
Optional

Values Description Dependencies Data Types

ControlRegio
nSize

See
Dependencies
column

3 (default),
scalar in the
interval [0, 13]

LTE control
region size. This
field sets the
starting OFDM
symbol index
(zero-based) in
a subframe.

• This field is
required
when you
specify the
Operation
Mode field as
'Inband-
SamePCI'
or
'Inband-
Different
PCI' and
the
NPDSCHDat
aType field
of the chs
input as a
value other
than
'SIB1NB'.

• The
lteNPDSCH
Indices
function sets
this field to
3 when you
specify the
Operation
Mode field as
'Inband-
SamePCI'
or
'Inband-
Different
PCI' and
the
NPDSCHDat
aType field
of the chs
input as
'SIB1NB'.

• The
lteNPDSCH
Indices
function sets
this field to
0 when you
specify the
Operation

double

 lteNPDSCHIndices

2-431

Name Required or
Optional

Values Description Dependencies Data Types

Mode field as
'Standalo
ne' or
'Guardban
d'.

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing these fields:

Name Required or
Optional

Values Description Dependencies Data Types

NPDSCHDataTy
pe

Optional 'NotBCCH',
'SIB1NB',
'BCCHNotSIB1
NB'

Type of data
carried by the
NPDSCH,
specified as one
of these values:

• 'NotBCCH'
– The
NPDSCH is
not carrying
the
broadcast
control
channel
(BCCH).

• 'SIB1NB' –
The
NPDSCH is
carrying
system
information
block 1
narrowband
(SIB1-NB).

• 'BCCHNotS
IB1NB' –
The
NPDSCH is
carrying the
BCCH but
not SIB1-
NB.

— char, string

2 Functions

2-432

Name Required or
Optional

Values Description Dependencies Data Types

NSF See
Dependencies
column

Nonnegative
integer

Number of
subframes to
which a
codeword is
mapped, not
including
repetitions

• This field is
required
when you
specify the
NPDSCHDat
aType field
as a value
other than
'SIB1NB'
and return
the info
output.

• The
lteNPDSCH
Indices
function sets
this field to
8 when you
specify the
NPDSCHDat
aType field
as
'SIB1NB'
and return
the info
output.

• If you do not
return the
info output,
the
lteNPDSCH
Indices
function
ignores this
field.

double

Data Types: struct

opts — Output format and index base of generated indices
character vector | string scalar | cell array of character vectors | string array

Output format and index base of generated indices, specified as one of these forms.

• 'format base'
• "format base"
• {'format','base'}
• ["format","base"]

Where format and base are defined in this table.

 lteNPDSCHIndices

2-433

Option Values Description
format 'ind' (default), 'sub' Output format of generated indices

To return the indices as a column
vector, specify this option as 'ind'.

To return the indices as an NRE-by-3
matrix, where NRE is the number of
REs, specify this option as 'sub'.
Each row of the matrix contains the
subcarrier, symbol, and antenna
port as its first, second, and third
element, respectively.

base '1based' (default), '0based' Index base

To generate indices whose first
value is 1, specify this option as
'1based'. To generate indices
whose first value is 0, specify this
option as '0based'.

Example: 'ind 0based', "ind 0based", {'ind','0based'}, and ["ind","0based"] specify
the same output options.
Data Types: char | string | cell

Output Arguments
ind — NPDSCH RE indices
real-valued matrix

NPDSCH RE indices, returned as an NRE-by-P real-valued matrix, where NRE is the number of
resource elements and P is the number of resource array planes. Each column of ind contains the
per-antenna indices for the NRE resource elements in each of the P resource array planes.
Data Types: double

info — Information related to NPDSCH indices
structure

Information related to NPDSCH indices, returned as a structure containing these fields:

Name Values Description Data Types
G scalar Number of coded and

rate-matched downlink
shared channel (DL-
SCH) data bits for a
codeword

double

2 Functions

2-434

Name Values Description Data Types
Gd integer Number of DL-SCH data

symbols per layer. The
lteNPDSCHIndices
function returns Gd as
the value of the NSF
field of the chs input
multiplied by the
number of rows in the
ind output.

double

Data Types: struct

Version History
Introduced in R2018a

References
[1] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

See Also
lteNPDSCH | lteNPDSCH | lteNPDSCHDecode | lteNRSIndices | ltePDSCHIndices

 lteNPDSCHIndices

2-435

https://www.3gpp.org

lteNPRACH
Generate NPRACH FDD waveform

Syntax
[waveform,info,resourceGrid] = lteNPRACH(ue,chs)

Description
[waveform,info,resourceGrid] = lteNPRACH(ue,chs) generates waveform, a time-domain
narrowband physical random access channel (NPRACH) frequency-division duplexing (FDD)
waveform for user equipment (UE) settings ue and channel transmission configuration chs. The
function also returns info, a structure containing NPRACH information, and resourceGrid, an
NPRACH resource grid.

Examples

Generate NPRACH FDD Waveform

Generate an NPRACH waveform for specified UE settings and channel transmission configuration.

Specify the narrowband physical layer cell identity and subcarrier spacing.

ue = struct('NNCellID',0,'NBULSubcarrierSpacing','15kHz');

Specify the NPRACH format, periodicity, subcarrier offset, number of subcarriers, and number of
preamble repetitions.

chs = struct('NPRACHFormat','0','Periodicity',80, ...
 'SubcarrierOffset',0,'NumSubcarriers',12,'NRep',1);

Generate the NPRACH waveform, NPRACH information, and resource grid.

[waveform,info,grid] = lteNPRACH(ue,chs);

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure containing these fields.

Field Required or
Optional

Values Description Data Type

NNCellID Required Integer in the
interval [0, 503]

Narrowband
physical layer cell
identity.

double

2 Functions

2-436

Field Required or
Optional

Values Description Data Type

NBULSubcarrier
Spacing

Required '3.75kHz',
'15kHz'

Narrowband
internet of things
(NB-IoT) uplink
subcarrier spacing.
To set a subcarrier
spacing of 3.75
kHz, specify this
field as
'3.75kHz'. To set
a subcarrier
spacing of 15 kHz,
specify this field as
'15kHz'.

char, string

 lteNPRACH

2-437

Field Required or
Optional

Values Description Data Type

Windowing Optional Nonnegative
integer, default
value depends on
NPRACH preamble
format in
accordance with
section F.5.F of [1]

Number of time-
domain samples
over which the
function applies
windowing and
overlapping of
OFDM samples.

If you do not
specify this field,
this function
returns the
Windowing field of
the info output as
a function of the
NBULSubcarrier
Spacing field.
This behavior
compromises
between the
effective duration
of the cyclic prefix
(and therefore the
channel delay
spread tolerance)
and the spectral
characteristics of
the transmitted
signal (not
considering any
additional FIR
filtering). For
NPRACH preamble
format 2, the
function sets the
default value such
that the ratio of
cyclic prefix length
to windowing
length is the same
as that of NPRACH
preamble format 1.

double

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing these fields.

2 Functions

2-438

Field Required or
Optional

Values Description Dependencies Data Types

NPRACHFormat Required '0', '1', '2' NPRACH
preamble
format

Not applicable char, string

Periodicity Required 40, 80, 160,
320, 640, 1280,
2560, 5120

NPRACH
resource
periodicity, in
milliseconds

If you set the
NPRACHFormat
field to '0' or
'1', then you
cannot set this
field to 5120.

double

SubcarrierOf
fset

Required 0, 2, 6, 12, 18,
24, 34, 36, 42,
48, 54, 60, 72,
78, 84, 90, 102,
108

Frequency
location of the
first subcarrier
allocated to
NPRACH

If you set the
NPRACHFormat
field to '0' or
'1', then you
cannot set this
field to 6, 42,
48, 54, 60, 72,
78, 84, 90, 102,
or 108.

If you set the
NPRACHFormat
field to '2',
then you cannot
set this field to
2 or 34.

double

NumSubcarrie
rs

Required 12, 24, 36, 48,
72, 108, 144

Number of
subcarriers
allocated to
NPRACH

If you set the
NPRACHFormat
field to '0' or
'1', then you
cannot set this
field to 72, 108,
or 144.

If you set the
NPRACHFormat
field to '2',
then you cannot
set this field to
12, 24, or 48.

double

NRep Required 1, 2, 4, 8, 16,
32, 64, 128

Number of
NPRACH
repetitions

Not applicable double

StartTime Optional 8 (default), 16,
32, 64, 128,
256, 512, 1024

NPRACH
starting time, in
milliseconds

Not applicable double

 lteNPRACH

2-439

Field Required or
Optional

Values Description Dependencies Data Types

NInit Optional 0 (default),
integer in the
interval [0,
NumSubcarrie
rs – 1]

Initial
subcarrier for
NPRACH

Not applicable double

NPRACHPower Optional 0 (default), real-
valued scalar

NPRACH power
scaling, in
decibels

Not applicable double

Data Types: struct

Output Arguments
waveform — Time-domain NPRACH FDD waveform
complex-valued column vector

Time-domain NPRACH FDD waveform, returned as a complex-valued column vector of length
(chs.Periodicity × info.SamplingRate ÷ 1000). The waveform consists of:

1 A period of zeros corresponding to the time, chs.StartTime, between the start of the
transmission and the first frame occupied by an NPRACH symbol.

2 The NPRACH transmission, defined in section 10.1.6.1 of [2] as a repetition of chs.NRep
NPRACH preambles. An NPRACH preamble is a set of info.P symbol groups. A symbol group is
a sequence of info.N identical symbols preceded by a cyclic prefix. The duration of an NPRACH
preamble is a function of the preamble format as described in Table 10.1.6.1-1 of [2].

3 A period of zeros corresponding to the time between the end of the transmission and the value of
the chs.Periodicity input.

The function samples the waveform at the same sampling rate as for a narrowband physical uplink
shared channel (NPUSCH) waveform, defined by the NBULSubcarrierSpacing field of the ue input.

For preamble formats 0 and 1, the function adds an additional 40 ms gap every 64 preambles. For
preamble format 2, the function adds an additional 40 ms gap every 16 preambles.

For more information about NPRACH waveform generation, see the “NB-IoT PRACH Waveform
Generation” example.
Data Types: double
Complex Number Support: Yes

info — NPRACH resource information
structure

NPRACH resource information, returned as a structure containing these fields.

Field Values Description Data Type
Nfft Positive integer Number of fast Fourier

transform (FFT) points.
double

2 Functions

2-440

Field Values Description Data Type
SamplingRate Positive scalar Sampling rate, in Hz, of

the time-domain
waveform.

double

Windowing Nonnegative integer Number of time-domain
samples over which the
function applies
windowing and
overlapping of OFDM
symbols.

double

FrequencyLocation Row vector of
nonnegative integers

Frequency location for
all symbol groups in an
NPRACH transmission.
For more information
about NPRACH symbol
groups, see the “NB-IoT
PRACH Waveform
Generation” example.
The kth element of this
output represents the
frequency location of
the kth symbol group.

double

K Positive integer Ratio of uplink data to
NPRACH subcarrier
spacing.

double

NULSC Positive integer Number of subcarriers
for the specified uplink
bandwidth.

double

PreambleParameters Structure Random access
preamble parameters
for the specified
preamble format and
frame structure type 1,
as specified in Table
10.1.6.1-1 of [2]. For
information on the fields
of this structure, see
“PreambleParameters
Field” on page 2-0 .

struct

PreambleParameters Field

The PreambleParameters field of this output contains these fields.

Field Values Description Data Type
G Positive integer Number of time-

contiguous symbol
groups.

double

 lteNPRACH

2-441

Field Values Description Data Type
P Positive integer Total number of symbol

groups.
double

N Positive integer Number of symbols in a
symbol group.

double

T_CP Positive integer Cyclic prefix length, in
multiples of Ts, where Ts
is the basic time unit,
defined in section 4 of
[2] as 1 ÷ (15000 ×
2048) seconds.

double

T_SEQ Positive integer Length of symbols in a
symbol group, in
multiples of Ts.

double

Data Types: struct

resourceGrid — NPRACH resource grid
real-valued matrix

NPRACH resource grid, returned as a real-valued matrix of size K-by-L, where:

• K is the number of subcarriers.
• L is the number of NPRACH symbols that fit the value of chs.Periodicity.

Data Types: double

Version History
Introduced in R2021a

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

radio transmission and reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. https://www.3gpp.org.

[2] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). https://www.3gpp.org.

See Also
Functions
lteNPRACHInfo

Topics
“NB-IoT PRACH Waveform Generation”

2 Functions

2-442

https://www.3gpp.org
https://www.3gpp.org

lteNPRACHInfo
NPRACH resource information

Syntax
info = lteNPRACHInfo(ue,chs)

Description
info = lteNPRACHInfo(ue,chs) returns narrowband physical random access channel (NPRACH)
information for user equipment (UE) settings ue and channel transmission configuration chs.

Examples

Get NPRACH Information

Get NPRACH information for specified UE settings and channel transmission configuration.

Specify the narrowband physical layer cell identity and subcarrier spacing.

ue = struct('NNCellID',0,'NBULSubcarrierSpacing','15kHz');

Specify the NPRACH format, periodicity, subcarrier offset, number of subcarriers, and number of
preamble repetitions.

chs = struct('NPRACHFormat','0','Periodicity',80, ...
 'SubcarrierOffset',0,'NumSubcarriers',12,'NRep',1);

Generate and display the NPRACH information.

info = lteNPRACHInfo(ue,chs)

info = struct with fields:
 SubcarrierSpacing: 3750
 Nfft: 512
 SamplingRate: 1920000
 Windowing: 18
 FrequencyLocation: [0 1 7 6]
 K: 4
 NULSC: 12
 PreambleParameters: [1x1 struct]

Display the random access preamble parameters, as specified in Table 10.1.6.1-1 [2].

disp(info.PreambleParameters)

 G: 4
 P: 4
 N: 5
 T_CP: 2048
 T_SEQ: 40960

 lteNPRACHInfo

2-443

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure containing these fields.

Field Required or
Optional

Values Description Data Type

NNCellID Required Integer in the
interval [0, 503]

Narrowband
physical layer cell
identity.

double

NBULSubcarrier
Spacing

Required '3.75kHz',
'15kHz'

Narrowband
internet of things
(NB-IoT) uplink
subcarrier spacing.
To set a subcarrier
spacing of 3.75
kHz, specify this
field as
'3.75kHz'. To set
a subcarrier
spacing of 15 kHz,
specify this field as
'15kHz'.

char, string

2 Functions

2-444

Field Required or
Optional

Values Description Data Type

Windowing Optional Nonnegative
integer, default
value depends on
NPRACH preamble
format in
accordance with
section F.5.F of [1]

Number of time-
domain samples
over which the
function applies
windowing and
overlapping of
OFDM samples.

If you do not
specify this field,
this function
returns the
Windowing field of
the info output as
a function of the
NBULSubcarrier
Spacing field.
This behavior
compromises
between the
effective duration
of the cyclic prefix
(and therefore the
channel delay
spread tolerance)
and the spectral
characteristics of
the transmitted
signal (not
considering any
additional FIR
filtering). For
NPRACH preamble
format 2, the
function sets the
default value such
that the ratio of
cyclic prefix length
to windowing
length is the same
as that of NPRACH
preamble format 1.

double

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing these fields.

 lteNPRACHInfo

2-445

Field Required or
Optional

Values Description Dependencies Data Types

NPRACHFormat Required '0', '1', '2' NPRACH
preamble
format.

Not applicable char, string

Periodicity Required 40, 80, 160,
320, 640, 1280,
2560, 5120

NPRACH
resource
periodicity, in
milliseconds.

If you set the
NPRACHFormat
field to '0' or
'1', then you
cannot set this
field to 5120.

double

SubcarrierOf
fset

Required 0, 2, 6, 12, 18,
24, 34, 36, 42,
48, 54, 60, 72,
78, 84, 90, 102,
108

Frequency
location of the
first subcarrier
allocated to
NPRACH.

If you set the
NPRACHFormat
field to '0' or
'1', then you
cannot set this
field to 6, 42,
48, 54, 60, 72,
78, 84, 90, 102,
or 108.

If you set the
NPRACH field to
'2', then you
cannot set this
field to 2 or 34.

double

NumSubcarrie
rs

Required 12, 24, 36, 48,
72, 108, 144

Number of
subcarriers
allocated to
NPRACH.

If you set the
NPRACHFormat
field to '0' or
'1', then you
cannot set this
field to 72, 108,
or 144.

If you set the
NPRACHFormat
field to '2',
then you cannot
set this field to
12, 24, or 48.

double

NRep Required 1, 2, 4, 8, 16,
32, 64, 128

Number of
NPRACH
repetitions.

Not applicable double

StartTime Optional 8 (default), 16,
32, 64, 128,
256, 512, 1024

NPRACH
starting time, in
milliseconds.

Not applicable double

2 Functions

2-446

Field Required or
Optional

Values Description Dependencies Data Types

NInit Optional 0 (default),
integer in the
interval [0,
NumSubcarrie
rs – 1]

Initial
subcarrier for
NPRACH.

Not applicable double

Data Types: struct

Output Arguments
info — NPRACH resource information
structure

NPRACH resource information, returned as a structure containing these fields.

Field Values Description Data Type
Nfft Positive integer Number of fast Fourier

transform (FFT) points.
double

SamplingRate Positive scalar Sampling rate, in Hz, of
the time-domain
waveform.

double

Windowing Nonnegative even
integer

Number of time-domain
samples over which the
function applies
windowing and
overlapping of OFDM
symbols.

double

FrequencyLocation Row vector of
nonnegative integers

Frequency location for
all symbol groups in an
NPRACH transmission.
For more information
about NPRACH symbol
groups, see the “NB-IoT
PRACH Waveform
Generation” example.
The kth element of this
output represents the
frequency location of
the kth symbol group.

double

K Positive integer Ratio of uplink data to
NPRACH subcarrier
spacing.

double

NULSC Positive integer Number of subcarriers
for the specified uplink
bandwidth.

double

 lteNPRACHInfo

2-447

Field Values Description Data Type
PreambleParameters Structure Random access

preamble parameters
for the specified
preamble format and
frame structure type 1,
as specified in Table
10.1.6.1-1 of [2]. For
information on the fields
of this structure, see
“PreambleParameters
Field” on page 2-0 .

struct

PreambleParameters Field

The PreambleParameters field of this output contains these fields.

Field Values Description Data Type
G Positive integer Number of time-

contiguous symbol
groups.

double

P Positive integer Total number of symbol
groups.

double

N Positive integer Number of symbols in a
symbol group.

double

T_CP Positive integer Cyclic prefix length, in
multiples of Ts, where Ts
is the basic time unit,
defined in section 4 of
[2] as 1 ÷ (15000 ×
2048) seconds.

double

T_SEQ Positive integer Length of symbols in a
symbol group, in
multiples of Ts.

double

Data Types: struct

Version History
Introduced in R2021a

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

radio transmission and reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. https://www.3gpp.org.

[2] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;
Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). https://www.3gpp.org.

2 Functions

2-448

https://www.3gpp.org
https://www.3gpp.org

See Also
Functions
lteNPRACH

Topics
“NB-IoT PRACH Waveform Generation”

 lteNPRACHInfo

2-449

lteNPSS
Generate NPSS symbols for subframe

Syntax
sym = lteNPSS(enb)

Description
sym = lteNPSS(enb) generates sym, the narrowband primary synchronization signal (NPSS)
symbols in a subframe for cell-wide settings enb.

Examples

Generate NPSS Symbols

Initialize cell-wide settings by specifying a narrowband operation mode and subframe number.

enb.OperationMode = 'Standalone'; % Narrowband operation mode
enb.NSubframe = 5; % Subframe number

Generate the NPSS symbols.

sym = lteNPSS(enb);

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields.

2 Functions

2-450

Name Required or
Optional

Values Description Data Types

OperationMode Optional 'Standalone'
(default),
'Inband-
SamePCI',
'Inband-
DifferentPCI',
'Guardband'

NB-IoT operation
mode, specified as
one of these
values:

• 'Standalone'
– NB-IoT
standalone
operation
within any 180-
kHz band
outside any LTE
carrier
bandwidth

• 'Inband-
SamePCI' –
NB-IoT in-band
operation with
the same
physical layer
cell identity
(PCI) as an LTE
carrier

• 'Inband-
DifferentPCI
' – NB-IoT in-
band operation
with a different
PCI to an LTE
carrier

• 'Guardband' –
NB-IoT guard-
band operation
utilizing unused
resource blocks
within the
guard-band of
an LTE carrier

char, string

 lteNPSS

2-451

Name Required or
Optional

Values Description Data Types

NSubframe Optional 5 (default), integer Subframe number.
Because the NPSS
is defined only for
subframe 5, the
function returns an
empty array for
any value of this
field other than 5.
This behavior
enables resource
grid indexing for
any subframe
number.

double

NCellID Required when you
specify
OperationMode
as 'Inband-
SamePCI' or
'Inband-
DifferentPCI'

Integer in the
interval [0, 503]

PCI double

CellRefP Required when you
specify
OperationMode
as 'Inband-
SamePCI' or
'Inband-
DifferentPCI'

1, 2, 4 Number of cell-
specific antenna
ports

double

Note To exclude cell reference signal (RS) locations, specify the NCellID and CellRefP fields. If
you do not specify the NCellID and CellRefP fields, the function assumes that the cell RS is absent
and generates NPSS values for all cell RS locations.

Data Types: struct

Output Arguments
sym — NPSS symbols for a subframe
complex-valued column vector | empty array

NPSS symbols for a subframe, returned as a complex-valued column vector. If you specify the
NSubframe field of the enb input as any value other than 5, then the function returns this output as
an empty array.
Data Types: double

2 Functions

2-452

Version History
Introduced in R2019a

See Also
Functions
lteNBDLFrameOffset | lteNPSSIndices | lteNSSS

Topics
“Resource Grid Indexing”

 lteNPSS

2-453

lteNPSSIndices
Generate NPSS RE indices for subframe

Syntax
ind = lteNPSSIndices(enb)
ind = lteNPSSIndices(enb,port)
ind = lteNPSSIndices(enb,port,opts)

Description
ind = lteNPSSIndices(enb) generates ind, the narrowband primary synchronization signal
(NPSS) resource element (RE) indices for cell-wide settings enb.

ind = lteNPSSIndices(enb,port) generates NPSS RE indices for the antenna port
corresponding to the port input.

ind = lteNPSSIndices(enb,port,opts) generates NPSS RE indices for the specified antenna
port in the format specified by opts.

Examples

Generate Zero-Based NPSS RE Indices

Generate zero-based NPSS RE indices for antenna port 2000.

Initialize cell-wide settings by specifying the operation mode, number of cell-specific RS antenna
ports, physical layer cell identity, and subframe number.

enb.OperationMode = 'Inband-SamePCI'; % Operation mode
enb.CellRefP = 1; % Number of cell-specific RS antenna ports
enb.NCellID = 2; % Physical layer cell identity
enb.NSubframe = 5; % Subframe number

Specify the antenna port and generate the zero-based NPSS RE indices.

port = 0;
ind = lteNPSSIndices(enb,port,'0based');

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields.

2 Functions

2-454

Name Required or
Optional

Values Description Data Types

OperationMode Optional 'Standalone'
(default),
'Inband-
SamePCI',
'Inband-
DifferentPCI',
'Guardband'

NB-IoT operation
mode, specified as
one of these
values:

• 'Standalone'
– NB-IoT
standalone
operation
within any 180-
kHz band
outside any LTE
carrier
bandwidth

• 'Inband-
SamePCI' –
NB-IoT in-band
operation with
the same
physical layer
cell identity
(PCI) as an LTE
carrier

• 'Inband-
DifferentPCI
' – NB-IoT in-
band operation
with a different
PCI to an LTE
carrier

• 'Guardband' –
NB-IoT guard-
band operation
utilizing unused
resource blocks
within the
guard-band of
an LTE carrier

char, string

 lteNPSSIndices

2-455

Name Required or
Optional

Values Description Data Types

NSubframe Optional 5 (default), integer Subframe number.
Because the NPSS
is defined only for
subframe 5, the
function returns an
empty array for
any value of this
field other than 5.
This behavior
enables resource
grid indexing for
any subframe
number.

double

NCellID Required when you
specify
OperationMode
as 'Inband-
SamePCI' or
'Inband-
DifferentPCI'

Integer in the
interval [0, 503]

PCI double

CellRefP Required when you
specify
OperationMode
as 'Inband-
SamePCI' or
'Inband-
DifferentPCI'

1, 2, 4 Number of cell-
specific antenna
ports

double

Note To exclude cell reference signal (RS) locations, specify the NCellID and CellRefP fields. If
you do not specify the NCellID and CellRefP fields, the function assumes that the cell RS is absent
and generates NPSS values for all cell RS locations.

Data Types: struct

port — Antenna port
0 | 1

Antenna port, specified as 0 or 1, corresponding to antenna port 2000 or 2001, respectively.
Data Types: double

opts — Output format and index base of generated indices
character vector | string scalar | cell array of character vectors | string array

Output format and index base of generated indices, specified as one of these forms.

• 'format base'
• "format base"

2 Functions

2-456

• {'format','base'}
• ["format","base"]

Where format and base are defined in this table.

Option Values Description
format 'ind' (default), 'sub' Output format of generated indices

To return the indices as a column
vector, specify this option as 'ind'.

To return the indices as an NRE-by-3
matrix, where NRE is the number of
REs, specify this option as 'sub'.
Each row of the matrix contains the
subcarrier, symbol, and antenna
port as its first, second, and third
element, respectively.

base '1based' (default), '0based' Index base

To generate indices whose first
value is 1, specify this option as
'1based'. To generate indices
whose first value is 0, specify this
option as '0based'.

Example: 'ind 0based', "ind 0based", {'ind','0based'}, and ["ind","0based"] specify
the same output options.
Data Types: char | string | cell

Output Arguments
ind — NPSS RE indices for a subframe
complex-valued array | empty array

NPSS RE indices for a subframe, returned as a complex-valued array. The array dimensions depend
on the format options you specify in opts. To return ind as a column vector, specify 'ind' in the
opts input. To return ind as an NRE-by-3 matrix, specify 'sub' in the opts input. If you specify the
NSubframe field of the enb input as a value other than 5, the function returns this output as an
empty array.
Data Types: uint32

Version History
Introduced in R2019a

See Also
Functions
lteNPSS | lteNSSSIndices

 lteNPSSIndices

2-457

Topics
“Resource Grid Indexing”

2 Functions

2-458

lteNPUSCH
Generate NPUSCH symbols

Syntax
[sym,stateOut] = lteNPUSCH(ue,chs,cw)
[sym,stateOut] = lteNPUSCH(ue,chs,cw,stateIn)

Description
[sym,stateOut] = lteNPUSCH(ue,chs,cw) generates sym, a column vector containing the
narrowband physical uplink shared channel (NPUSCH) symbols for a time slot. The function
generates symbols by applying NPUSCH encoding to codeword cw for the specified user equipment
(UE) settings ue and channel transmission configuration chs. Channel encoding comprises
scrambling, modulation, layer mapping onto a single layer, transform precoding, and precoding in
accordance with section 10.1.3 of [1]. The function also returns stateOut, a structure containing the
encoder state for bundle transmission.

[sym,stateOut] = lteNPUSCH(ue,chs,cw,stateIn) specifies stateIn, the initial encoder
state.

Examples

Generate NPUSCH Symbols for Bundle

Generate NPUSCH symbols on a slot-by-slot basis for transmitting a bundle comprising one resource
unit, 16 slots, and two codeword repetitions.

Configure UE-specific settings.

ue = struct('NNCellID',0,'NBULSubcarrierSpacing','3.75kHz');

Specify a channel transmission configuration.

chs = struct('NPUSCHFormat','Data','NRUsc',1,'NRep',2,'NBULSubcarrierSet',17, ...
 'NRU',1,'NULSlots',16,'Modulation','BPSK','RNTI',0);

Generate a codeword of bits.

[~,info] = lteNPUSCHIndices(ue,chs);
cwLen = info.G;
cw = ones(cwLen,1);

Specify the initial encoder state as an empty structure, indicating the start of a bundle.

stateIn = struct();

Generate NPUSCH symbols for bundle transmission.

for SlotIdx = 0:(chs.NRep*chs.NRU*chs.NULSlots-1)
 ue.NSlot = SlotIdx;

 lteNPUSCH

2-459

 [sym,stateOut] = lteNPUSCH(ue,chs,cw,stateIn);
 stateIn = stateOut;
end

Confirm that the transmission reaches the end of the bundle.

disp(stateOut.EndOfTx)

 1

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure containing these fields.

Field Values Description Data Types
NNCellID Integer in the interval

[0, 503]
Narrowband physical
layer cell identity (PCI)

double

NBULSubcarrierSpac
ing

'3.75kHz', '15kHz' NB-IoT uplink
subcarrier spacing

To set a subcarrier
spacing of 3.75 kHz,
specify this field as
'3.75kHz'. To set a
subcarrier spacing of 15
kHz, specify this field as
'15kHz'.

char, string

NSlot Nonnegative integer Slot number double
NFrame 0 (default), nonnegative

integer
Frame number double

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing these fields.

2 Functions

2-460

Field Values Description Data Types
NPUSCHFormat 'Data', 'Control' NPUSCH format

To indicate that the
NPUSCH carries
narrowband uplink
shared channel (UL-
SCH) data, specify this
field as 'Data'. To
indicate that the
NPUSCH carries uplink
control information,
specify this field as
'Control'.

char, string

NRUsc 1, 3, 6, 12 Number of consecutive
subcarriers in a
resource unit (RU)

If you specify the
NPUSCHFormat field as
'Control' or the
NBULSubcarrierSpac
ing field of the ue input
as '3.75kHz', then you
must specify this field
as 1 .

double

NRep 1, 2, 4, 8, 16, 32, 64,
128

Number of repetitions
for a codeword

double

NRU 1, 2, 3, 4, 5, 6, 8, 10 Number of RUs double

 lteNPUSCH

2-461

Field Values Description Data Types
NULSlots 2, 4, 8, 16 Number of slots per RU

If you specify the
NPUSCHFormat field as
'Control', then you
must specify this field
as 4.

If you specify the
NPUSCHFormat field as
'Data', then you must
specify this field as:

• 16 when you specify
the NRUsc field as 1

• 8 when you specify
the NRUsc field as 3

• 4 when you specify
the NRUsc field as 6

• 2 when you specify
the NRUsc field as
12

double

Modulation 'BPSK', 'QPSK' Modulation type

To enable binary phase-
shift keying (BPSK),
specify this field as
'BPSK'. To enable
quadrature phase-shift
keying (QPSK), specify
this field as 'QPSK'.

If you specify the
NPUSCHFormat field as
'Control', then you
must specify this field
as 'BPSK'.

char, string

RNTI Nonnegative integer Radio network
temporary identifier
(RNTI) value

double

Data Types: struct

cw — Codeword of bit values
binary-valued column vector

Codeword of bit values, specified as a binary-valued column vector. The length of this input must be
an integer multiple of:

2 Functions

2-462

• chs.NRU x chs.NULSlots x chs.NRUsc when you specify the Modulation field of the chs input
as 'BPSK'

• 2 x chs.NRU x chs.NULSlots x chs.NRUsc when you specify the Modulation field of the chs
input as 'QPSK'

Data Types: double

stateIn — Initial encoder state
struct() (default) | structure

Initial encoder state for bundle transmission, specified as a structure containing these fields.

Field Values Description Data Types
SlotIdx Integer in the interval

[0, (chs.NRU x
chs.NULSlots x
chs.NRep) – 1]

Index of a slot within a
bundle, in zero-based
form

double

InitNSlot Nonnegative integer Slot number for
scrambling sequence
initialization

double

InitNFrame Nonnegative integer Frame number for
scrambling sequence
initialization

double

EndOfBlk 1 or true, 0 or false End of transport block
indicator

logical

EndOfTx 1 or true, 0 or false End of bundle indicator logical
GhpNSlot Nonnegative integer Slot number for the first

slot in the RU
double

Data Types: struct

Output Arguments
sym — NPUSCH symbols
complex-valued column vector

NPUSCH symbols for a time slot, returned as a complex-valued column vector.
Data Types: double

stateOut — Output encoder state
structure

Output encoder state, returned as a structure. This output contains the internal state of each
transport block in these fields.

 lteNPUSCH

2-463

Field Values Description Data Types
SlotIdx Integer in the interval

[0, (chs.NRU x
chs.NULSlots x
chs.NRep) – 1]

Index of a slot within a
bundle, in zero-based
form

The function returns
this field as the
SlotIdx field of the
stateIn input
increased by one. When
the SlotIdx field of the
stateIn input reaches
its maximum value, the
function returns this
field as 0. If you do not
specify the SlotIdx
field of the stateIn
input, the function
returns this field as 0. A
value of 0 indicates that
the transmission has
reached the end of a
bundle, which the
function also indicates
by setting the EndOfTx
field to 1.

double

InitNSlot Nonnegative integer Slot number for
scrambling sequence
initialization

When the slot being
processed is at the
initialization point, this
field is equal to the
NSlot field of the ue
input. Otherwise, the
function returns this
field as one of these
values.

• The value of the
InitNSlot field of
the stateIn input

• The value of the
NSlot field of the ue
input when you do
not specify the
InitNSlot field of
the stateIn input

double

2 Functions

2-464

Field Values Description Data Types
InitNFrame Nonnegative integer Frame number for

scrambling sequence
initialization

When the frame being
processed is at the
initialization point, this
field is equal to the
NFrame field of the ue
input. Otherwise, the
function returns this
field as one of these
values.

• The value of the
InitNFrame field of
the stateIn input

• 0 when you do not
specify the
InitNFrame field of
the stateIn input

double

EndOfBlk 1, 0 End of transport block
indicator

When the transmission
reaches the end of a
transport block, the
function returns this
field as 1.

At the beginning of a
bundle, the function
resets this field.

logical

EndOfTx 1, 0 End of bundle indicator

When the transmission
reaches the end of a
bundle, the function
returns this field as 1.
Otherwise, the function
returns this field as 0.

At the beginning of a
bundle, the function
resets this field.

logical

 lteNPUSCH

2-465

Field Values Description Data Types
GhpNSLot Nonnegative integer Slot number for the first

slot in the RU

The function uses this
field only when you
specify the
NPUSCHFormat field as
'Data' and the NRUsc
field as 1 in the chs
input.

double

Data Types: struct

More About
Bundle

A bundle in the medium access control (MAC) layer refers to the repeated transmissions of a
transport block.

For more information, see Section 5.3.2.1 of [2].

Tips
To use this function for transmission of a bundle, follow these steps.

1 Call the function, optionally specifying the initial encoder state using the stateIn input. The
stateOut output represents the first transmission of the transport block.

2 Call the function again, specifying the stateIn input as the stateOut output returned by the
previous call to the function.

3 Repeat step 2 until the function returns the EndOfTx field of the stateOut output as 1 (true),
indicating the end of the bundle.

Version History
Introduced in R2020a

References
[1] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). https://www.3gpp.org.

[2] 3GPP TS 36.321. “Medium Access Control (MAC) protocol specification.” 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal
Terrestrial Radio Access (E-UTRA). https://www.3gpp.org.

2 Functions

2-466

https://www.3gpp.org
https://www.3gpp.org

See Also
Functions
lteNPUSCHDecode | lteNPUSCHDRS | lteNPUSCHDRSIndices | lteNPUSCHIndices | lteNULSCH
| lteNULSCHDecode | ltePUSCH

 lteNPUSCH

2-467

lteNPUSCHDecode
Decode NPUSCH symbols

Syntax
[cw,stateOut,symbols] = lteNPUSCHDecode(ue,chs,sym)
[cw,stateOut,symbols] = lteNPUSCHDecode(ue,chs,sym,hEst,noiseEst)
[cw,stateOut,symbols] = lteNPUSCHDecode(___ ,stateIn)

Description
[cw,stateOut,symbols] = lteNPUSCHDecode(ue,chs,sym) recovers cw, a codeword of soft
bits, by decoding sym, the narrowband uplink shared channel (NPUSCH) symbols for the specified
user equipment (UE) settings ue and channel transmission configuration chs. The decoding process
comprises inverting NPUSCH channel encoding, as described in section 10.1.3 of [1]. The function
also returns stateOut, a structure containing the decoder state for bundle reception, and symbols,
a vector of received constellation symbols.

[cw,stateOut,symbols] = lteNPUSCHDecode(ue,chs,sym,hEst,noiseEst) decodes the
NPUSCH symbols for the specified channel estimate hEst and noise power spectral density estimate
noiseEst.

[cw,stateOut,symbols] = lteNPUSCHDecode(___ ,stateIn) specifies stateIn, the initial
decoder state, in addition to any input argument combination from previous syntaxes.

Examples

Decode NPUSCH Symbols from Bundle

Generate NPUSCH symbols on a slot-by-slot basis for a bundle comprising eight slots for an input
codeword. Recover the corresponding codeword of soft bits by decoding the NPUSCH symbols.

Configure UE-specific settings.

ue = struct('NNCellID',0,'NBULSubcarrierSpacing','15kHz');

Specify the channel transmission configuration.

chs = struct('NPUSCHFormat','Data','NRUsc',12,'NRep',4,'NRU',1,...
 'NULSlots',2,'Modulation','QPSK','RNTI',0);

Generate a codeword of bits.

cwLen = 2*20*chs.NRUsc*chs.NRU*chs.NULSlots;
cwIn = ones(cwLen,1);

Specify the initial encoder and decoder states as empty structures, indicating the start of a bundle.

encoderStateIn = struct();
stateIn = struct();

2 Functions

2-468

Generate NPUSCH symbols for bundle transmission and decode the bundle on a slot-by-slot basis.

for SlotIdx = 0:(chs.NRep*chs.NRU*chs.NULSlots - 1)
 ue.NSlot = SlotIdx;
 [sym,encoderStateOut] = lteNPUSCH(ue,chs,cwIn,encoderStateIn);
 encoderStateIn = encoderStateOut;
 [cw,stateOut,symbols] = lteNPUSCHDecode(ue,chs,sym,stateIn);
 stateIn = stateOut;
end

Confirm that the transmission and reception reach the end of the bundle and that the received
codeword corresponds to the input codeword.

disp(encoderStateOut.EndOfTx)

 1

disp(stateOut.EndOfTx)

 1

disp(isequal(cwIn,cw>0))

 1

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure containing these fields.

Field Values Description Data Types
NNCellID Integer in the interval

[0, 503]
Narrowband physical
layer cell identity (PCI)

double

NBULSubcarrierSpac
ing

'3.75kHz', '15kHz' NB-IoT uplink
subcarrier spacing

To set a subcarrier
spacing of 3.75 kHz,
specify this field as
'3.75kHz'. To set a
subcarrier spacing of 15
kHz, specify this field as
'15kHz'.

char, string

NSlot Nonnegative integer Slot number double
NFrame 0 (default), nonnegative

integer
Frame number double

Data Types: struct

chs — Channel transmission configuration
structure

 lteNPUSCHDecode

2-469

Channel transmission configuration, specified as a structure containing these fields.

Field Values Description Data Types
NPUSCHFormat 'Data', 'Control' NPUSCH format

To indicate that the
NPUSCH carries
narrowband uplink
shared channel (UL-
SCH) data, specify this
field as 'Data'. To
indicate that the
NPUSCH carries uplink
control information,
specify this field as
'Control'.

char, string

NRUsc 1, 3, 6, 12 Number of consecutive
subcarriers in a
resource unit (RU)

If you specify the
NPUSCHFormat field as
'Control' or the
NBULSubcarrierSpac
ing field of the ue input
as '3.75kHz', then you
must specify this field
as 1 .

double

NRep 1, 2, 4, 8, 16, 32, 64,
128

Number of repetitions
for a codeword

double

NRU 1, 2, 3, 4, 5, 6, 8, 10 Number of RUs double

2 Functions

2-470

Field Values Description Data Types
NULSlots 2, 4, 8, 16 Number of slots per RU

If you specify the
NPUSCHFormat field as
'Control', then you
must specify this field
as 4.

If you specify the
NPUSCHFormat field as
'Data', then you must
specify this field as:

• 16 when you specify
the NRUsc field as 1

• 8 when you specify
the NRUsc field as 3

• 4 when you specify
the NRUsc field as 6

• 2 when you specify
the NRUsc field as
12

double

Modulation 'BPSK', 'QPSK' Modulation type

To enable binary phase-
shift keying (BPSK),
specify this field as
'BPSK'. To enable
quadrature phase-shift
keying (QPSK), specify
this field as 'QPSK'.

If you specify the
NPUSCHFormat field as
'Control', then you
must specify this field
as 'BPSK'.

char, string

RNTI Nonnegative integer Radio network
temporary identifier
(RNTI) value

double

CSI 'On' (default), 'Off' Weight soft bits by
channel state
information (CSI)

To scale the cw output
with CSI, specify this
field as 'On'.
Otherwise, specify this
field as 'Off'.

char, string

 lteNPUSCHDecode

2-471

Data Types: struct

sym — NPUSCH symbols
complex-valued matrix

NPUSCH symbols, specified as a complex-valued matrix of size NSym-by-NRxAnts.

• NSym is the number of symbols per receive antenna assigned to the NPUSCH for a slot.
• NRxAnts is the number of receive antennas.

Data Types: double
Complex Number Support: Yes

hEst — Channel estimate
complex-valued matrix

Channel estimate, specified as a complex-valued matrix of size NSym-by-NRxAnts.

• NSym is the number of symbols per receive antenna assigned to the NPUSCH for a slot.
• NRxAnts is the number of receive antennas.

Data Types: double

noiseEst — Noise power spectral density estimate
real-valued scalar

Noise power spectral density estimate per resource element, specified as a real-valued scalar.
Data Types: double

stateIn — Initial decoder state
struct() (default) | structure

Initial decoder state for bundle reception, specified as a structure containing these fields.

Field Values Description Data Types
SlotIdx Integer in the interval

[0, (chs.NRU x
chs.NULSlots x
chs.NRep) – 1]

Index of a slot within a
bundle, in zero-based
form

double

BlkFlushEnabled 1 or true, 0 or false To flush the buffers at
every block, specify this
field as 1 (true).
Otherwise, specify this
field as 0 (false).

logical

InitNSlot Nonnegative integer Slot number for
scrambling sequence
initialization

double

InitNFrame Nonnegative integer Frame number for
scrambling sequence
initialization

double

2 Functions

2-472

Field Values Description Data Types
EndOfBlk 1 or true, 0 or false Transport block receipt

indicator
logical

EndOfCW 1 or true, 0 or false Codeword receipt
indicator

logical

EndOfTx 1 or true, 0 or false End of bundle indicator logical
CWBuffer Real-valued column

vector of the same
length as the cw output.

Buffer to store the
recovered codeword

double

CWSLCount (chs.NRU x
chs.NULSlots)-by-1
vector of integers

Repetition counter double

Data Types: struct

Output Arguments
cw — Codeword of soft bits
real-valued column vector

Codeword of soft bits, returned as a real-valued column vector.
Data Types: double

stateOut — Output decoder state
structure

Output decoder state, returned as a structure. This output contains the internal state of each
transport block in these fields.

 lteNPUSCHDecode

2-473

Field Values Description Data Types
SlotIdx Integer in the interval

[0, (chs.NRU x
chs.NULSlots x
chs.NRep) – 1]

Index of a slot within a
bundle, in zero-based
form

The function returns
this field as the
SlotIdx field of the
stateIn input
increased by one. When
the SlotIdx field of the
stateIn input reaches
its maximum value, the
function returns this
field as 0. If you do not
specify the SlotIdx
field of the stateIn
input, the function
returns this field as 0. A
value of 0 indicates that
the transmission has
reached the end of a
bundle, which the
function also indicates
by setting the EndOfTx
field to 1.

double

BlkFlushEnabled 1, 0 Indicator that the
function flushes the
buffers at every block

logical

2 Functions

2-474

Field Values Description Data Types
InitNSlot Nonnegative integer Slot number for

scrambling sequence
initialization

When the slot being
processed is at the
initialization point, this
field is equal to the
NSlot field of the ue
input. Otherwise, the
function returns this
field as one of these
values.

• The value of the
InitNSlot field of
the stateIn input

• The value of the
NSlot field of the ue
input when you do
not specify the
InitNSlot field of
the stateIn input

double

InitNFrame Nonnegative integer Frame number for
scrambling sequence
initialization

When the frame being
processed is at the
initialization point, this
field is equal to the
NFrame field of the ue
input. Otherwise, the
function returns this
field as one of these
values.

• The value of the
InitNFrame field of
the stateIn input

• 0 when you do not
specify the
InitNFrame field of
the stateIn input

double

 lteNPUSCHDecode

2-475

Field Values Description Data Types
EndOfBlk 1, 0 Transport block receipt

indicator

When the function has
received all slots of a
transport block at least
once, it returns this
field as 1.

At the beginning of a
bundle, the function
resets this field.

logical

EndOfCW 1, 0 Codeword receipt
indicator

When the function has
received the entire
codeword, that is, when
each element of the
CWSLCount field is as
least 1, the function
returns this field as 1.

At the beginning of a
bundle, the function
resets this field.

logical

EndOfTx 1, 0 End of bundle indicator

When the transmission
reaches the end of a
bundle, that is, when
each element of the
CWSLCount field is as
least 1, the function
returns this field as 1.
Otherwise, the function
returns this field as 0.

At the beginning of a
bundle, the function
resets this field.

logical

CWBuffer Real-valued column
vector of the same
length as the cw output.

Buffer to store the
recovered codeword

At the beginning of a
bundle, the function
resets this field.

double

2 Functions

2-476

Field Values Description Data Types
CWSLCount (chs.NRU x

chs.NULSlots)-by-1
vector of integers

Repetition counter

Each element indicates
how many repetitions of
the corresponding
codeword portion the
CWBuffer field has
recovered.

At the beginning of a
bundle, the function
resets this field.

double

Data Types: struct

symbols — Received constellation symbols
complex-valued column vector

Received constellation symbols, returned as a complex-valued column vector.
Data Types: double
Complex Number Support: Yes

More About
Bundle

A bundle in the medium access control (MAC) layer refers to the repeated transmissions of a
transport block.

For more information, see Section 5.3.2.1 of [2].

Tips
To use this function for reception of a bundle, follow these steps.

1 Call the function, optionally specifying the initial encoder state using the stateIn input. The
stateOut output represents the first transmission of the transport block.

2 Call the function again, specifying the stateIn input as the stateOut output returned by the
previous call to the function.

3 Repeat step 2 until the function returns the EndOfTx field of the stateOut output as 1 (true),
indicating the end of the bundle.

Version History
Introduced in R2020a

 lteNPUSCHDecode

2-477

References
[1] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). https://www.3gpp.org.

[2] 3GPP TS 36.321. “Medium Access Control (MAC) protocol specification.” 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal
Terrestrial Radio Access (E-UTRA). https://www.3gpp.org.

See Also
Functions
lteNPUSCH | lteNPUSCHDRS | lteNPUSCHDRSIndices | lteNPUSCHIndices | lteNULSCH |
lteNULSCHDecode | ltePUSCHDecode

2 Functions

2-478

https://www.3gpp.org
https://www.3gpp.org

lteNPUSCHDRS
Generate NPUSCH DRS symbols

Syntax
[sym,stateOut] = lteNPUSCHDRS(ue,chs)
[sym,stateOut] = lteNPUSCHDRS(ue,chs,stateIn)

Description
[sym,stateOut] = lteNPUSCHDRS(ue,chs) generates sym, a column vector containing the
narrowband physical uplink shared channel (NPUSCH) demodulation reference signal (DRS) symbols.
The function generates sym in accordance with section 10.1.4 of [1] for user equipment (UE) settings
ue and channel transmission configuration chs. The function also returns stateOut, a structure
containing the encoder state for bundle transmission.

[sym,stateOut] = lteNPUSCHDRS(ue,chs,stateIn) specifies stateIn, the initial encoder
state.

Examples

Generate NPUSCH DRS Symbols

Generate NPUSCH DRS symbols for a single-tone data channel.

Configure UE-specific settings.

ue = struct('NNCellID',0,'NBULSubcarrierSpacing','15kHz');

Specify a channel transmission configuration.

chs = struct('NPUSCHFormat','Data','NRep',2,'NRU',1,'NRUsc',1, ...
 'NULSlots',16,'SeqGroupHopping','On','SeqGroup',0);

Specify the initial encoder state as an empty structure, indicating the start of a bundle.

stateIn = struct();

Generate NPUSCH DRS symbols.

for SlotIdx = 0:(chs.NRep*chs.NRU*chs.NULSlots-1)
 ue.NSlot = SlotIdx;
 [sym,stateOut] = lteNPUSCHDRS(ue,chs,stateIn);
 stateIn = stateOut;
end

Confirming that the transmission reaches the end of the bundle.

disp(stateOut.EndOfTx)

 1

 lteNPUSCHDRS

2-479

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure containing these fields.

Field Values Description Data Types
NNCellID Integer in the interval

[0, 503]
Narrowband physical
layer cell identity (PCI)

double

NFrame 0 (default), nonnegative
integer

Frame number double

NBULSubcarrierSpac
ing

'3.75kHz', '15kHz' NB-IoT uplink
subcarrier spacing

To set a subcarrier
spacing of 3.75 kHz,
specify this field as
'3.75kHz'. To set a
subcarrier spacing of 15
kHz, specify this field as
'15kHz'.

char, string

NSlot Nonnegative integer Slot number double

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing these fields.

Field Values Description Data Types
NPUSCHFormat 'Data', 'Control' NPUSCH format

To indicate that the
NPUSCH carries
narrowband uplink
shared channel (UL-
SCH) data, specify this
field as 'Data'. To
indicate that the
NPUSCH carries uplink
control information,
specify this field as
'Control'.

char, string

2 Functions

2-480

Field Values Description Data Types
NRUsc 1, 3, 6, 12 Number of consecutive

subcarriers in a
resource unit (RU)

If you specify the
NPUSCHFormat field as
'Control' or the
NBULSubcarrierSpac
ing field of the ue input
as '3.75kHz', then you
must specify this field
as 1 .

double

NRep 1, 2, 4, 8, 16, 32, 64,
128

Number of repetitions
for a codeword

double

NRU 1, 2, 3, 4, 5, 6, 8, 10 Number of RUs double
NULSlots 2, 4, 8, 16 Number of slots per RU

If you specify the
NPUSCHFormat field as
'Control', then you
must specify this field
as 4.

If you specify the
NPUSCHFormat field as
'Data', then you must
specify this field as:

• 16 when you specify
the NRUsc field as 1

• 8 when you specify
the NRUsc field as 3

• 4 when you specify
the NRUsc field as 6

• 2 when you specify
the NRUsc field as
12

double

 lteNPUSCHDRS

2-481

Field Values Description Data Types
BaseSeqIdx Integer in the interval

[0, 29]

Default depends on the
value of the NRUsc field

Multitone NPUSCH
DRS base sequence
index

• When you specify
the NRUsc field as 3,
specify this field as
an integer in the
interval [0, 11]. If
you do not specify
this field, the
function sets it to the
value of
mod(ue.NNCellID,
12).

• When you specify
the NRUsc field as 6,
specify this field as
an integer in the
interval [0, 13]. If
you do not specify
this field, the
function sets it to the
value of
mod(ue.NNCellID,
14).

• When you specify
the NRUsc field as
12, specify this field
as an integer in the
interval [0, 29]. If
you do not specify
this field, the
function sets it to the
value of
mod(ue.NNCellID,
30).

• When you specify
the NRUsc field as
any other value, the
function does not
use this field.

Dependencies. To
enable this field, specify
the NRUsc field as 3, 6,
or 12.

double

2 Functions

2-482

Field Values Description Data Types
SeqGroupHopping 'On' (default), 'Off' To enable sequence-

group hopping, specify
this field as 'On'. To
disable sequence-group
hopping, specify this
field as 'Off'. For
more information, see
section 5.5.1.3 of [1].

char, string

SeqGroup 0 (default), integer in
the interval [0, 29]

Sequence-group
assignment for
sequence shift pattern
calculation

For more information,
see section 10.1.4.1.3 of
[1].

Dependencies. To
enable this field, specify
the SeqGroupHopping
field as 'On'.

double

CyclicShift 0 (default), integer in
the interval [0, 3]

Cyclic shift

• When you specify
the NRUsc field as 3,
specify this field as
an integer in the
interval [0, 2].

• When you specify
the NRUsc field as 6,
specify this field as
an integer in the
interval [0, 3].

Dependencies. To
enable this field, specify
the NRUsc field as 3 or
6.

double

Data Types: struct

stateIn — Initial encoder state
struct() (default) | structure

Initial encoder state for bundle transmission, specified as a structure containing these fields.

 lteNPUSCHDRS

2-483

Field Values Description Data Types
SlotIdx Integer in the interval

[0, (chs.NRU x
chs.NULSlots x
chs.NRep) – 1]

Index of a slot within a
bundle, in zero-based
form

double

InitNSlot Nonnegative integer Slot number for
scrambling sequence
initialization

double

InitNFrame Nonnegative integer Frame number for
scrambling sequence
initialization

double

EndOfBlk 1 or true, 0 or false End of transport block
indicator

logical

EndOfTx 1 or true, 0 or false End of bundle indicator logical
GhpNSlot Nonnegative integer Slot number for the first

slot in the RU
double

Data Types: struct

Output Arguments
sym — NPUSCH DRS symbols
complex-valued column vector

NPUSCH DRS symbols, returned as a complex-valued column vector.
Data Types: double

stateOut — Output encoder state
structure

Output encoder state, returned as a structure. This output contains the internal state of each
transport block in these fields.

2 Functions

2-484

Field Values Description Data Types
SlotIdx Integer in the interval

[0, (chs.NRU x
chs.NULSlots x
chs.NRep) – 1]

Index of a slot within a
bundle, in zero-based
form

The function returns
this field as the
SlotIdx field of the
stateIn input
increased by one. When
the SlotIdx field of the
stateIn input reaches
its maximum value, the
function returns this
field as 0. If you do not
specify the SlotIdx
field of the stateIn
input, the function
returns this field as 0. A
value of 0 indicates that
the transmission has
reached the end of a
bundle, which the
function also indicates
by setting the EndOfTx
field to 1.

double

InitNSlot Nonnegative integer Slot number for
scrambling sequence
initialization

When the slot being
processed is at the
initialization point, this
field is equal to the
NSlot field of the ue
input. Otherwise, the
function returns this
field as one of these
values.

• The value of the
InitNSlot field of
the stateIn input

• The value of the
NSlot field of the ue
input when you do
not specify the
InitNSlot field of
the stateIn input

double

 lteNPUSCHDRS

2-485

Field Values Description Data Types
InitNFrame Nonnegative integer Frame number for

scrambling sequence
initialization

When the frame being
processed is at the
initialization point, this
field is equal to the
NFrame field of the ue
input. Otherwise, the
function returns this
field as one of these
values.

• The value of the
InitNFrame field of
the stateIn input

• 0 when you do not
specify the
InitNFrame field of
the stateIn input

double

EndOfBlk 1, 0 End of transport block
indicator

When the transmission
reaches the end of a
transport block, the
function returns this
field as 1.

At the beginning of a
bundle, the function
resets this field.

logical

EndOfTx 1, 0 End of bundle indicator

When the transmission
reaches the end of a
bundle, the function
returns this field as 1.
Otherwise, the function
returns this field as 0.

At the beginning of a
bundle, the function
resets this field.

logical

2 Functions

2-486

Field Values Description Data Types
GhpNSLot Nonnegative integer Slot number for the first

slot in the RU

The function uses this
field only when you
specify the
NPUSCHFormat field as
'Data' and the NRUsc
field as 1 in the chs
input.

double

Data Types: struct

More About
Bundle

A bundle in the medium access control (MAC) layer refers to the repeated transmissions of a
transport block.

For more information, see Section 5.3.2.1 of [2].

Tips
To use this function for transmission of a bundle, follow these steps.

1 Call the function, optionally specifying the initial encoder state using the stateIn input. The
stateOut output represents the first transmission of the transport block.

2 Call the function again, specifying the stateIn input as the stateOut output returned by the
previous call to the function.

3 Repeat step 2 until the function returns the EndOfTx field of the stateOut output as 1 (true),
indicating the end of the bundle.

Version History
Introduced in R2020a

References
[1] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). https://www.3gpp.org.

[2] 3GPP TS 36.321. “Medium Access Control (MAC) protocol specification.” 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal
Terrestrial Radio Access (E-UTRA). https://www.3gpp.org.

 lteNPUSCHDRS

2-487

https://www.3gpp.org
https://www.3gpp.org

See Also
Functions
lteNPUSCH | lteNPUSCHDecode | lteNPUSCHDRSIndices | lteNPUSCHIndices | ltePUSCHDRS

2 Functions

2-488

lteNPUSCHDRSIndices
Generate NPUSCH DRS RE indices

Syntax
ind = lteNPUSCHDRSIndices(ue,chs)
ind = lteNPUSCHDRSIndices(ue,chs,opts)

Description
ind = lteNPUSCHDRSIndices(ue,chs) generates ind, a column vector of narrowband physical
uplink shared channel (NPUSCH) demodulation reference signal (DRS) resource element (RE)
indices. The function generates indices for mapping NPUSCH symbols to physical resources, as
specified in section 10.1.4.2 of [1], for user equipment (UE) settings ue and channel transmission
configuration chs.

ind = lteNPUSCHDRSIndices(ue,chs,opts) specifies opts, the format in which the function
returns the NPUSCH DRS RE indices.

Examples

Generate NPUSCH DRS RE Indices

Configure UE-specific settings.

ue = struct('NBULSubcarrierSpacing','15kHz');

Specify a channel transmission configuration.

chs = struct('NPUSCHFormat','Data','NBULSubcarrierSet',0:11);

Generate and display the NPUSCH DRS RE indices for the specified settings.

ind = lteNPUSCHDRSIndices(ue,chs);
disp(ind')

 37 38 39 40 41 42 43 44 45 46 47 48

Generate Zero-Based NPUSCH DRS RE Indices

Configure UE-specific settings.

ue = struct('NBULSubcarrierSpacing','15kHz');

Specify a channel transmission configuration.

chs = struct('NPUSCHFormat','Data','NBULSubcarrierSet',0:11);

Generate the NPUSCH DRS RE indices, specifying zero-based formatting.

 lteNPUSCHDRSIndices

2-489

ind = lteNPUSCHDRSIndices(ue,chs,'0based');

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure containing this field.

Field Values Description Data Types
NBULSubcarrierSpac
ing

'3.75kHz', '15kHz' NB-IoT uplink
subcarrier spacing

To set a subcarrier
spacing of 3.75 kHz,
specify this field as
'3.75kHz'. To set a
subcarrier spacing of 15
kHz, specify this field as
'15kHz'.

char, string

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing these fields.

Field Values Description Data Types
NPUSCHFormat 'Data', 'Control' NPUSCH format

To indicate that the
NPUSCH carries
narrowband uplink
shared channel (UL-
SCH) data, specify this
field as 'Data'. To
indicate that the
NPUSCH carries uplink
control information,
specify this field as
'Control'.

char, string

2 Functions

2-490

Field Values Description Data Types
NBULSubcarrierSet Integer in the interval

[0, 47], vector of
integers in the interval
[0, 11]

NB-IoT uplink
subcarrier indices, in
zero-based form

If you specify the
NPUSCHFormat field as
'Control', specify this
field as an integer in the
interval [0, 11].

If you specify the
NPUSCHFormat field as
'Data' and the
NBULSubcarrierSpac
ing field of the ue input
as '3.75kHz', specify
this field as an integer
in the interval [0, 47].

If you specify the
NPUSCHFormat field as
'Data' and the
NBULSubcarrierSpac
ing field of the ue input
as '15kHz', specify this
field as a vector of
integers in the interval
[0, 11].

double

Data Types: struct

opts — Output format and index base of generated indices
character vector | string scalar | cell array of character vectors | string array

Output format and index base of generated indices, specified as one of these forms.

• 'format base'
• "format base"
• {'format','base'}
• ["format","base"]

Where format and base are defined in this table.

Option Values Description

 lteNPUSCHDRSIndices

2-491

format 'ind' (default), 'sub' Output format of generated indices

To return the indices as a column
vector, specify this option as 'ind'.

To return the indices as an NRE-by-3
matrix, where NRE is the number of
REs, specify this option as 'sub'.
Each row of the matrix contains the
subcarrier, symbol, and antenna
port as its first, second, and third
element, respectively.

base '1based' (default), '0based' Index base

To generate indices whose first
value is 1, specify this option as
'1based'. To generate indices
whose first value is 0, specify this
option as '0based'.

Example: 'ind 0based', "ind 0based", {'ind','0based'}, and ["ind","0based"] specify
the same output options.
Data Types: char | string | cell

Output Arguments
ind — NPUSCH DRS RE indices
integer-valued column vector

NPUSCH DRS RE indices, returned as an integer-valued column vector of length NRE equal to the
number of REs.
Data Types: double

Version History
Introduced in R2020a

References
[1] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). https://www.3gpp.org.

See Also
Functions
lteNPUSCH | lteNPUSCHDecode | lteNPUSCHDRS | lteNPUSCHIndices | ltePUSCHDRSIndices

2 Functions

2-492

https://www.3gpp.org

lteNPUSCHIndices
Generate NPUSCH RE indices

Syntax
[ind,info] = lteNPUSCHIndices(ue,chs)
[ind,info] = lteNPUSCHIndices(ue,chs,opts)

Description
[ind,info] = lteNPUSCHIndices(ue,chs) generates ind, a column vector of narrowband
physical uplink shared channel (NPUSCH) resource element (RE) indices, and info, information
related to the indices. The function generates indices for mapping NPUSCH symbols to physical
resources, as specified in section 10.1.3.6 of [1], for user equipment (UE) settings ue and channel
transmission configuration chs.

[ind,info] = lteNPUSCHIndices(ue,chs,opts) specifies opts, the format in which the
function returns the NPUSCH RE indices.

Examples

Generate NPUSCH RE Indices

Configure UE-specific settings.

ue = struct('NBULSubcarrierSpacing','15kHz');

Specify a channel transmission configuration.

chs = struct('NPUSCHFormat','Data','NBULSubcarrierSet',[0:11],'NRU',1, ...
 'NULSlots',2,'Modulation','BPSK');

Generate the NPUSCH RE indices for the specified settings. Display the corresponding information.

[ind,info] = lteNPUSCHIndices(ue,chs);
disp(info)

 Gd: 144
 G: 144

Generate Zero-Based NPUSCH RE Indices

Configure UE-specific settings.

ue = struct('NBULSubcarrierSpacing','15kHz');

Specify a channel transmission configuration.

 lteNPUSCHIndices

2-493

chs = struct('NPUSCHFormat','Data','NBULSubcarrierSet',0:11, ...
 'NRU',1,'NULSlots',2,'Modulation','BPSK');

Generate the NPUSCH RE indices, specifying zero-based formatting.

[ind,info] = lteNPUSCHIndices(ue,chs,'0based');

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure containing this field.

Field Values Description Data Types
NBULSubcarrierSpac
ing

'3.75kHz', '15kHz' NB-IoT uplink
subcarrier spacing

To set a subcarrier
spacing of 3.75 kHz,
specify this field as
'3.75kHz'. To set a
subcarrier spacing of 15
kHz, specify this field as
'15kHz'.

char, string

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing these fields.

Field Values Description Data Types
NPUSCHFormat 'Data', 'Control' NPUSCH format

To indicate that the
NPUSCH carries
narrowband uplink
shared channel (UL-
SCH) data, specify this
field as 'Data'. To
indicate that the
NPUSCH carries uplink
control information,
specify this field as
'Control'.

char, string

2 Functions

2-494

Field Values Description Data Types
NBULSubcarrierSet Integer in the interval

[0, 47], vector of
integers in the interval
[0, 11]

NB-IoT uplink
subcarrier indices, in
zero-based form

If you specify the
NBULSubcarrierSpac
ing field of the ue input
as '3.75kHz', specify
this field as an integer
in the interval [0, 47].

If you specify the
NBULSubcarrierSpac
ing field of the ue input
as '15kHz', specify this
field as a vector of
integers in the interval
[0, 11].

double

NRU 1, 2, 3, 4, 5, 6, 8, 10 Number of RUs double
NULSlots 2, 4, 8, 16 Number of slots per RU

If you specify the
NPUSCHFormat field as
'Control', then you
must specify this field
as 4.

If you specify the
NPUSCHFormat field as
'Data', then you must
specify this field as

• 16 when you specify
the NRUsc field as 1

• 8 when you specify
the NRUsc field as 3

• 4 when you specify
the NRUsc field as 6

• 2 when you specify
the NRUsc field as
12

double

 lteNPUSCHIndices

2-495

Field Values Description Data Types
Modulation 'BPSK', 'QPSK' Modulation type

To enable binary phase-
shift keying (BPSK),
specify this field as
'BPSK'. To enable
quadrature phase-shift
keying (QPSK), specify
this field as 'QPSK'.

If you specify the
NPUSCHFormat field as
'Control', then you
must specify this field
as 'BPSK'.

char, string

Data Types: struct

opts — Output format and index base of generated indices
character vector | string scalar | cell array of character vectors | string array

Output format and index base of generated indices, specified as one of these forms.

• 'format base'
• "format base"
• {'format','base'}
• ["format","base"]

Where format and base are defined in this table.

Option Values Description
format 'ind' (default), 'sub' Output format of generated indices

To return the indices as a column
vector, specify this option as 'ind'.

To return the indices as an NRE-by-3
matrix, where NRE is the number of
REs, specify this option as 'sub'.
Each row of the matrix contains the
subcarrier, symbol, and antenna
port as its first, second, and third
element, respectively.

base '1based' (default), '0based' Index base

To generate indices whose first
value is 1, specify this option as
'1based'. To generate indices
whose first value is 0, specify this
option as '0based'.

2 Functions

2-496

Example: 'ind 0based', "ind 0based", {'ind','0based'}, and ["ind","0based"] specify
the same output options.
Data Types: char | string | cell

Output Arguments
ind — NPUSCH RE indices
integer-valued column vector

NPUSCH RE indices, returned as an integer-valued column vector of length NRE equal to the number
of REs.
Data Types: double

info — Information related to NPUSCH RE indices
structure

Information related to NPUSCH RE indices, returned as a structure containing these fields.

Field Values Description Data Types
G Nonnegative integer Number of coded and

rate-matched uplink
shared channel (UL-
SCH) data bits for a
codeword

double

Gd Nonnegative integer Number of UL-SCH data
symbols

The function returns
this field as the value of
chs.NRU x
chs.NULSlots x NRE.

double

Data Types: struct

Version History
Introduced in R2020a

References
[1] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). https://www.3gpp.org.

See Also
Functions
lteNPUSCH | lteNPUSCHDecode | lteNPUSCHDRS | lteNPUSCHDRSIndices | lteNULSCH |
lteNULSCHDecode | ltePUSCHIndices

 lteNPUSCHIndices

2-497

https://www.3gpp.org

lteNULSCH
Generate NB-IoT UL-SCH codeword

Syntax
cw = lteNULSCH(chs,outLen,trBlkIn)
cw = lteNULSCH(trBlkIn)

Description
cw = lteNULSCH(chs,outLen,trBlkIn) generates cw, an NB-IoT uplink shared channel (UL-
SCH) codeword of length outLen, by processing trBlkIn, the input transport block (data) or uplink
control information (UCI), for channel transmission configuration settings chs. Use this syntax for
NB-IoT UL-SCH data or UCI processing.

NB-IoT UL-SCH data processing comprises type-24A cyclic redundancy check (CRC) attachment,
turbo encoding, rate matching to outLen, and interleaving, in accordance with section 6.3.2 of [1].

NB-IoT UL-SCH UCI processing comprises mapping control information bit trBlkIn to a 16-bit
codeword cw in accordance with section 6.3.3 of [1].

cw = lteNULSCH(trBlkIn) generates cw by mapping control information bit trBlkIn in
accordance with section 6.3.3 of [1]. Use this syntax for NB-IoT UL-SCH UCI processing.

Examples

Generate NB-IoT UL-SCH Data Codeword

Generate a codeword by applying NB-IoT UL-SCH data processing to a transport block.

Configure UE-specific settings.

ue = struct('NBULSubcarrierSpacing','15kHz');

Specify a channel transmission configuration.

chs = struct('NPUSCHFormat','Data','NULSlots',16,'NBULSubcarrierSet',6, ...
 'Modulation','BPSK','NRU',2,'RV',0);

Specify the codeword length and create a transport block for encoding.

[~,info] = lteNPUSCHIndices(ue,chs);
outLen = info.G;
trBlkIn = randi([0,1],144,1);

Generate the UL-SCH codeword.

cw = lteNULSCH(chs,outLen,trBlkIn);

2 Functions

2-498

Generate NB-IoT UL-SCH UCI Codeword

Generate a codeword by applying UCI processing to a control information bit.

Create a control information bit for encoding.

trBlkIn = 1;

Generate and display the NB-IoT UL-SCH codeword.

cw = lteNULSCH(trBlkIn);
disp(cw')

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Input Arguments
chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing these fields.

Field Values Description Data Types
NPUSCHFormat 'Data' (default),

'Control'
Narrowband physical
uplink shared channel
(NPUSCH) format

To indicate that the
NPUSCH carries
narrowband uplink
shared channel (UL-
SCH) data, specify this
field as 'Data'. To
indicate that the
NPUSCH carries uplink
control information,
specify this field as
'Control'.

char, string

NRU 1, 2, 3, 4, 5, 6, 8, 10 Number of resource
units (RUs)

double

NULSlots 2, 4, 8, 16 Number of slots per RU double

 lteNULSCH

2-499

Field Values Description Data Types
Modulation 'BPSK', 'QPSK' Modulation type,

specified as one of these
values:

To enable binary phase-
shift keying (BPSK),
specify this field as
'BPSK'. To enable
quadrature phase-shift
keying (QPSK), specify
this field as 'QPSK'.

char, string

RV 0, 2 Redundancy version
indicator

double

Data Types: struct

outLen — Codeword length
positive integer

Codeword length, specified as a positive integer.

When you specify the NPUSCHFormat field of the chs input as 'Data', specify this input as the
NPUSCH capacity for the associated codeword. The lteNULSCH function generates the cw output as
a vector of this length by rate matching the encoded transport block to the specified value.

When you specify the NPUSCHFormat field of the chs input as 'Control', the lteNULSCH function
sets this input to 16.
Data Types: double

trBlkIn — Transport block (data) or UCI
0 | 1 | binary-valued column vector

Transport block (data) or UCI, specified as one of these values.

NPUSCH Format trBlkIn Value
Data Transport block Binary-valued column vector
Control UCI 0, 1

Data Types: double

Output Arguments
cw — NB-IoT UL-SCH codeword
binary-valued column vector

NB-IoT UL-SCH codeword, returned as a binary-valued column vector of length outLen.
Data Types: int8

2 Functions

2-500

Version History
Introduced in R2020a

References
[1] 3GPP TS 36.212. “Multiplexing and channel coding.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). https://www.3gpp.org.

See Also
Functions
lteNPUSCH | lteNPUSCHDecode | lteNULSCHDecode | lteULSCH

 lteNULSCH

2-501

https://www.3gpp.org

lteNULSCHDecode
Decode NB-IoT UL-SCH codeword

Syntax
[trBlkOut,blkCRC,stateOut] = lteNULSCHDecode(chs,trBlkLen,cw)
[trBlkOut,blkCRC,stateOut] = lteNULSCHDecode(cw)
[trBlkOut,blkCRC,stateOut] = lteNULSCHDecode(___ ,stateIn)

Description
[trBlkOut,blkCRC,stateOut] = lteNULSCHDecode(chs,trBlkLen,cw) returns trBlkOut, a
vector of length trBlkLen containing NB-IoT UL-SCH data or uplink control information (UCI)
decoded from cw, an NB-IoT uplink shared channel (UL-SCH) codeword of log-likelihood ratios
(LLRs). The function also returns blkCRC, the result of type-24A transport block cyclic redundancy
check (CRC) decoding, and stateOut, the hybrid automatic repeat request (HARQ) process decoding
status. Use this syntax for NB-IoT UL-SCH data or UCI decoding. If you use this syntax for UCI
decoding, the function decodes cw without soft combining.

For NB-IoT UL-SCH data decoding, the function inverts the UL-SCH processing described in section
6.3.2 of [1] by deinterleaving, rate recovering, turbo decoding, and type-24A transport block CRC
decoding the input codeword.

For UCI decoding, the function inverts the UL-SCH processing described in section 6.3.3 of [1] by
slicing the codeword data.

[trBlkOut,blkCRC,stateOut] = lteNULSCHDecode(cw) decodes NB-IoT UL-SCH codeword cw
by inverting the UL-SCH processing described in section 6.3.3 of [1]. Use this syntax for UCI
decoding without soft combining.

[trBlkOut,blkCRC,stateOut] = lteNULSCHDecode(___ ,stateIn) specifies stateIn, the
initial decoder state for each transport block in an active HARQ process, in addition to any input
combination from previous syntaxes.. If you use this syntax for UCI decoding, the function decodes cw
with soft combining.

Examples

Decode NB-IoT UL-SCH UCI Codeword

Generate a codeword by applying UCI encoding to a control information bit. Recover the control
information by decoding.

Create a control information bit for encoding.

trBlkIn = 1;

Generate the UL-SCH codeword.

cw = lteNULSCH(trBlkIn);

2 Functions

2-502

Recover the transport block by decoding the NB-IoT UL-SCH codeword.

[trBlkOut,blkCRC,stateOut] = lteNULSCHDecode(cw);

Confirm that the recovered bit matches the input control information bit.

disp(isequal(trBlkIn,trBlkOut))

 1

Decode NB-IoT UL-SCH Data Codeword

Generate an NB-IoT UL-SCH data codeword by encoding a 136-bit transport block. Split the
codeword into two NPUSCH transmissions in two consecutive slots. Decode the NPUSCH
transmission, and then decode the received NB-IoT UL-SCH codeword.

Configure UE-specific settings.

ue = struct('NBULSubcarrierSpacing','15kHz','NNCellID',10,'NSlot',0);

Specify a channel transmission configuration.

chs = struct('NPUSCHFormat','Data','NBULSubcarrierSet',0:11,'NRUsc',length(0:11),'NRep',1, ...
 'NRU',1,'NULSlots',2,'Modulation','QPSK','RV',0,'NTurboDecIts',5,'RNTI',20);

Generate a transport block for encoding.

trBlkLen = 136;
trBlkIn = randi([0 1],trBlkLen,1);

Get the codeword length by generating the NPUSCH RE indices and associated information.

[~,info] = lteNPUSCHIndices(ue,chs);
outLen = info.G;

Generate the UL-SCH codeword.

cwIn = lteNULSCH(chs,outLen,trBlkIn);

Initialize the encoder state for the NPUSCH and the decoder states for the NPUSCH and UL-SCH.

npuschStateIn = struct();
npuschDecodeStateIn = struct();
stateIn = struct();

Generate NPUSCH symbols for slot 0, and then return the decoder state by decoding the NPUSCH
symbols.

[symSlot0,npuschStateOut] = lteNPUSCH(ue,chs,cwIn,npuschStateIn);
[~,npuschDecodeStateOut,~] = lteNPUSCHDecode(ue,chs,symSlot0,npuschDecodeStateIn);

Generate NPUSCH symbols for slot 1, and then return the decoder state by decoding the NPUSCH
symbols.

ue.NSlot = 1;
[symSlot1,~] = lteNPUSCH(ue,chs,cwIn,npuschStateOut);
[cw,~,~] = lteNPUSCHDecode(ue,chs,symSlot1,npuschDecodeStateOut);

 lteNULSCHDecode

2-503

Decode received NB-IoT UL-SCH data codeword.

[trBlkOut,blkCRC,stateOut] = lteNULSCHDecode(chs,trBlkLen,cw,stateIn);

Confirm that the recovered NB-IoT UL-SCH matches the original transport block.

disp(isequal(trBlkIn,trBlkOut))

 1

Input Arguments
chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing these fields.

Field Values Description Data Types
NPUSCHFormat 'Data' (default),

'Control'
Narrowband physical
uplink shared channel
(NPUSCH) format

To indicate that the
NPUSCH carries
narrowband uplink
shared channel (UL-
SCH) data, specify this
field as 'Data'. To
indicate that the
NPUSCH carries uplink
control information,
specify this field as
'Control'.

char, string

NRU 1, 2, 3, 4, 5, 6, 8, 10 Number of resource
units (RUs)

double

NULSlots 2, 4, 8, 16 Number of slots per RU double
Modulation 'BPSK', 'QPSK' Modulation type,

specified as one of these
values:

To enable binary phase-
shift keying (BPSK),
specify this field as
'BPSK'. To enable
quadrature phase-shift
keying (QPSK), specify
this field as 'QPSK'.

char, string

RV 0, 2 Redundancy version
indicator

double

2 Functions

2-504

Field Values Description Data Types
NTurboDecIts 5 (default), integer in

the interval [1, 30]
Number of turbo
decoder iteration cycles

double

Data Types: struct

trBlkLen — Transport block length
positive integer

Transport block length, specified as a positive integer. The function rate recovers and turbo decodes
the cw input to the value of this input.
Data Types: double

cw — NB-IoT UL-SCH codeword of LLRs
binary-valued column vector

NB-IoT UL-SCH codeword of LLRs, specified as a binary-valued column vector.
Data Types: double

stateIn — Initial decoder buffer state
struct() | structure

Initial decoder buffer state for each transport block in an active HARQ process, specified as a
structure containing this field.

Field Values Description Data Types
CBSBuffers Cell array LLR soft buffer state for

the transport block
input to the turbo
decoder after rate
recovery

cell

Data Types: struct

Output Arguments
trBlkOut — Decoded NB-IoT UL-SCH data or UCI information bits
binary-valued column vector

Decoded NB-IoT UL-SCH data or UCI information bits, returned as a binary-valued column vector.
Data Types: int8

blkCRC — Type-24A transport block CRC decoding error indicator
0 | 1

Type-24A transport block CRC decoding error indicator, returned as 0 or 1. When the
lteNULSCHDecode function decodes cw with zero errors, it returns this output as 0. Otherwise, the
function returns this output as 1.
Data Types: logical

 lteNULSCHDecode

2-505

stateOut — Output decoder buffer state
structure

Output decoder buffer state for each transport block in an active HARQ process, returned as a
structure containing these fields.

Field Values Description Data Types
CBSBuffers Cell array LLR soft buffer state for

the transport block
input to the turbo
decoder after rate
recovery

cell

BLKCRC 1, 0 Type-24A transport
block CRC decoding
error indicator

When the function
decodes cw with zero
errors, it returns this
output as 0 (false).
Otherwise, the function
returns this output as 1
(true).

logical

Data Types: struct

Version History
Introduced in R2020a

References
[1] 3GPP TS 36.212. “Multiplexing and channel coding.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). https://www.3gpp.org.

See Also
Functions
lteNPUSCH | lteNPUSCHDecode | lteNULSCH

2 Functions

2-506

https://www.3gpp.org

lteNRS
Generate cell-specific NRS symbols

Syntax
sym = lteNRS(enb)
sym = lteNRS(enb,ports)

Description
sym = lteNRS(enb) generates sym, a column vector of cell-specific narrowband reference signal
(NRS) symbols, for cell-wide settings enb. Unlike other physical channels and signals, the symbols for
all antennas are not returned as a matrix with one column for each antenna, since the number of
symbols varies across antenna ports.

sym = lteNRS(enb,ports) generates NRS symbols for input cell-wide settings for the input NRS
antenna ports specified by ports.

Examples

Generate NRS Symbols

Initialize cell-wide settings by specifying a narrowband physical layer cell identity, number of NRS
antenna ports, and subframe number.

enb.NNCellID = 42; % Physical layer cell identity
enb.NBRefP = 1; % Number of NRS antenna ports
enb.NSubframe = 4; % Subframe number

Generate and display the NRS symbols for the specified cell-wide settings.

sym = lteNRS(enb);
disp(sym);

 0.7071 - 0.7071i
 0.7071 + 0.7071i
 -0.7071 + 0.7071i
 0.7071 - 0.7071i
 0.7071 + 0.7071i
 -0.7071 - 0.7071i
 0.7071 + 0.7071i
 0.7071 - 0.7071i

Find Number of Transmitted NRS Symbols

Find the number of NRS symbols transmitted at NRS antenna ports.

 lteNRS

2-507

Specify the cell-wide settings as fields in the structure enb. Generate the NRS symbols transmitted at
antenna port 2000.

enb.NNCellID = 10; % Physical layer cell identity
enb.NBRefP = 2; % Number of NRS antenna ports
enb.NSubframe = 2; % Subframe number
ports = 0; % Antenna port 0
sym = lteNRS(enb,ports); % Return NRS symbols

Compute and display the number of NRS symbols transmitted at the antenna port.

nrsPort2000 = length(sym);
disp(nrsPort2000);

 8

Generate the NRS symbols transmitted at antenna ports 2000 and 2001. Compute and display the
number of NRS symbols transmitted at both ports.

symAll = lteNRS(enb);
nrsPortAll = length(symAll);
disp(nrsPortAll);

 16

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields:

Name Values Description Data Types
NNCellID integer in the interval

[0, 503]
Narrowband physical
layer cell identity

double

NBRefP 1, 2 Number of NRS
antenna ports

double

NSubframe integer Subframe number double

Data Types: struct

ports — NRS antenna ports
0 | 1 | [0 1]

NRS antenna ports, specified as 0, 1, or [0 1].
Data Types: double

Output Arguments
sym — NRS symbols for a subframe
complex-valued column vector

NRS symbols for a subframe, returned as a complex-valued column vector.

2 Functions

2-508

Data Types: double

Version History
Introduced in R2019a

See Also
lteDLChannelEstimate | lteNRSIndices

 lteNRS

2-509

lteNRSIndices
NRS resource element indices

Syntax
ind = lteNRSIndices(enb)
ind = lteNRSIndices(enb,ports)
ind = lteNRSIndices(enb,opts)
ind = lteNRSIndices(enb,ports,opts)

Description
ind = lteNRSIndices(enb) returns a column vector of resource element (RE) indices for the
narrowband reference signal (NRS), given the cell-wide settings in the enb structure. By default, the
indices are returned in 1-based linear indexing form. Using this form, you can directly index elements
of a 3-D array representing the subframe resource grid for all antenna ports. The indices are ordered
as the reference signal modulation symbols are mapped. Alternative indexing formats can also be
generated. The indices for multiple antennas are concatenated into a single column rather than
returned in a matrix with a column for each antenna. The indices for each antenna are concatenated
because the number of indices varies across the antenna ports.

ind = lteNRSIndices(enb,ports) returns a column vector of RE indices for antenna ports
specified in the ports vector and enb cell-wide settings structure. In this case, lteNRSIndices
ignores the NBRefP field of enb and uses ports instead.

ind = lteNRSIndices(enb,opts) formats the returned indices using options specified by opts.

ind = lteNRSIndices(enb,ports,opts) returns the RE indices for antenna ports specified in
the ports vector and formats them using options defined in opts.

Examples

Generate Narrowband Reference Signal RE Indices

Generate 0-based narrowband reference signal RE indices in subscript form for antenna port 1. Each
row of the generated matrix has three columns representing the subcarrier, symbol, and antenna
port, respectively.

Create cell-wide settings of the eNodeB structure.

enb.NNCellID = 10;
enb.NBRefP = 2;

Generate the 0-based narrowband reference signal RE indices.

ind = lteNRSIndices(enb,1,{'0based','sub'})

ind = 8×3

 1 5 1

2 Functions

2-510

 7 5 1
 4 6 1
 10 6 1
 1 12 1
 7 12 1
 4 13 1
 10 13 1

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields:

Name Values Description Data Types
NNCellID Integer in the interval

[0, 503]
Narrowband physical
layer cell identity

double

NBRefP 1, 2 Number of NRS
antenna ports

double

Data Types: struct

ports — NRS antenna ports
0 | 1 | vector

NRS antenna ports, specified as 0, 1, or a vector whose elements must be 0 or 1. Ports 0 and 1 stand
for NRS antenna ports 2000 and 2001, respectively.
Data Types: double

opts — Output format and index base of generated indices
character vector | string scalar | cell array of character vectors | string array

Output format and index base of generated indices, specified as one of these forms.

• 'format base'
• "format base"
• {'format','base'}
• ["format","base"]

Where format and base are defined in this table.

Option Values Description

 lteNRSIndices

2-511

format 'ind' (default), 'sub' Output format of generated indices

To return the indices as a column
vector, specify this option as 'ind'.

To return the indices as an NRE-by-3
matrix, where NRE is the number of
REs, specify this option as 'sub'.
Each row of the matrix contains the
subcarrier, symbol, and antenna
port as its first, second, and third
element, respectively.

base '1based' (default), '0based' Index base

To generate indices whose first
value is 1, specify this option as
'1based'. To generate indices
whose first value is 0, specify this
option as '0based'.

Example: 'ind 0based', "ind 0based", {'ind','0based'}, and ["ind","0based"] specify
the same output options.
Data Types: char | string | cell

Output Arguments
ind — Narrowband reference signal RE indices
numeric column vector | matrix

NRS RE indices, returned as a numeric column vector or matrix, depending on the indexing style
specified in opts:

• If you specify linear indexing (default), then ind is a column vector.
• If you specify subscript row style indexing, then ind is an NRE-by-3 matrix, where NRE is the

number of resource elements.

Data Types: uint32

Version History
Introduced in R2018a

See Also
lteNRS | lteCellRSIndices | lteCellRS

2 Functions

2-512

lteNSSS
Generate NSSS symbols for subframe

Syntax
sym = lteNSSS(enb)

Description
sym = lteNSSS(enb) generates narrowband secondary synchronization (NSSS) symbols sym for
cell-wide settings specified enb.

Examples

Generate NSSS Symbols

Initialize cell-wide settings by specifying a narrowband operation mode, subframe number, frame
number, and physical layer cell identity.

enb.OperationMode = 'Standalone'; % Narrowband operation mode
enb.NSubframe = 9; % Subframe number
enb.NFrame = 0; % Frame number
enb.NNCellID = 1; % Physical layer cell identity

Generate the NSSS symbols.

sym = lteNSSS(enb);

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields.

 lteNSSS

2-513

Name Required or
Optional

Values Description Data Types

OperationMode Optional 'Standalone'
(default),
'Inband-
SamePCI',
'Inband-
DifferentPCI',
'Guardband'

NB-IoT operation
mode, specified as
one of these
values:

• 'Standalone'
– NB-IoT
standalone
operation
within any 180-
kHz band
outside any LTE
carrier
bandwidth

• 'Inband-
SamePCI' –
NB-IoT in-band
operation with
the same
physical layer
cell identity
(PCI) as an LTE
carrier

• 'Inband-
DifferentPCI
' – NB-IoT in-
band operation
with a different
PCI to an LTE
carrier

• 'Guardband' –
NB-IoT guard-
band operation
utilizing unused
resource blocks
within the
guard-band of
an LTE carrier

char, string

NNCellID Required Integer in the
interval [0, 503]

Narrowband PCI double

2 Functions

2-514

Name Required or
Optional

Values Description Data Types

NSubframe Optional 9 (default), integer Subframe number.
Because the NSSS
is defined only for
subframe 9 in
alternate frames,
the function
returns an empty
array for any value
of this field other
than 9. This
behavior enables
resource grid
indexing for any
subframe number.

double

NFrame Optional 0 (default), integer Frame number.
Because the NSSS
is defined only for
subframe 9 in
alternate frames,
the function
returns an empty
vector for odd
values of this field.
This behavior
enables resource
grid indexing for
any subframe
number and any
frame number.

double

NCellID Required when you
specify
OperationMode
as 'Inband-
SamePCI' or
'Inband-
DifferentPCI'

Integer in the
interval [0, 503]

PCI double

CellRefP Required when you
specify
OperationMode
as 'Inband-
SamePCI' or
'Inband-
DifferentPCI'

1, 2, 4 Number of cell-
specific antenna
ports

double

Note To exclude cell reference signal (RS) locations, specify the NCellID and CellRefP fields. If
you do not specify the NCellID and CellRefP fields, the function assumes that the cell RS is absent
and generates NSSS values for all cell RS locations.

 lteNSSS

2-515

Data Types: struct

Output Arguments
sym — NSSS symbols for subframe
complex-valued column vector | empty array

NSSS symbols for a subframe, returned as a complex-valued column vector. If you specify the
NSubframe field of the enb input as any value other than 9 or the NFrame field as an odd value, then
the function returns this output as an empty array.

Version History
Introduced in R2019a

See Also
Functions
lteNBDLFrameOffset | lteNSSSIndices | lteNPSS

Topics
“Resource Grid Indexing”

2 Functions

2-516

lteNSSSIndices
Generate NSSS RE indices for subframe

Syntax
ind = lteNSSSIndices(enb)
ind = lteNSSSIndices(enb,port)
ind = lteNSSSIndices(enb,port,opts)

Description
ind = lteNSSSIndices(enb) generates ind, the narrowband secondary synchronization signal
(NSSS) resource element (RE) indices for cell-wide settings enb.

ind = lteNSSSIndices(enb,port) generates the NSSS RE indices for the antenna port
corresponding to the port input.

ind = lteNSSSIndices(enb,port,opts) generates the NSSS RE indices for the specified
antenna port in the format specified by opts.

Examples

Generate Zero-Based NSSS RE Indices

Generate zero-based NSSS RE indices for antenna port 2001.

Initialize cell-wide settings by specifying the operation mode, number of cell-specific RS antenna
ports, physical layer cell identity, frame number, and subframe number.

enb.OperationMode = 'Inband-SamePCI'; % Operation mode
enb.CellRefP = 1; % Number of cell-specific RS antenna ports
enb.NCellID = 2; % Physical layer cell identity
enb.NSubframe = 9; % Subframe number
enb.NFrame = 4; % Frame number

Specify the antenna port and generate the NSSS RE indices, specifying zero-based indexing. To
return a matrix whose rows each contain the subcarrier, index, and antenna port of the corresponding
RE, specify the option 'sub'.

port = 1;
ind = lteNSSSIndices(enb,port,{'0based','sub'});

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields.

 lteNSSSIndices

2-517

Name Required or
Optional

Values Description Data Types

OperationMode Optional 'Standalone'
(default),
'Inband-
SamePCI',
'Inband-
DifferentPCI',
'Guardband'

NB-IoT operation
mode, specified as
one of these
values:

• 'Standalone'
– NB-IoT
standalone
operation
within any 180-
kHz band
outside any LTE
carrier
bandwidth

• 'Inband-
SamePCI' –
NB-IoT in-band
operation with
the same
physical layer
cell identity
(PCI) as an LTE
carrier

• 'Inband-
DifferentPCI
' – NB-IoT in-
band operation
with a different
PCI to an LTE
carrier

• 'Guardband' –
NB-IoT guard-
band operation
utilizing unused
resource blocks
within the
guard-band of
an LTE carrier

char, string

2 Functions

2-518

Name Required or
Optional

Values Description Data Types

NSubframe Optional 9 (default), integer Subframe number.
Because the NSSS
is defined only for
subframe 9 in
alternate frames,
the function
returns an empty
array for any value
of this field other
than 9. This
behavior enables
resource grid
indexing for any
subframe number.

double

NFrame Optional 0 (default), integer Frame number.
Because the NSSS
is defined only for
subframe 9 in
alternate frames,
the function
returns an empty
vector for odd
values of this field.
This behavior
enables resource
grid indexing for
any subframe
number and any
frame number.

double

NCellID Required when you
specify
OperationMode
as 'Inband-
SamePCI' or
'Inband-
DifferentPCI'

Integer in the
interval [0, 503]

PCI double

CellRefP Required when you
specify
OperationMode
as 'Inband-
SamePCI' or
'Inband-
DifferentPCI'

1, 2, 4 Number of cell-
specific antenna
ports

double

Note To exclude cell reference signal (RS) locations, specify the NCellID and CellRefP fields. If
you do not specify the NCellID and CellRefP fields, the function assumes that the cell RS is absent
and generates NSSS values for all cell RS locations.

 lteNSSSIndices

2-519

Data Types: struct

port — Antenna port
0 | 1

Antenna port, specified as 0 or 1, corresponding to antenna port 2000 or 2001, respectively.
Data Types: double

opts — Output format and index base of generated indices
character vector | string scalar | cell array of character vectors | string array

Output format and index base of generated indices, specified as one of these forms.

• 'format base'
• "format base"
• {'format','base'}
• ["format","base"]

Where format and base are defined in this table.

Option Values Description
format 'ind' (default), 'sub' Output format of generated indices

To return the indices as a column
vector, specify this option as 'ind'.

To return the indices as an NRE-by-3
matrix, where NRE is the number of
REs, specify this option as 'sub'.
Each row of the matrix contains the
subcarrier, symbol, and antenna
port as its first, second, and third
element, respectively.

base '1based' (default), '0based' Index base

To generate indices whose first
value is 1, specify this option as
'1based'. To generate indices
whose first value is 0, specify this
option as '0based'.

Example: 'ind 0based', "ind 0based", {'ind','0based'}, and ["ind","0based"] specify
the same output options.
Data Types: char | string | cell

Output Arguments
ind — NSSS RE indices for a subframe
complex-valued array | empty array

NSSS RE indices for a subframe, returned as a complex-valued array. The array dimensions depend
on the format options you specify in opts. To return ind as a column vector, specify 'ind' in the

2 Functions

2-520

opts input. To return ind as an NRE-by-3 matrix, specify 'sub' in the opts input. If you specify the
NSubframe field of the enb input as a value other than 9 or the NFrame field as an odd value, the
function returns this output as an empty array.
Data Types: uint32

Version History
Introduced in R2019a

See Also
Functions
lteNBDLFrameOffset | lteNSSS | lteNPSSIndices

Topics
“Resource Grid Indexing”

 lteNSSSIndices

2-521

lteOFDMDemodulate
OFDM demodulation

Syntax
grid = lteOFDMDemodulate(enb,waveform)
grid = lteOFDMDemodulate(enb,waveform,cpfraction)
grid = lteOFDMDemodulate(enb,waveform,cpfraction,Nfft)

Description
grid = lteOFDMDemodulate(enb,waveform) performs OFDM demodulation of waveform, the
time-domain waveform, for cell-wide settings enb.

The demodulation performs one FFT operation per received OFDM symbol to recover the received
subcarrier values. These values are then used to construct each column of the output resource array,
grid. The FFT is positioned partway through the cyclic prefix to allow for a certain degree of channel
delay spread while avoiding the overlap between adjacent OFDM symbols. The particular position of
the FFT chosen here avoids the OFDM symbol overlapping used in lteOFDMModulate. Since the
FFT is performed away from the original zero-phase point on the transmitted subcarriers, a phase
correction is applied to each subcarrier after the FFT. Then, the received subcarriers are extracted
from the FFT bins, skipping unused frequency bins at either end of the spectrum and the central DC
frequency bin. These extracted subcarriers form the columns of the output grid.

The sampling rate of the time-domain waveform, waveform, must be the same as used in
lteOFDMModulate for the specified number of resource blocks, NDLRB. waveform must also be
time-aligned such that the first sample is the first sample of the cyclic prefix of the first OFDM symbol
in a subframe. This alignment can be achieved by using lteDLFrameOffset.

grid = lteOFDMDemodulate(enb,waveform,cpfraction) specifies the position of the
demodulation through the cyclic prefix.

grid = lteOFDMDemodulate(enb,waveform,cpfraction,Nfft) specifies the number of FFT
points to use in the demodulation.

Examples

Perform OFDM Demodulation

Perform modulation and demodulation of Test Model 1.1 5MHz.

cfg = lteTestModel('1.1','5MHz');
txWaveform = lteTestModelTool(cfg);
rxGrid = lteOFDMDemodulate(cfg,txWaveform);

2 Functions

2-522

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing these fields.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length

Data Types: struct

waveform — Time-domain waveform
numeric matrix

Time-domain waveform, specified as a numeric matrix of size T-by-P, where P is the number of
antennas and T is the number of time-domain samples. T = K × 30720 / 2048 × Nfft, where Nfft is the
IFFT size and K is the number of subframes in the input, grid. waveform must be time-aligned such
that the first sample is the first sample of the cyclic prefix of the first OFDM symbol in a subframe.
Data Types: double
Complex Number Support: Yes

cpfraction — Demodulation position
0.55 (default) | scalar in the interval [0, 1]

Demodulation position, specified as a scalar in the interval [0, 1], with 0 representing the start of the
cyclic prefix and 1 representing the end of the cyclic prefix. The default value allows for the default
level of windowing in lteOFDMModulate.
Data Types: double

Nfft — Number of FFT points
positive integer

The number of FFT points to use in the OFDM demodulation, specified as a positive integer.
Data Types: double

Output Arguments
grid — Resource elements
3-D numeric array

Resource elements, returned as a 3-D numeric array. grid stores the resource elements for a number
of subframes across all configured antenna ports. It is an M-by-N-by-P array, where M is the number
of subcarriers, N is the number of OFDM symbols, and P is the number of antennas.
Data Types: double

 lteOFDMDemodulate

2-523

Version History
Introduced in R2014a

Specify FFT size

You can specify the FFT size by using the Nfft input.

See Also
lteOFDMModulate | lteOFDMInfo | lteDLFrameOffset | lteDLChannelEstimate |
lteDLPerfectChannelEstimate

2 Functions

2-524

lteOFDMModulate
OFDM modulation

Syntax
[waveform,info] = lteOFDMModulate(enb,grid)
[waveform,info] = lteOFDMModulate(enb,grid,windowing)
[waveform,info] = lteOFDMModulate(enb,grid,windowing,Nfft)

Description
[waveform,info] = lteOFDMModulate(enb,grid) performs DC subcarrier insertion, inverse
fast Fourier transform (IFFT) calculation, cyclic prefix insertion, and optional raised cosine
windowing and overlapping of adjacent OFDM symbols of the complex symbols in the resource array,
grid. grid is a 3-D array containing the resource elements (REs) for a number of subframes across
all configured antenna ports, as described in “Represent Resource Grids”. It could also be multiple
concatenated matrices to give multiple subframes, using concatenation across the columns or second
dimension. The antenna planes in grid are each OFDM modulated to yield the columns of the output
waveform.

grid can span multiple subframes. Windowing and overlapping are applied between all adjacent
OFDM symbols, including the last of one subframe and the first of the next. Therefore, a different
result is obtained than if lteOFDMModulate is called on individual subframes and then those time-
domain waveforms are concatenated. In that case, the resulting waveform has discontinuities at the
start or end of each subframe. It is recommended that all subframes for OFDM modulation first be
concatenated before calling lteOFDMModulate on the resulting multi-subframe array. However,
individual subframes can be OFDM modulated and the resulting multi-subframe time-domain
waveform created by manual overlapping.

[waveform,info] = lteOFDMModulate(enb,grid,windowing) allows control of the number of
windowed and overlapped samples used in the time-domain windowing, specified by the windowing
parameter. The value of enb.Windowing, if present, is ignored, and the output, info.Windowing is
set to windowing.

[waveform,info] = lteOFDMModulate(enb,grid,windowing,Nfft) specifies the number of
IFFT points to use in the modulation.

Examples

Perform OFDM Modulation

Perform OFDM modulation of one subframe of random uniformly distributed noise using a 10 MHz
two-antenna configuration.

enb = struct('NDLRB',50,'CyclicPrefix','Normal','CellRefP',2);
dims = lteDLResourceGridSize(enb);
regrid = reshape(lteSymbolModulate(randi([0,1],prod(dims)*2,1), ...
 'QPSK'),dims);
waveform = lteOFDMModulate(enb,regrid);

 lteOFDMModulate

2-525

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure. enb can contain the following fields.

Parameter Field Required or
Optional

Values Description

CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length
Windowing Optional Nonnegative integer Number of time-domain samples

over which the function applies
windowing and overlapping of
OFDM symbols

See note

Note If enb.Windowing is absent, a default value for the number of windowed and overlapped
samples is used. The default value is chosen as a function of NRB to compromise between the
effective duration of cyclic prefix, and thus the channel delay spread tolerance, and the spectral
characteristics of the transmitted signal, not considering any additional FIR filtering. The value used
is returned in info.Windowing. The issues concerning concatenation of subframes before OFDM
modulation do not apply when enb.Windowing is zero.

Data Types: struct

grid — Resource elements
3-D numeric array

Resource elements, specified as a 3-D numeric array. grid stores the resource elements for a number
of subframes across all configured antenna ports. grid is an M-by-N-by-P array, where M is the
number of subcarriers, N is the number of OFDM symbols, and P is the number of antennas.

M must be a multiple of 12 REs per Resource Block, since number of resource blocks is NRB =M / 12.
N must be a multiple of the number of symbols in a subframe, L, where L is 14 for normal cyclic
prefix and 12 for extended cyclic prefix.
Data Types: double
Complex Number Support: Yes

windowing — OFDM sample span
nonnegative integer

Number of time-domain samples over which the function applies windowing and overlapping of
OFDM symbols, specified as a nonnegative integer. This value overwrites the value of the parameter
field enb.Windowing, if present.
Data Types: double

Nfft — Number of IFFT points
positive integer

2 Functions

2-526

The number of IFFT points to use in the OFDM modulation, specified as a positive integer.
Data Types: double

Output Arguments
waveform — OFDM modulated waveform
numeric matrix

OFDM modulated waveform, returned as a numeric matrix of size T-by-P, where P is the number of
antennas and T is the number of time-domain samples. T = K × 30720 / 2048 × Nfft where Nfft is the
IFFT size and K is the number of subframes in the input grid. Nfft is a function of the number of
resource blocks (NRB), as shown in the following table.

NRB Nfft

6 128
15 256
25 512
50 1024
75 2048
100 2048

In general, Nfft is the smallest power of 2 greater than or equal to 12×NRB/0.85. It is the smallest
FFT that spans all subcarriers and results in a bandwidth occupancy, 12×NRB/0.85, of no more than
85%.
Data Types: double
Complex Number Support: Yes

info — OFDM modulated waveform information
structure

OFDM modulated waveform information, returned as a structure. info contains the following fields.

SamplingRate — Time-domain waveform sampling rate
scalar

Time-domain waveform sampling rate, returned as a scalar.
SamplingRate = 30.72 MHz / 2048 × Nfft.
Data Types: double

Nfft — Number of FFT points
scalar power of 2

Number of FFT points, returned as a scalar power of 2. Nfft is the smallest power of 2 greater than
or equal to 12 × NRB / 0.85. It is the smallest FFT that spans all subcarriers and results in a
bandwidth occupancy (12 × NRB / Nfft) of no more than 85%.
Data Types: uint32

Windowing — OFDM sample span
nonnegative integer

 lteOFDMModulate

2-527

Number of time-domain samples over which the function applies windowing and overlapping of
OFDM symbols, returned as a nonnegative integer.
Data Types: int32

CyclicPrefixLengths — Cyclic prefix length
even integer

Cyclic prefix length (in samples) of each OFDM symbol in a subframe.

info.Nfft CyclicPrefixLengths
for CyclicPrefix = 'Normal' for CyclicPrefix = 'Extended'

2048 [160 144 144 144 144 144 144 160
144 144 144 144 144 144]

[512 512 512 512 512 512 512 512
512 512 512 512]

1024 [80 72 72 72 72 72 72 80 72 72 72
72 72 72]

[256 256 256 256 256 256 256 256
256 256 256 256]

512 [40 36 36 36 36 36 36 40 36 36 36
36 36 36]

[128 128 128 128 128 128 128 128
128 128 128 128]

256 [20 18 18 18 18 18 18 20 18 18 18
18 18 18]

[64 64 64 64 64 64 64 64 64 64 64
64]

128 [10 9 9 9 9 9 9 10 9 9 9 9 9 9] [32 32 32 32 32 32 32 32 32 32 32
32]

Note For info.Nfft < 2048, info.CyclicPrefixLengths are the CyclicPrefixLengths for
info.Nfft = 2048 scaled by info.Nfft / 2048.

Data Types: uint32

Data Types: struct

Algorithms
Windowing

The use of the IFFT within the OFDM modulator constitutes the use of a rectangular pulse shape.
This use of the IFFT means that discontinuities occur from one OFDM symbol to the next, resulting in
out of band emissions. (Alternatively, considering the frequency domain, the frequency response of
this rectangular pulse shape is a sinc pulse.) The discontinuities between OFDM symbols can be
reduced by using windowing, which smooths the transitions between OFDM symbols. LTE Toolbox
performs windowing by following this procedure.

For Windowing = N samples, the cyclic prefix added to the nominal OFDM symbol extends by N
additional samples.

This extended waveform is windowed by pointwise multiplication in the time domain with a raised
cosine window, which applies a taper to the first N and last N samples, with all other values being 1.
The y values in the first N samples are:

y = 1
2 1− sin π N + 1− 2i

2N , where i = 1…N

2 Functions

2-528

The values in the last N samples are the same values in reverse order.

The windowed OFDM symbols are then overlapped by commencing transmission of each windowed
OFDM symbol N samples before the end of the previous OFDM symbol. This overlapping ensures that
the time between OFDM symbols is maintained as required by the standard. The taper at the start of
the first OFDM symbol for transmission is removed and is overlapped with the taper at the end of the
last OFDM symbol.

Processing

The processing performed by this function is illustrated in this diagram.

 lteOFDMModulate

2-529

The number of samples used for windowing depends on the number of resource blocks (NRB) and
whether the cyclic prefix length is normal or extended. The number of samples is chosen in
accordance with the maximum values implied by TS 36.101 [1], Tables F.5.3-1 and F.5.4-1.

NRB Windowing Samples for
Normal Cyclic Prefix

Windowing Samples for
Extended Cyclic Prefix

6 4 4
15 6 6
25 4 4
50 6 6
75 8 8
100 8 8

The number of windowing samples is a compromise between the effective duration of cyclic prefix,
and therefore the channel delay spread tolerance, and the spectral characteristics of the transmitted
signal, not considering any additional FIR filtering. For a larger amount of windowing, the effective
duration of the cyclic prefix is reduced but the transmitted signal spectrum has smaller out-of-band
emissions.

Version History
Introduced in R2014a

Specify IFFT size

You can specify the IFFT size by using the Nfft input.

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteOFDMDemodulate | lteOFDMInfo | lteDLResourceGrid | lteFadingChannel |
lteHSTChannel | lteMovingChannel

2 Functions

2-530

https://www.3gpp.org

lteOFDMInfo
OFDM modulation related information

Syntax
info = lteOFDMInfo(enb)
info = lteOFDMInfo(enb,Nfft)

Description
info = lteOFDMInfo(enb) provides information related to the OFDM modulation performed by
lteOFDMModulate, given the cell-wide settings structure, enb.

info = lteOFDMInfo(enb,Nfft) specifies the number of IFFT points to use in the modulation.

Examples

Get Information Related to OFDM Modulation

Find the sampling rate of a 50 resource block configuration, corresponding to a 10 MHz waveform
after OFDM modulation.

enb = struct('NDLRB',50,'CyclicPrefix','Normal');
lteOFDMInfo(enb)

ans = struct with fields:
 SamplingRate: 15360000
 Nfft: 1024
 Windowing: 6
 CyclicPrefixLengths: [80 72 72 72 72 72 72 80 72 72 72 72 72 72]

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure. enb contains the following fields.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length

 lteOFDMInfo

2-531

Parameter Field Required or
Optional

Values Description

Windowing Optional Nonnegative integer Number of time-domain samples
over which the function applies
windowing and overlapping of
OFDM symbols

Data Types: struct

Nfft — Number of IFFT points
positive integer

The number of IFFT points to use in the OFDM modulation, specified as a positive integer.

Output Arguments
info — OFDM information
structure

OFDM information, returned as a structure. info contains the following fields.

SamplingRate — Sampling rate of the OFDM modulator
integer

Sampling rate of the OFDM modulator, returned as an integer.
Data Types: double

Nfft — Number of FFT points
scalar power of 2

Number of FFT points used in the OFDM modulator, returned as a scalar power of 2.
Data Types: uint32

Windowing — OFDM sample span
nonnegative integer

Number of time-domain samples over which the function applies windowing and overlapping of
OFDM symbols, returned as a nonnegative integer.

If enb.Windowing is absent, info.Windowing returns a default value chosen as a function of
enb.NDLRB to compromise between the effective duration of cyclic prefix (and therefore the channel
delay spread tolerance) and the spectral characteristics of the transmitted signal (not considering any
additional FIR filtering). See lteOFDMModulate for details.
Data Types: int32

CyclicPrefixLengths — Cyclic prefix length
even integer

Cyclic prefix length (in samples) of each OFDM symbol in a subframe.

2 Functions

2-532

info.Nfft CyclicPrefixLengths
for CyclicPrefix = 'Normal' for CyclicPrefix = 'Extended'

2048 [160 144 144 144 144 144 144 160
144 144 144 144 144 144]

[512 512 512 512 512 512 512 512
512 512 512 512]

1024 [80 72 72 72 72 72 72 80 72 72 72
72 72 72]

[256 256 256 256 256 256 256 256
256 256 256 256]

512 [40 36 36 36 36 36 36 40 36 36 36
36 36 36]

[128 128 128 128 128 128 128 128
128 128 128 128]

256 [20 18 18 18 18 18 18 20 18 18 18
18 18 18]

[64 64 64 64 64 64 64 64 64 64 64
64]

128 [10 9 9 9 9 9 9 10 9 9 9 9 9 9] [32 32 32 32 32 32 32 32 32 32 32
32]

Note For info.Nfft < 2048, info.CyclicPrefixLengths are the CyclicPrefixLengths for
info.Nfft = 2048 scaled by info.Nfft / 2048.

Data Types: uint32

Data Types: struct

Version History
Introduced in R2014a

Specify IFFT size

You can specify the IFFT size by using the Nfft input.

See Also
lteOFDMModulate | lteDLResourceGridSize

 lteOFDMInfo

2-533

ltePBCH
Physical broadcast channel

Syntax
sym = ltePBCH(enb,cw)

Description
sym = ltePBCH(enb,cw) returns a matrix containing the complex symbols of the Physical
Broadcast Channel (PBCH) for cell-wide settings structure, enb, and codeword, cw. The function
performs all physical channel processing steps, including the stages of scrambling, QPSK modulation,
layer mapping, and precoding as defined in TS 36.211 [1], Section 6.6.

The BCH transport channel consumes information bits every 40 ms. The coded transport block is then
passed to PBCH for physical channel processing. The PBCH is transmitted in the first subframe of
every frame, so four successive frames are required to transmit one transport block. As the
scrambling sequence is initialized at the boundary of every 40 ms, this function expects 40 ms worth
of data. For example, it expects 1920 bits for normal cyclic prefix, or 1728 bits for extended cyclic
prefix. Demultiplex the output of this function into quarter length blocks for transmission on the first
subframe in each 10 ms frame.

Examples

Generate PBCH Symbols

Generate physical broadcast channel (PBCH) symbols using the MIB.

Create cell-wide configuration structure initialized to RMC R.0. Generate the MIB. Pass the MIB
through broadcast channel (BCH) transport channel coding.

enb = lteRMCDL('R.0');
mib = lteMIB(enb);
bchCoded = lteBCH(enb,mib);

Generate and display the PBCH symbols.

pbchSymbols = ltePBCH(enb,bchCoded);
pbchSymbols(1:10)

ans = 10×1 complex

 0.7071 + 0.7071i
 0.7071 - 0.7071i
 0.7071 + 0.7071i
 -0.7071 + 0.7071i
 -0.7071 + 0.7071i
 0.7071 + 0.7071i
 -0.7071 + 0.7071i
 -0.7071 + 0.7071i

2 Functions

2-534

 -0.7071 + 0.7071i
 -0.7071 - 0.7071i

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure. enb must contain the following fields.

NCellID — Physical layer cell identity
scalar integer

Physical layer cell identity, specified as a scalar integer.
Data Types: double

CellRefP — Number of cell-specific reference signal antenna ports
1 | 2 | 4

Number of cell-specific reference signal antenna ports, specified as 1, 2, or 4.
Data Types: double

Data Types: struct

cw — PBCH codeword
vector

PBCH codeword, specified as a vector. cw contains the bit values of the PBCH codeword for
modulation.
Data Types: double | single | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

Output Arguments
sym — PBCH symbols
numeric matrix

PBCH symbols, returned as a numeric matrix. sym contains the complex symbols of the Physical
Broadcast Channel (PBCH) for cell-wide settings, enb, and codeword, cw. Its size is N-by-CellRefP,
where N is the number of modulation symbols for one antenna port and CellRefP is the number of
antenna ports.
Data Types: double
Complex Number Support: Yes

Version History
Introduced in R2014a

 ltePBCH

2-535

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)
Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

See Also
ltePBCHDecode | ltePBCHIndices | ltePBCHPRBS | lteBCH

2 Functions

2-536

https://www.3gpp.org
https://www.3gpp.org

ltePBCHDecode
Physical broadcast channel decoding

Syntax
[bits,symbols,nfmod4,trblk,cellrefp] = ltePBCHDecode(enb,sym)
[bits,symbols,nfmod4,trblk,cellrefp] = ltePBCHDecode(enb,sym,hest,noiseest)
[bits,symbols,nfmod4,trblk,cellrefp] = ltePBCHDecode(enb,sym,hest,noiseest,
alg)

Description
[bits,symbols,nfmod4,trblk,cellrefp] = ltePBCHDecode(enb,sym) returns bits, a
vector of soft bits, symbols, a vector of received constellation complex symbols, nfmod4, frame
number (modulo 4), trblk, decoded BCH information bits, and cellrefp, the number of cell-
specific reference signal antenna ports. For more information, see “PBCH Decoding” on page 2-540.

[bits,symbols,nfmod4,trblk,cellrefp] = ltePBCHDecode(enb,sym,hest,noiseest)
decodes sym, the complex PBCH symbols, using cell-wide settings enb, channel estimate hest, and
noise estimate noiseest. For more information, see “PBCH Decoding” on page 2-540.

[bits,symbols,nfmod4,trblk,cellrefp] = ltePBCHDecode(enb,sym,hest,noiseest,
alg) provides control over weighting bits, with channel state information (CSI) calculated during
the equalization stage using the algorithmic configuration structure alg. For more information, see
“PBCH Decoding” on page 2-540.

Examples

Decode CellRefP from MIB

This example shows how to decode the number of cell-specific reference ports from the MIB.

Initialize a cell-wide configuration structure with RMC R.14. Generate the MIB and the broadcast
channel bits.

enb = lteRMCDL('R.14');
mib = lteMIB(enb);
bchBits = lteBCH(enb,mib);

The lteBCH function generates bits for a 40 ms period, intended for 4 frames. Since the PBCH is
transmitted every frame, encode and transmit only one quarter of these bits each frame.

quarterLen = length(bchBits)/4;

Encode the PBCH for a single frame by mapping and encoding of one quarter of the BCH to PBCH.

pbchSymbols = ltePBCH(enb,bchBits(1:quarterLen));

Decode the PBCH symbols.

 ltePBCHDecode

2-537

[bits,symbols,nfmod4,trblk,cellrefp] = ltePBCHDecode(enb,pbchSymbols);

Check that the number of cell-specific reference ports matches number of antenna ports specified in
TS 36.101 Annex 3.3.2 for RMC R.14.

cellrefp

cellrefp = uint32
 4

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure. enb contains the following fields.

Parameter Field Required or
Optional

Values Description

NCellID Required Integer from 0 to 503 Physical layer cell identity
CellRefP Optional 1, 2, 4 Number of cell-specific

reference signal (CRS) antenna
ports

The default is to establish
cellrefp by decoding the
input symbols, sym.

CyclicPrefix Optional 'Normal' (default),
'Extended'

Cyclic prefix length

Data Types: struct

sym — Complex modulated PBCH symbols
numeric matrix

Complex modulated PBCH symbols, specified as an NRE-by-NRxAnts numeric matrix. NRE is the
number of QPSK symbols per antenna assigned to the PBCH and NRxAnts is the number of receive
antennas. This input can contain 1–4 subframes of PBCH data. When you provide multiple subframes,
they must be consecutive subframes within the same coded BCH block.
Data Types: double
Complex Number Support: Yes

hest — Channel estimate
3-D array

Channel estimate is a 3-D array of size NRE-by-NRxAnts-by-P, where

• NRE is the number of PBCH resource elements (frequency and time locations).
• NRxAnts is the number of receive antennas.
• P is the number of cell-specific reference signal antennas.

Data Types: double

2 Functions

2-538

Complex Number Support: Yes

noiseest — Noise estimate
numeric scalar

Noise estimate, specified as a numeric scalar. It is an estimate of the noise power spectral density per
resource element on the received subframe. This estimate is provided by the
lteDLChannelEstimate function.
Data Types: double

alg — Algorithmic configuration
structure

Algorithmic configuration, specified as a structure. The structure must have the following field.

Parameter Field Required or
Optional

Values Description

CSI Optional 'On' (default), 'Off' Flag provides control over
weighting the soft values that
are used to determine the
output values with the channel
state information (CSI)
calculated during the
equalization process. If 'On',
soft values are weighted by CSI.

Data Types: struct

Output Arguments
bits — Decoded PBCH soft bits
real-valued column vector

Decoded PBCH soft bits, returned as a real-valued column vector. If alg.CSI is 'On', bits gets
scaled by channel state information (CSI) calculated during the equalization process.
Data Types: double

symbols — Received constellation of complex symbols
complex-valued column vector

Received constellation of complex symbols, returned as a complex-valued column vector.
Data Types: double

nfmod4 — System frame number modulo 4
nonnegative integer

System frame number modulo 4, mod(NFrame,4), returned as a nonnegative integer. nfmod4 is
obtained when determining the scrambling phase of the input PBCH symbols, sym.
Data Types: double

trblk — Decoded BCH information bits
24-by-1 real-valued column vector

 ltePBCHDecode

2-539

Decoded BCH information bits, returned as a 24-by-1 real-valued column vector.
Data Types: int8

cellrefp — Number of CRS antenna ports
0 | 1 | 2 | 4

Number of cell-specific signal (CRS) antenna ports, returned as 0, 1, 2, or 4. A value of 0 indicates
that the function detects a cyclic redundancy check (CRC) error during the decoding process.
Data Types: uint32

More About
PBCH Decoding

TS 36.211 [1], Section 6.6 defines the inverse of Physical Broadcast Channel (PBCH) processing of
bits and symbols. TS 36.212 [2], Section 5.3.1 defines the inverse Broadcast Channel (BCH)
processing used to decode nfmod4, trblk, and cellrefp.

PBCH Decoding performs the inverse of PBCH processing (deprecoding, symbol demodulation, and
descrambling) on the matrix of complex modulated PBCH symbols, sym, given a cell-wide settings
structure, enb. It decodes PBCH data scrambled with any scrambling sequence phase. So although
the scrambling sequence gets initialized every 40 ms, there is no restriction on the input sym to be
aligned at the 40 ms boundary.

After successful synchronization with the scrambling sequence, nfmod4, trblk, and cellrefp are
determined. The true number of transmitted cell-specific reference signals is returned in cellrefp,
and is searched for by attempting decoding with cellrefp equal to 1, 2, or 4. If
provided,enb.CellRefP is attempted first to ensure that symbols contains the expected
constellation and bits contains the expected soft bit estimates for the specified value. Under good
conditions, successful decoding is possible with a different value of cellrefp, but results in
unexpected bits and symbols. If enb.CellRefP is not provided, the search establishes the true
number of transmitted cell-specific reference signals and returns it in cellrefp.

For the TxDiversity transmission scheme (cellrefp = 2 or cellrefp = 4), the reception is
performed using an OSFBC (Orthogonal Space Frequency Block Code) decoder. For the Port0
transmission scheme (cellrefp = 1), the reception is performed using MMSE equalization.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel
coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

2 Functions

2-540

https://www.3gpp.org
https://www.3gpp.org

[3] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)
Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

See Also
ltePBCH | ltePBCHIndices | ltePBCHPRBS | lteBCHDecode

 ltePBCHDecode

2-541

https://www.3gpp.org

ltePBCHIndices
PBCH resource element indices

Syntax
ind = ltePBCHIndices(enb)
ind = ltePBCHIndices(enb,opts)

Description
ind = ltePBCHIndices(enb) returns an N-by-CellRefP matrix of resource element (RE) indices
for the Physical Broadcast Channel (PBCH) given the parameter fields of structure enb. By default,
the indices are returned in 1-based linear indexing form that can directly index elements of a 3-D
array representing the subframe resource grid for CellRefP antennas. These indices are ordered as
the PBCH modulation symbols should be mapped. Alternative indexing formats can also be
generated. The PBCH is only transmitted in first subframe of each frame.

ind = ltePBCHIndices(enb,opts) formats the returned indices using options defined by opts.

Examples

Generate PBCH RE Indices

Generate zero-based PBCH resource element indices in linear form for RMC R.14.

enb = lteRMCDL('R.14');
ind = ltePBCHIndices(enb,{'0based'});
ind(1:4,:)

ans = 4x4 uint32 matrix

 4465 12865 21265 29665
 4466 12866 21266 29666
 4468 12868 21268 29668
 4469 12869 21269 29669

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure. enb contains the following fields.

NDLRB — Number of downlink resource blocks
scalar value

Number of downlink resource blocks, specified as a scalar value.

2 Functions

2-542

NCellID — Physical layer cell identity
scalar integer

Physical layer cell identity, specified as a scalar integer.

CyclicPrefix — Cyclic prefix length
'Normal' (default) | optional | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'.

CellRefP — Number of cell-specific reference signal antenna ports
1 (default) | optional | 2 | 4

Number of cell-specific reference signal antenna ports, specified as 1, 2, or 4.

NSubframe — Subframe number
0 (default) | optional | scalar integer

Subframe number, specified as a scalar integer.

Data Types: struct

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — PBCH resource element indices
numeric matrix

PBCH resource element indices, returned as a numeric matrix of size N-by-CellRefP.
Data Types: double

 ltePBCHIndices

2-543

Version History
Introduced in R2014a

See Also
ltePBCH | ltePBCHDecode | ltePBCHPRBS

2 Functions

2-544

ltePBCHPRBS
PBCH pseudorandom scrambling sequence

Syntax
[seq,cinit] = ltePBCHPRBS(enb,n)
[seq,cinit] = ltePBCHPRBS(enb,n,mapping)

[subseq,cinit] = ltePBCHPRBS(enb,pn)
[subseq,cinit] = ltePBCHPRBS(enb,pn,mapping)

Description
[seq,cinit] = ltePBCHPRBS(enb,n) returns a vector with the first n outputs of the Physical
Broadcast Channel (PBCH) scrambling sequence when initialized with the structure enb. It also
returns an initialization value cinit for the pseudorandom binary sequence (PRBS) generator.

[seq,cinit] = ltePBCHPRBS(enb,n,mapping) allows control over the format of the returned
sequence, seq, with the input mapping.

[subseq,cinit] = ltePBCHPRBS(enb,pn) returns a subsequence of a full PRBS sequence,
specified by pn.

[subseq,cinit] = ltePBCHPRBS(enb,pn,mapping) allows control over the format of the
returned subsequence, subseq, with the input mapping.

Examples

Scramble Broadcast Channel MIB Message

Scramble the MasterInformationBlock broadcast channel (BCCH) message.

Create a cell-wide configuration structure initialized to RMC R.0. Generate the MIB and coded BCH.

enb = lteRMCDL('R.0');
mib = lteMIB(enb);
bchCoded = lteBCH(enb,mib);

Generate the required length of the PBCH scrambling sequence. Scramble the coded BCH.

pbchPrbsSeq = ltePBCHPRBS(enb,length(bchCoded));
scrambled = xor(pbchPrbsSeq, bchCoded);

Compare Pseudorandom Scrambling Sequences

Compare the PBCH scrambling sequence generated using both generic and PBCH-specific
pseudorandom binary sequence generators.

 ltePBCHPRBS

2-545

Create a cell-wide configuration structure initialized to RMC R.0. Generate the first 25 bits of the
pseudorandom binary sequence for physical layer cell identity, NCellID using ltePRBS and
ltePBCHPRBS.

enb = lteRMCDL('R.0');
prbsSeq = ltePRBS(enb.NCellID, 25);
pbchPrbsSeq = ltePBCHPRBS(enb,25);
isequal(prbsSeq,pbchPrbsSeq)

ans = logical
 1

The generic pseudorandom binary scrambling sequence equals the PBCH-specific pseudorandom
binary scrambling sequence.

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure. enb must contain the following field.

NCellID — Physical layer cell identity
scalar integer

Physical layer cell identity, specified as a scalar integer.
Data Types: double

Data Types: struct

n — Number of elements in returned sequence
numeric scalar

Number of outputs, specified as a numeric scalar.
Data Types: double

pn — Range of elements in returned subsequence
row vector

Range of elements in returned subsequence, subseq, specified as a row vector of [p n]. The
subsequence returns n values of the PRBS generator, starting at position p (0-based).
Data Types: double

mapping — Output sequence formatting
'binary' (default) | 'signed'

Output sequence formatting, specified as 'binary' or 'signed'. mapping controls the format of
the returned sequence.

• 'binary' maps true to 1 and false to 0.
• 'signed' maps true to –1 and false to 1.

2 Functions

2-546

Data Types: char | string

Output Arguments
seq — PBCH pseudorandom scrambling sequence
logical column vector | numeric column vector

PBCH pseudorandom scrambling sequence, specified as a logical column vector or a numeric column
vector. seq contains the first n outputs of the physical broadcast channel (PBCH) scrambling
sequence. If you set mapping to 'signed', the output data type is double. Otherwise, the output
data type is logical.
Data Types: logical | double

subseq — PBCH pseudorandom scrambling subsequence
logical column vector | numeric column vector

PBCH pseudorandom scrambling subsequence, specified as a logical column vector or a numeric
column vector. subseq contains the values of the PRBS generator specified by pn. If you set mapping
to 'signed', the output data type is double. Otherwise, the output data type is logical.
Data Types: logical | double

cinit — Initialization value for PRBS generator
numeric scalar

Initialization value for PRBS generator, returned as a numeric scalar.
Data Types: uint32

Version History
Introduced in R2014a

See Also
ltePBCH | ltePBCHIndices | ltePBCHDecode

 ltePBCHPRBS

2-547

ltePCFICH
Physical control format indicator channel

Syntax
sym = ltePCFICH(enb,cw)

Description
sym = ltePCFICH(enb,cw) returns the matrix of complex modulation symbols generated by the
Physical Control Format Indicator Channel (PCFICH). The channel processing includes the stages of
scrambling, QPSK modulation, layer mapping, and precoding. Given input bit vector cw, each column
of the 16-by-CellRefP matrix sym contains the 16 QPSK symbols carried by the PCFICH on each of
CellRefP transmit antenna ports. The channel is parameterized by structure enb.

The PCFICH is intended to carry the 32-bit block encoding of the CFI. For more information, see
lteCFI. The channel expects the input bit vector, cw, to be 32 elements in length. If length(cw) <
32, cw is padded with zeros before channel processing. If length(cw) > 32, only the first 32
elements are used.

Examples

Generate PCFICH Symbols

Modulate CFI=1 onto two antenna ports (transmit diversity). The generated PCFICH symbols are
stored in a matrix.

Generate PCFICH symbols, using a control format indicator (CFI) value of one and using two antenna
ports for transmit diversity.

cfiCodeword = lteCFI(struct('CFI',1));
enb = struct('CellRefP',2,'NCellID',0,'NSubframe',0);

pcfichSymbols = ltePCFICH(enb,cfiCodeword);
sizePCFICHSymbols = size(pcfichSymbols)

sizePCFICHSymbols = 1×2

 16 2

Since two antenna ports were configured, there are two columns in the output matrix.

Input Arguments
enb — Cell-wide settings structure
scalar structure

enb is a structure having the following fields.

2 Functions

2-548

NCellID — Physical layer cell identity
0...503

Physical layer cell identity, specified as an integer from 0 through 503.

CellRefP — Number of cell-specific reference signal (CRS) antenna ports
1 (default) | 2 | 4

Number of cell-specific reference signal (CRS) antenna ports, specified as one of the set (1, 2, 4).

NSubframe — Subframe number
scalar

Subframe number, specified as an integer.

Data Types: struct

cw — Input bit vector
vector

Input bit vector that is 32 elements in length, specified as a vector. If length(cw) < 32, cw is
padded with zeros before channel processing. If length(cw) > 32, only the first 32 elements are
used.
Example: cw = lteCFI(struct('CFI',1));
Data Types: int8

Output Arguments
sym — Complex modulation symbols generated by the PCFICH
numeric matrix

Complex modulation symbols generated by the PCFICH, returned as a numeric matrix of size 16-by-
CellRefP. The channel processing includes the stages of scrambling, QPSK modulation, layer
mapping, and precoding. Given input bit vector cw, each column of the 16-by-CellRefP matrix sym
contains the 16 QPSK symbols carried by the PCFICH on each of the CellRefP transmit antenna
ports. The channel is parameterized by structure enb.
Data Types: double
Complex Number Support: Yes

Version History
Introduced in R2014a

See Also
ltePCFICHDecode | ltePCFICHInfo | ltePCFICHIndices | ltePCFICHPRBS | lteCFI

 ltePCFICH

2-549

ltePCFICHDecode
Physical control format indicator channel decoding

Syntax
[bits,symbols] = ltePCFICHDecode(enb,sym)
[bits,symbols] = ltePCFICHDecode(enb,sym,hest,noiseest)
[bits,symbols] = ltePCFICHDecode(enb,sym,hest,noiseest,alg)

Description
[bits,symbols] = ltePCFICHDecode(enb,sym) performs the inverse of Physical Control
Format Indicator Channel (PCFICH) processing on the matrix of complex modulated PCFICH
symbols, sym, using cell-wide settings structure, enb. It returns a column vector of soft bits, bits,
and received constellation of complex symbol vector, symbols. The channel inverse processing
includes deprecoding, symbol demodulation, and descrambling. See TS 36.211, Section 6.7 [1] or
ltePCFICH for details.

The input argument, sym, must be a matrix of NRE-by-NRxAnts complex modulated PCFICH symbols.
NRE is the number of QPSK symbols per antenna assigned to the PCFICH (16) and NRxAnts is the
number of receive antennas.

[bits,symbols] = ltePCFICHDecode(enb,sym,hest,noiseest) decodes the complex
PCFICH symbols, sym, using cell-wide settings, enb, the channel estimate, hest, and the noise
estimate, noiseest. For the 'TxDiversity' transmission scheme, when CellRefP is 2 or 4, the
reception is performed using an orthogonal space frequency block code (OSFBC) decoder. For the
'Port0' transmission scheme, when CellRefP is 1, the reception is performed using MMSE
equalization.

hest is a 3-D NRE-by-NRxAnts-by-enb.CellRefP array. NRE contains the frequency and time
locations corresponding to the PCFICH RE positions for a total of NRE positions. NRxAnts is the
number of receive antennas, and enb.CellRefP is the number of cell-specific reference signal
antennas.

noiseest is an estimate of the noise power spectral density per RE in the received subframe. The
lteDLChannelEstimate function produces this estimate.

[bits,symbols] = ltePCFICHDecode(enb,sym,hest,noiseest,alg) same as prior except
this syntax provides control over weighting the output soft bits, bits. If alg.CSI is 'On', bits get
scaled by the channel state information (CSI) calculated during the equalization stage.

Examples

Decode PCFICH Symbols

This example shows decoding of symbols to recover CFI value.

Initialize a cell wide configuration structure, enb. Encode a CFI value and perform physical channel
coding to create a vector of symbols, pcfichSym.

2 Functions

2-550

enb.NCellID = 0;
enb.NSubframe = 0;
enb.CellRefP = 1;
enb.CFI = 3;
cw = lteCFI(enb);
pcfichSym = ltePCFICH(enb,cw);

Demodulate and decode the symbols to recover the CFI value

cfiSoftBits = ltePCFICHDecode(enb,pcfichSym);
rxCFI = lteCFIDecode(cfiSoftBits)

rxCFI = int32
 3

Confirm recovered CFI value matches the setting in enb

enb.CFI

ans = 3

Input Arguments
enb — Cell-wide settings
scalar structure

Cell-wide settings, specified as a scalar structure. enb contains the following fields.

Parameter Field Required or
Optional

Values Description

NCellID Required Integer from 0 to 503 Physical layer cell identity
CellRefP Required 1, 2, 4 Number of cell-specific

reference signal (CRS) antenna
ports

NSubframe Required 0 (default), nonnegative scalar
integer

Subframe number

Data Types: struct

sym — Complex modulated PCFICH symbols
numeric matrix

Complex modulated PCFICH symbols, specified as a numeric matrix of size NRE-by-NRxAnts. NRE is
the number of QPSK symbols per antenna assigned to the PCFICH (16). NRxAnts is the number of
receive antennas.
Data Types: double
Complex Number Support: Yes

hest — Channel estimate
3-D numeric array

Channel estimate, specified as a 3-D numeric array of size NRE-by-NRxAnts-by-enb.CellRefP,
where:

 ltePCFICHDecode

2-551

• NRE contains the frequency and time locations corresponding to the PCFICH RE positions (a total
of NRE positions).

• NRxAnts is the number of receive antennas.
• enb.CellRefP is the number of cell-specific reference signal antennas.

Data Types: double
Complex Number Support: Yes

noiseest — Noise estimate
scalar

Estimate of the noise power spectral density per RE on received subframe. Such an estimate is
provided by the lteDLChannelEstimate function.
Data Types: double

alg — Algorithmic configuration
structure

Algorithmic configuration, specified as a structure. It contains the following fields.

Parameter Field Required or
Optional

Values Description

CSI Optional 'On' (default), 'Off' Flag provides control over
weighting the soft values that
are used to determine the
output values with the channel
state information (CSI)
calculated during the
equalization process. If 'On',
soft values are weighted by CSI.

Data Types: struct

Output Arguments
bits — Soft bits
numeric column vector

Soft bits, returned as a numeric column vector. If the input alg.CSI field is 'On', bits gets scaled
by channel state information (CSI) calculated during the equalization process.
Data Types: double

symbols — Received constellation symbols
complex numeric column vector

Received constellation symbols, returned as a complex numeric column vector.
Data Types: double
Complex Number Support: Yes

2 Functions

2-552

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePCFICH | ltePCFICHIndices | ltePCFICHInfo | ltePCFICHPRBS | lteCFIDecode

 ltePCFICHDecode

2-553

https://www.3gpp.org

ltePCFICHIndices
PCFICH resource element indices

Syntax
ind = ltePCFICHIndices(enb)
ind = ltePCFICHIndices(enb,opts)

Description
ind = ltePCFICHIndices(enb) returns the 16-by-CellRefP matrix of subframe resource
element (RE) indices for the physical control format indicator channel (PCFICH), given the enb input
structure. By default, the indices are returned in 1-based linear indexing form that directly indexes
elements of a 3-D array representing the subframe resource grid for CellRefP antenna ports. Each
column of ind contains per-antenna indices for 16 resource elements in one of the CellRefP array
planes. The rows are ordered as the PCFICH modulation symbols should be mapped. The indices can
also be returned in a number of alternative indexing formats.

The PCFICH is always transmitted on 16 resource elements, or 4 resource element groups (REG), in
the first OFDM symbol of a subframe however their locations depend on the NCellID and NDLRB
parameters.

ind = ltePCFICHIndices(enb,opts) formats the returned indices using options specified by
opts.

Examples

Generate PCFICH RE Indices

This example generates physical CFI channel (PCFICH) resource element (RE) indices for two
different physical layer cell identity values.

To show the effects of the physical layer cell identity, NCellID, on the indices, first set it to 0.
Generate and display the PCFICH indices.

enb.NDLRB = 50;
enb.NCellID = 0;
enb.CyclicPrefix = 'Normal';
enb.CellRefP = 1;
ind = ltePCFICHIndices(enb,{'0based','reg'});
disp(ind)

 0
 150
 300
 450

Next, set the physical layer cell identity, NCellID, to 1. Regenerate and display the PCFICH indices.

2 Functions

2-554

enb.NCellID = 1;
ind = ltePCFICHIndices(enb,{'0based','reg'});
disp(ind)

 6
 156
 306
 456

Input Arguments
enb — eNodeB cell-wide settings
scalar structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required
or Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource blocks
(NRB

DL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length
CellRefP Optional 1 (default), 2, 4 Number of cell-specific reference

signal (CRS) antenna ports

opts — Output format, base, and unit of generated indices
character vector | string scalar | cell array of character vectors | string array

Output format, base, and unit of generated indices, specified as one of these forms.

• 'format base unit'
• "format base unit"
• {'format','base','unit'}
• ["format","base","unit"]

Where format, base, and unit are defined in this table.

Option Values Description

 ltePCFICHIndices

2-555

format 'ind' (default), 'sub' Output format of generated indices

To return the indices as a column
vector, specify this option as 'ind'.

To return the indices as an NRE-by-3
matrix, where NRE is the number of
REs, specify this option as 'sub'.
Each row of the matrix contains the
subcarrier, symbol, and antenna
port as its first, second, and third
element, respectively.

base '1based' (default), '0based' Index base

To generate indices whose first
value is 1, specify this option as
'1based'. To generate indices
whose first value is 0, specify this
option as '0based'.

unit 're' (default), 'reg' Unit of returned indices

To indicate that the returned values
correspond to individual resource
elements (REs), specify this option
as 're'. To indicate that the
returned values correspond to
resource element groups (REGs),
specify this option as 'reg'.

Example: 'ind 0based reg', "ind 0based reg", {'ind','0based','reg'}, and
["ind","0based","reg"] specify the same output options.
Data Types: char | string | cell

Output Arguments
ind — Subframe PCFICH RE indices
numeric matrix

Subframe PCFICH RE indices, returned as a numeric matrix of size 16-by-CellRefP. Each column of
ind contains per-antenna indices for 16 resource elements in one of the CellRefP array planes. The
rows are ordered as the PCFICH modulation symbols should be mapped.

Version History
Introduced in R2014a

See Also
ltePCFICH | ltePCFICHInfo | ltePHICHIndices | ltePDCCHIndices | lteDLResourceGrid

2 Functions

2-556

ltePCFICHInfo
PCFICH resource information

Syntax
info = ltePCFICHInfo

Description
info = ltePCFICHInfo returns a structure info containing the Physical Control Format Indicator
Channel (PCFICH) subframe resources.

For the PCFICH, NREG = 4, and NRE = 16 = 4 × NREG. These values are fixed for the system.

Examples

Get PCFICH Resource Information

Display information about the PCFICH subframe resources.

info = ltePCFICHInfo

info = struct with fields:
 NREG: 4
 NRE: 16

Output Arguments
info — PCFICH resource information
scalar structure

PCFICH resource information, returned as a scalar structure. It can contain the following fields.

Parameter Field Description Values Data Type
NRE Number of resource elements (REs)

assigned to PCFICH (4×NREG)
Nonnegative scalar
integer

uint64

NREG Number of resource element groups
(REGs) assigned to PCFICH

Nonnegative scalar
integer

uint64

Version History
Introduced in R2014a

 ltePCFICHInfo

2-557

See Also
ltePCFICH | ltePCFICHIndices | ltePCFICHPRBS | ltePCFICHDecode

2 Functions

2-558

ltePCFICHPRBS
PCFICH pseudorandom scrambling sequence

Syntax
[seq,cinit] = ltePCFICHPRBS(enb,n)
[seq,cinit] = ltePCFICHPRBS(enb,n,mapping)

[subseq,cinit] = ltePCFICHPRBS(enb,pn)
[subseq,cinit] = ltePCFICHPRBS(enb,pn,mapping)

Description
[seq,cinit] = ltePCFICHPRBS(enb,n) returns a vector containing the first n outputs of the
physical control format indicator channel (PCFICH) scrambling sequence when initialized according
to cell-wide settings structure, enb. It also returns an initialization value cinit for the
pseudorandom binary sequence (PRBS) generator.

[seq,cinit] = ltePCFICHPRBS(enb,n,mapping) allows control over the format of the returned
sequence, seq, with the input mapping.

[subseq,cinit] = ltePCFICHPRBS(enb,pn) returns a subsequence of a full PRBS sequence,
specified by pn.

[subseq,cinit] = ltePCFICHPRBS(enb,pn,mapping) allows additional control over the format
of the returned subsequence, subseq, with the input mapping.

Examples

Scramble CFI Codeword

Scramble the CFI codeword.

Create cell-wide configuration structure, initialized to RMC R.14. Generate a CFI codeword and a
pseudorandom scrambling sequence for the PCFICH the same length as the codeword.

enb = lteRMCDL('R.14');
cw = lteCFI(struct('CFI',2));
pcfichPrbsSeq = ltePCFICHPRBS(enb,length(cw));
size(pcfichPrbsSeq)

ans = 1×2

 32 1

Scramble the CFI codeword using the generated scrambling sequence.

scrambled = xor(pcfichPrbsSeq,cw);

 ltePCFICHPRBS

2-559

Generate Signed PCFICH Pseudorandom Scrambling Sequence

Generate a signed pseudorandom scrambling sequence for the PCFICH. Each resource element (RE)
in the PCFICH is QPSK-modulated, resulting in two bits-per-symbol mapping on each resource
element.

Create cell-wide configuration structure, initialized to RMC R.14.

enb = lteRMCDL('R.14');
info = ltePCFICHInfo

info = struct with fields:
 NREG: 4
 NRE: 16

pcfichPrbsSeq = ltePCFICHPRBS(enb,info.NRE*2,'signed');
size(pcfichPrbsSeq)

ans = 1×2

 32 1

pcfichPrbsSeq(1:10)

ans = 10×1

 1
 -1
 1
 1
 1
 1
 1
 -1
 -1
 1

The scrambling sequence contains a vector of 32 signed ones.

Input Arguments
enb — Cell-wide settings
scalar structure

Cell-wide settings, specified as a scalar structure. enb contains the following fields.

NCellID — Physical layer cell identity
0...503

Physical layer cell identity, specified as a nonnegative scalar integer in the range of 0 to 503.
Data Types: double

2 Functions

2-560

NSubframe — Subframe number
positive scalar integer

Subframe number, specified as a positive scalar integer greater than 0.
Data Types: double

Data Types: struct

n — Length of scrambling sequence
positive scalar integer

Length of scrambling sequence, specified as a positive scalar integer. This argument determines the
number of elements in the output vector, seq.
Data Types: double

pn — Range of scrambling subsequence
row vector

Range of scrambling subsequence, subseq, specified as a row vector of [p n]. The subsequence
returns n values of the PRBS generator, starting at position p (0-based).
Data Types: double

mapping — Output sequence formatting
'binary' (default) | 'signed'

Output sequence formatting, specified as 'binary' or 'signed'. mapping controls the format of
the returned sequence.

• 'binary' maps true to 1 and false to 0.
• 'signed' maps true to –1 and false to 1.

Data Types: char | string

Output Arguments
seq — PCFICH pseudorandom scrambling sequence
logical column vector | numeric column vector

PCFICH pseudorandom scrambling sequence, returned as a logical column vector or a numeric
column vector. seq contains the first n outputs of the PCFICH scrambling sequence when initialized
according to cell-wide settings structure, enb. If you set mapping to 'signed', the output data type
is double. Otherwise, the output data type is logical.
Data Types: logical | double

subseq — PCFICH pseudorandom scrambling subsequence
logical column vector | numeric column vector

PCFICH pseudorandom scrambling subsequence, returned as a logical column vector or a numeric
column vector. subseq contains the values of the PRBS generator specified by pn. If you set mapping
to 'signed', the output data type is double. Otherwise, the output data type is logical.
Data Types: logical | double

 ltePCFICHPRBS

2-561

cinit — Initialization value for PRBS generator
numeric scalar

Initialization value for PRBS generator, returned as a numeric scalar.
Data Types: uint32

Version History
Introduced in R2014a

See Also
ltePCFICH | ltePCFICHIndices | ltePCFICHInfo | ltePCFICHDecode | ltePRBS

2 Functions

2-562

ltePDCCH
Physical downlink control channel

Syntax
[sym,info] = ltePDCCH(enb,cw)
[sym,info] = ltePDCCH(enb,cw,NREG)
[sym,info] = ltePDCCH(enb,cw,NREG,CCEGAINS)

Description
[sym,info] = ltePDCCH(enb,cw) returns an NRE-by-CellRefP complex matrix, sym, of
modulation symbols given the input bit vector cw.

The function returns a matrix (sym) of complex modulation symbols generated by the set of Physical
Downlink Control Channels (PDCCH) in a subframe. The channel processing includes the stages of
scrambling, QPSK modulation, layer mapping and precoding, followed by REG interleaving and cyclic
shifting. For a given input bit vector (typically the PDCCH multiplex), the output matrix sym contains
the QPSK symbols in column-wise antenna form. Any input bits with value < 0 are turned into <NIL>
('0') symbols. The optional structure info returns control resourcing information about the output
symbols (see ltePDCCHInfo for details).

[sym,info] = ltePDCCH(enb,cw,NREG) returns matrix sym. sets the number of output QPSK
symbols, NRE, based on the NREG input value (NRE = 4 × NREG) instead of calculating it from the
parameters of the enb structure.

[sym,info] = ltePDCCH(enb,cw,NREG,CCEGAINS) returns matrix sym. CCEGAINS allows
control of the QPSK symbol gains on a per control channel element (CCE) basis.

Examples

Generate PDCCH Symbols

Generate complex modulated symbols for the PDCCH. The PDCCH symbols are QPSK modulated.
Each QPSK symbol represents two bits.

Create a cell-wide configuration structure, initialized for RMC R.0. Retrieve the PDCCH information.

enb = lteRMCDL('R.0');
pdcchInfo = ltePDCCHInfo(enb)

pdcchInfo = struct with fields:
 NREG: 113
 NRE: 452
 NCCE: 12
 NREGUsed: 108
 NREUsed: 432
 MTot: 904
 NSymbols: 3

 ltePDCCH

2-563

The field pdcch.MTot indicates the maximum number of input bits that can be transmitted on the
PDCCH.

Generate a codeword that is MTot bits long. Using the codeword, generate PDCCH symbols.

cw = randi([0,1],pdcchInfo.MTot,1);
[pdcchSym,info] = ltePDCCH(enb,cw);
numCodewordBits = length(cw)

numCodewordBits = 904

numPDCCHSymbols = length(pdcchSym)

numPDCCHSymbols = 452

Since there are two bits per symbol, the number of output PDCCH symbols is half length of the
codeword bit stream.

Input Arguments
enb — Cell-wide settings
scalar structure

Cell-wide settings, specified as a scalar structure. enb contains the following fields.

Parameter
Field

Required or
Optional

Values Description

CellRefP Required 1, 2, 4 Number of cell-specific reference signal
(CRS) antenna ports

NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required Integer greater than 0 Subframe number
NDLRB Required Nonnegative scalar

integer (6,...,110)
Number of downlink resource blocks
(NRB

DL)
CyclicPref
ix

Optional 'Normal' (default),
'Extended'

Cyclic prefix length

CFI Required 1, 2, or 3 Control format indicator value
Ng Required 'Sixth', 'Half',

'One', 'Two'
HICH group multiplier

DuplexMode Optional 'FDD' (default),
'TDD'

Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

The following field is required when DuplexMode is set to 'TDD'.
 
TDDConfig

Optional 0, 1 (default), 2, 3, 4,
5, 6

Uplink–downlink configuration

Data Types: struct

cw — Input bit vector
vector

2 Functions

2-564

Input bit vector that is 32 elements in length, specified as a vector. If length(cw) < 32, cw is
padded with zeros before channel processing. If length(cw) > 32, only the first 32 elements are
used.
Example: cw = lteCFI(struct('CFI',1));
Data Types: int8

NREG — Resource element groups (REGs) assigned to PDCCH
scalar

Resource element groups (REGs) assigned to PDCCH.

CCEGAINS — Vector that controls the QPSK symbol gains on a per CCE basis
vector

Vector that controls the QPSK symbol gains on a per CCE basis. Each CCE (Control Channel Element)
is a group of 36 QPSK symbols (72 bits) and is the minimum unit that a single coded DCI can be
mapped to. The number of complete CCE, NCCE = floor(NREG/9), is available via the NCCE field in
info. Each element of CCEGAINS acts as a linear multiplier to all 36 symbols generated from the
associated block of 72 input bits. If CCEGAINS does not cover all the NREG symbols, specifically
length(CCEGAINS) < NCCE, then the uncovered CCE receives zero power. All symbols are interleaved
before they are output.
Data Types: double
Complex Number Support: Yes

Output Arguments
sym — PDCCH modulation symbols
complex matrix

PDCCH modulation symbols, given the input bit vector cw, returned as a NRE-by-CellRefP complex
matrix. NRE is the number of QPSK symbols per antenna and CellRefP is the number of TX antenna
ports. NRE corresponds to the number of control region resource elements assigned to the PDCCH
given the structure enb.
Data Types: double
Complex Number Support: Yes

info — Information for various PDCCH resourcing quantities
structure

Information for various PDCCH resourcing quantities, returned as a structure. It contains fields
including NRE, NREG, and MTot.

MTot is the maximum number of input bits that can be transmitted on the NRE symbols (MTot =
2×NRE = 8×NREG). If length(cw)<MTot, the input is padded with (MTot-length(cw)) <NIL>
elements which translate to zero valued symbols. Any elements of input vector cw valued < 0 are also
treated as <NIL> elements. If length(cw) > MTot then only the first MTot bits are used.
Data Types: struct

Version History
Introduced in R2014a

 ltePDCCH

2-565

See Also
ltePDCCHDecode | ltePDCCHInfo | ltePDCCHIndices | ltePDCCHPRBS | ltePDCCHSpace |
ltePDCCHSearch | ltePDCCHInterleave | lteDCIEncode

2 Functions

2-566

ltePDCCHDecode
Physical downlink control channel decoding

Syntax
[bits,symbols] = ltePDCCHDecode(enb,sym)
[bits,symbols] = ltePDCCHDecode(enb,sym,hest,noiseest)
[bits,symbols] = ltePDCCHDecode(enb,sym,hest,noiseest,alg)

Description
[bits,symbols] = ltePDCCHDecode(enb,sym) performs the inverse of Physical Downlink
Control Channel (PDCCH) processing on the matrix of complex modulated PDCCH symbols, sym, and
cell-wide settings structure, enb. The channel inverse processing includes resource element group
deinterleaving and cyclic shifting, deprecoding, symbol demodulation, and descrambling.

The function returns a column vector of soft bits, bits, and received constellation of complex symbol
vector, symbols, resulting from performing the inverse of PDCCH processing. See TS 36.211 [1],
Section 6.8 and ltePDCCH for details.

[bits,symbols] = ltePDCCHDecode(enb,sym,hest,noiseest) decodes the complex PDCCH
symbols, sym, using cell-wide settings, enb, the channel estimate, hest, and the noise estimate,
noiseest. For the TxDiversity transmission scheme, when CellRefP is 2 or 4, the reception is
performed using an orthogonal space frequency block code (OSFBC) decoder. For the Port0
transmission scheme, when CellRefP is 1, the reception is performed using minimum mean square
error (MMSE) equalization.

[bits,symbols] = ltePDCCHDecode(enb,sym,hest,noiseest,alg) provides control over
weighting the output soft bits, bits, with channel state information (CSI) calculated during the
equalization stage using algorithmic configuration structure, alg. When alg.CSI is 'On', bits is
scaled by channel state information calculated during the equalization process.

Examples

Decode PDCCH Symbols

Generate and decode the complex PDCCH modulated symbols for RMC R.0 from cell-wide settings
structure, enb.

enb = lteRMCDL('R.0');
pdcchInfo = ltePDCCHInfo(enb);
codewordBits = randi([0,1],pdcchInfo.MTot,1);
pdcchSym = ltePDCCH(enb,codewordBits);
[softBits,symbols] = ltePDCCHDecode(enb,pdcchSym);

 ltePDCCHDecode

2-567

Input Arguments
enb — Cell-wide settings
scalar structure

Cell-wide settings, specified as a scalar structure. enb contains the following fields.

Parameter
Field

Required or
Optional

Values Description

CellRefP Required 1, 2, 4 Number of cell-specific reference signal
(CRS) antenna ports

NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default),

nonnegative scalar
integer

Subframe number

Data Types: struct

sym — PDCCH modulation symbols
complex numeric matrix

PDCCH modulation symbols, specified as a complex numeric matrix of size NRE-by-NRxAnts. NRE is
the number of QPSK symbols per antenna assigned to the PDCCH (that is, the number of control
region resource elements) and NRxAnts is the number of receive antennas.
Data Types: double
Complex Number Support: Yes

hest — Channel estimate
3-D numeric array

Channel estimate, specified as a 3-D numeric array of size NRE-by-NRxAnts-by-CellRefP. NRE are
the frequency and time locations corresponding to the PDCCH RE positions (a total of NRE positions).
NRxAnts is the number of receive antennas, and CellRefP is the number of cell-specific reference
signal antennas, given by enb.CellRefP.
Data Types: double
Complex Number Support: Yes

noiseest — Noise estimate
numeric scalar

Noise estimate, specified as a numeric scalar. This input argument is an estimate of the noise power
spectral density per RE on received subframe. Produce this estimate using the
lteDLChannelEstimate function.
Data Types: double

alg — Algorithmic configuration to calculate CSI for weighting soft bits
structure

Algorithmic configuration to calculate CSI for weighting soft bits, specified as a structure having the
following fields.

2 Functions

2-568

Parameter
Field

Required or
Optional

Values Description

CSI Optional 'On' (default), 'Off' Flag provides control over weighting the
soft values that are used to determine
the output values with the channel state
information (CSI) calculated during the
equalization process. If 'On', soft
values are weighted by CSI.

Data Types: struct

Output Arguments
bits — Soft bits
numeric column vector

Soft bits, returned as a numeric column vector. bits is the received PDCCH payload containing
coded downlink control information (DCI) messages. It is optionally scaled by channel state
information (CSI) calculated during the equalization process.
Data Types: double

symbols — Received constellation symbols
complex numeric column vector

Received constellation symbols, returned as a complex numeric column vector.
Data Types: double
Complex Number Support: Yes

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePDCCH | ltePDCCHInfo | ltePDCCHIndices | ltePDCCHPRBS | ltePDCCHSpace |
ltePDCCHSearch | ltePDCCHDeinterleave | lteDCIDecode

 ltePDCCHDecode

2-569

https://www.3gpp.org

ltePDCCHDeinterleave
PDCCH deinterleaving and cyclic shifting

Syntax
out = ltePDCCHDeinterleave(enb,in)

Description
out = ltePDCCHDeinterleave(enb,in) performs the PDCCH Resource Element Groups (REGs)
deinterleaving and cyclic shifting on PDCCH complex modulated symbols, in given cell-wide
configuration structure, enb This function performs the inverse of the processing described in TS
36.211 [1], Section 6.8.5.

The cyclic shifting process is the reverse of the NCellID dependent cyclic shift carried out during
PDCCH coding to avoid intercell interference. The de-interleaving is performed to reverse the
permutation operation described in TS 36.212 [2], Section 5.1.4.2.1 with the exception that “symbol
quadruplets” replace “bits”.

Examples

Deinterleave PDCCH Symbols

Perform PDCCH resource element group (REG) deinterleaving. A vector of PDCCH symbols is first
interleaved. The output is then deinterleaved and compared with the input vector. Note that instead
of actual PDCCH symbols, a range of values from 1 to NRE are used to highlight the interleaved
order.

Create a cell-wide configuration structure initialized for RMC R.0. Instead of actual PDCCH symbols,
a range of values from 1 to NRE are used to highlight the interleaved order. Interleave the PDCCH
symbols, pdcchSym.

enb = lteRMCDL('R.0');
pdcchInfo = ltePDCCHInfo(enb);
pdcchSym = (1:pdcchInfo.NRE).';
startingSymbolOrder = pdcchSym(1:4)

startingSymbolOrder = 4x1 uint64 column vector

 1
 2
 3
 4

interleavedSym = ltePDCCHInterleave(enb,pdcchSym);
interleavedSymbolOrder = interleavedSym(1:4)

interleavedSymbolOrder = 4x1 uint64 column vector

2 Functions

2-570

 73
 74
 75
 76

Deinterleave symbols and view the first four.

deinterleavedSym = ltePDCCHDeinterleave(enb,interleavedSym);
deinterleavedSymbolOrder = deinterleavedSym(1:4)

deinterleavedSymbolOrder = 4x1 uint64 column vector

 1
 2
 3
 4

Confirm deinterleaved symbol vector matches the input symbol vector.

isequal(pdcchSym,deinterleavedSym)

ans = logical
 1

Input Arguments
enb — Cell-wide settings
scalar structure

Cell-wide settings, specified as a scalar structure. enb can contain the following fields.

NCellID — Physical layer cell identity
integer from 0 to 503

Physical layer cell identity, specified as an integer from 0 to 503.

Data Types: struct

in — PDCCH complex modulated input symbols
numeric matrix

PDCCH complex modulated input symbols, specified as an NS-by-NTX numeric matrix. NS is the
number of modulated symbols, and NTX is the number of transmit antennas. The NS modulated
symbols specified in input matrix in must be a concatenation of symbol quadruplets. If the input in is
a vector, it deinterleaves the elements of the vector. If in is a matrix, it deinterleaves the rows.
Data Types: double
Complex Number Support: Yes

Output Arguments
out — Deinterleaved output
numeric column vector

 ltePDCCHDeinterleave

2-571

Deinterleaved output, returned as a numeric column vector.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel
coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePDCCHInterleave | ltePDCCH | ltePDCCHDecode | ltePDCCHInfo | ltePDCCHIndices |
ltePDCCHPRBS | ltePDCCHSpace | ltePDCCHSearch

2 Functions

2-572

https://www.3gpp.org
https://www.3gpp.org

ltePDCCHIndices
PDCCH resource element indices

Syntax
ind = ltePDCCHIndices(enb)
ind = ltePDCCHIndices(enb,opts)
ind = ltePDCCHIndices(enb,exreg,opts)

Description
ind = ltePDCCHIndices(enb) returns a NRE-by-CellRefP matrix of one-based linear indexing
RE indices given the structure enb. It returns the subframe resource element (RE) indices for the
physical downlink control channels (PDCCH).

The NRE indices returned cover all PDCCH resources in the control region not already assigned to
PCFICH or PHICH (see ltePDCCHInfo). They are ordered as the complete block of padded,
interleaved, and shifted PDCCH modulation symbols that ready to be mapped, as described in TS
36.211 [1], Section 6.8.5.

ind = ltePDCCHIndices(enb,opts) formats the returned indices using options specified by
opts.

ind = ltePDCCHIndices(enb,exreg,opts) returns a matrix of indices, where the vector exreg
explicitly defines resources not to be assigned to PDCCH. The exreg must contain valid resource
element group (REG) indices but can be either zero-based or one-based throughout, and indices
which do not fall within the control region are ignored.

Examples

Get PDCCH Resource Element Indices

Retrieve PDCCH resource element (RE) indices.

Create an RMC R.0 configuration structure and find its PDCCH RE indices. Display the size of the
indices.

enb = lteRMCDL('R.0');
ind = ltePDCCHIndices(enb);
size(ind)

ans = 1×2

 452 1

 ltePDCCHIndices

2-573

Get PDCCH Indices and Exclude Resources

Explicitly exclude resources when retrieving PDCCH indices.

Create a cell-wide configuration structure initialized for RMC R.0. Generate RE indices for the
PDCCH providing an empty matrix for the argument exreg so that no resources are excluded.

enb = lteRMCDL('R.0');
ind = ltePDCCHIndices(enb,[],'re');
numPDCCHwithNoExclusion = size(ind)

numPDCCHwithNoExclusion = 1×2

 480 1

All RE indices are returned in the required mapping order.

Explicitly exclude the PCFICH and PHICH indices.

enb = lteRMCDL('R.0');
exreg = [ltePCFICHIndices(enb,'reg'); ltePHICHIndices(enb,'reg')];
ind = ltePDCCHIndices(enb,exreg,'re');
numPDCCHwithExclusion = size(ind)

numPDCCHwithExclusion = 1×2

 452 1

This call returns the same result as the default syntax call, ltePDCCHIndices(enb).

Input Arguments
enb — Cell-wide settings
structure

enb is a structure having the following fields.

Parameter
Field

Required or
Optional

Values Description

NDLRB Required Integer within the
range (6,...,110)

Number of downlink resource blocks
(NRB

DL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
CyclicPref
ix

Optional 'Normal' (default),
'Extended'

Cyclic prefix length

CellRefP Required 1, 2, 4 Number of cell-specific reference signal
(CRS) antenna ports

CFI Required 1, 2, or 3 Control format indicator value
Ng Required 'Sixth', 'Half',

'One', 'Two'
HICH group multiplier

2 Functions

2-574

Parameter
Field

Required or
Optional

Values Description

PHICHDurat
ion

Optional 'Normal' (default),
'Extended'

PHICH duration

DuplexMode Optional 'FDD' (default),
'TDD'

Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

The following field is required when DuplexMode is set to 'TDD'.
 
TDDConfig

Optional 0, 1 (default), 2, 3, 4,
5, 6

Uplink–downlink configuration

NSubframe Required Integer greater than 0 Subframe number

Data Types: struct

opts — Output format, base, and unit of generated indices
character vector | string scalar | cell array of character vectors | string array

Output format, base, and unit of generated indices, specified as one of these forms.

• 'format base unit'
• "format base unit"
• {'format','base','unit'}
• ["format","base","unit"]

Where format, base, and unit are defined in this table.

Option Values Description
format 'ind' (default), 'sub' Output format of generated indices

To return the indices as a column
vector, specify this option as 'ind'.

To return the indices as an NRE-by-3
matrix, where NRE is the number of
REs, specify this option as 'sub'.
Each row of the matrix contains the
subcarrier, symbol, and antenna
port as its first, second, and third
element, respectively.

base '1based' (default), '0based' Index base

To generate indices whose first
value is 1, specify this option as
'1based'. To generate indices
whose first value is 0, specify this
option as '0based'.

 ltePDCCHIndices

2-575

unit 're' (default), 'reg' Unit of returned indices

To indicate that the returned values
correspond to individual resource
elements (REs), specify this option
as 're'. To indicate that the
returned values correspond to
resource element groups (REGs),
specify this option as 'reg'.

Example: 'ind 0based reg', "ind 0based reg", {'ind','0based','reg'}, and
["ind","0based","reg"] specify the same output options.
Data Types: char | string | cell

exreg — Resources excluded from PDCCH
vector

Resources excluded from PDCCH, specified as a vector. This vector explicitly defines those resources
not to be assigned to PDCCH. exreg must contain valid resource element group (REG) indices but
can be either zero-based or one-based throughout. Indices which do not fall within the control region
are ignored.
Data Types: double

Output Arguments
ind — PDCCH RE indices
numeric matrix

PDCCH RE indices, returned as an NRE-by-CellRefP numeric matrix by default. The matrix contains
one-based linear indexing RE indices. Each column of ind identifies the same set of NRE subframe
resource elements but with indices offset to select them in a different antenna “page” of the 3-D
resource array.

The default matrix of indices in a one-based linear indexing style which can directly index elements of
an M-by-N-by-CellRefP array, where M is the number of symbols, and N is the number of
subcarriers representing the subframe grid across CellRefP antenna ports.
Data Types: double

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Physical Channels and Modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

2 Functions

2-576

https://www.3gpp.org

See Also
ltePDCCH | ltePDCCHDecode | ltePDCCHInfo | ltePDCCHInterleave |
ltePDCCHDeinterleave | ltePDCCHSpace | ltePDCCHSearch

 ltePDCCHIndices

2-577

ltePDCCHInfo
PDCCH resource information

Syntax
info = ltePDCCHInfo(enb)

Description
info = ltePDCCHInfo(enb) returns a structure info containing information about the Physical
Downlink Control Channel (PDCCH) subframe resources.

Within a non-MBMS downlink subframe, the first info.NSymbols OFDM symbols represent its
control region and carry the PCFICH, PHICH and PDCCH. info.NRE indicates the number of non-
reference resource elements (RE), not assigned to the PCFICH or PHICH, that are associated with
PDCCH transmission. These resources carry the set of PDCCH where each PDCCH carries a single
encoded DCI message. Each PDCCH can be transmitted on 1,2,4, or 8 control channel elements
(CCE), where 1 CCE = 9 REG = 36 RE = 72 bits. As such, not all the NRE elements can carry actual
PDCCH instances, with (info.NRE – info.NREUsed) being unavailable for PDCCH transmission.

Examples

Get PDCCH Information

Get information about the PDCCH subframe resources for RMC R.0.

enb = lteRMCDL('R.0');
info = ltePDCCHInfo(enb)

info = struct with fields:
 NREG: 113
 NRE: 452
 NCCE: 12
 NREGUsed: 108
 NREUsed: 432
 MTot: 904
 NSymbols: 3

Input Arguments
enb — Cell-wide settings structure
scalar structure

Cell-wide settings, specified as a scalar structure. enb is a structure having the following fields.

2 Functions

2-578

Parameter
Field

Required or
Optional

Values Description

NDLRB Required Integer within the
range (6,...,110)

Number of downlink resource blocks
(NRB

DL)
CyclicPref
ix

Optional 'Normal' (default),
'Extended'

Cyclic prefix length

CellRefP Required 1, 2, 4 Number of cell-specific reference signal
(CRS) antenna ports

CFI Required 1, 2, 3 Control format indicator value
Ng Required 'Sixth', 'Half',

'One', 'Two'
HICH group multiplier

DuplexMode Optional 'FDD' (default),
'TDD'

Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

NSubframe Required 0 (default),
nonnegative scalar
integer

Subframe number

The following field is required when DuplexMode is set to 'TDD'.
 
TDDConfig

Optional 0, 1 (default), 2, 3, 4,
5, 6

Uplink–downlink configuration

Data Types: struct

Output Arguments
info — PDCCH subframe resource information
structure

PDCCH subframe resource information, returned as a structure. info contains the following fields.

Parameter Field Values Description
NRE Numeric scalar Total number of resource elements (REs) associated

with PDCCHs (4×NREG)
NREG Numeric scalar Total number of resource element groups (REGs)

associated with PDCCHs (4×NRE)
MTot Numeric scalar Total number of bits associated with PDCCHs,

returned as a numeric scalar (8×NREG). MTot is the
maximum number of input bits that can be
transmitted on the NRE symbols (MTot = 2 × NRE =
8 × NREG).

NCCE Numeric scalar Number of control channel elements available for
actual PDCCH usage

NREGUsed Numeric scalar Number of resource element groups (REGs)
available for actual PDCCH usage

 ltePDCCHInfo

2-579

Parameter Field Values Description
NREUsed Numeric scalar Number of resource elements (REs) available for

actual PDCCH usage
NSymbols Numeric scalar Total number of OFDM symbols spanned by the

PDCCH

Data Types: struct

Version History
Introduced in R2014a

See Also
ltePDCCH | ltePDCCHDecode | ltePDCCHIndices | ltePDCCHInterleave |
ltePDCCHDeinterleave | ltePDCCHPRBS | ltePDCCHSpace | ltePDCCHSearch

2 Functions

2-580

ltePDCCHInterleave
PDCCH interleaving and cyclic shift

Syntax
out = ltePDCCHInterleave(enb,in)

Description
out = ltePDCCHInterleave(enb,in) performs the interleaving and cyclic shifting on PDCCH
resource element groups (REGs) as described in TS 36.211 [1], Section 6.8.5.

The permutation, or interleaving, operation is performed as described in TS 36.212 [2], Section
5.1.4.2.1, with the exception that “symbol quadruplets” replace “bits”. Then, the block of PDCCH-
modulated symbol quadruplets is cyclically shifted with NCellID to avoid intercell interference.

Examples

Perform PDCCH Interleaving

Interleave a sequential input sized to the number of resource elements.

enb = lteRMCDL('R.0');
pdcchInfo = ltePDCCHInfo(enb);
interleavedSym = ltePDCCHInterleave(enb,(1:pdcchInfo.NRE).');
size(interleavedSym)

ans = 1×2

 452 1

interleavedSym(1:12)

ans = 12x1 uint64 column vector

 73
 74
 75
 76
 201
 202
 203
 204
 329
 330
 ⋮

The sequential input is interleaved, resulting in the concatenation of input quadruplets.

 ltePDCCHInterleave

2-581

Input Arguments
enb — Cell-wide settings
scalar structure

Cell-wide settings, specified as a scalar structure. enb contains the following fields.

NCellID — Physical layer cell identity
integer from 0 to 503

Physical layer cell identity, specified as an integer from 0 to 503.

Data Types: struct

in — PDCCH complex modulated input symbols
complex-valued numeric matrix | numeric vector

PDCCH complex modulated input symbols, specified in a complex-valued numeric NS-by-NTX matrix,
or a numeric vector. NS is the number of modulated symbols, and NTX is the number of transmit
antennas. The NS modulated symbols specified in input matrix, in, must be a concatenation of symbol
quadruplets. If the input, in, is a vector, it interleaves the elements of the vector. If in is a matrix, it
interleaves the rows.
Data Types: double
Complex Number Support: Yes

Output Arguments
out — Interleaved output
numeric vector

Interleaved output, returned as a numeric vector.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel
coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePDCCHDeinterleave | ltePDCCH | ltePDCCHDecode | ltePDCCHInfo | ltePDCCHIndices |
ltePDCCHPRBS | ltePDCCHSpace | ltePDCCHSearch

2 Functions

2-582

https://www.3gpp.org
https://www.3gpp.org

ltePDCCHPRBS
PDCCH pseudorandom scrambling sequence

Syntax
[seq,cinit] = ltePDCCHPRBS(enb,n)
[seq,cinit] = ltePDCCHPRBS(enb,n,mapping)

[subseq,cinit] = ltePDCCHPRBS(enb,pn)
[subseq,cinit] = ltePDCCHPRBS(enb,pn,mapping)

Description
[seq,cinit] = ltePDCCHPRBS(enb,n) returns a column vector containing the first n outputs of
the Physical Downlink Control Channel (PDCCH) scrambling sequence when initialized according to
cell-wide settings structure, enb. It also returns an initialization value cinit for the pseudorandom
binary sequence (PRBS) generator.

[seq,cinit] = ltePDCCHPRBS(enb,n,mapping) allows control over the format of the returned
sequence, seq, with the input mapping.

[subseq,cinit] = ltePDCCHPRBS(enb,pn) returns a subsequence of a full PRBS sequence,
specified by pn.

[subseq,cinit] = ltePDCCHPRBS(enb,pn,mapping) allows additional control over the format
of the returned subsequence, subseq, with the input mapping.

Examples

Return Binary PDCCH Scrambling Sequence

Generate the first 7 outputs of the pseudorandom scrambling sequence for PDCCH in binary (default)
format.

enb = lteRMCDL('R.0');
pdcchSeqBinary = ltePDCCHPRBS(enb,7)

pdcchSeqBinary = 7x1 logical array

 0
 0
 0
 0
 0
 0
 1

 ltePDCCHPRBS

2-583

Scramble Random PDCCH Codeword

Scramble a random PDCCH codeword.

Create a cell-wide configuration structure, initialized to RMC R.0. Generate a codeword. Use MTot to
determine the total number of bits associated with PDCCHs. Generate a PDCCH pseudorandom
scrambling sequence the same length as the codeword.

enb = lteRMCDL('R.0');

pdcchInfo = ltePDCCHInfo(enb)

pdcchInfo = struct with fields:
 NREG: 113
 NRE: 452
 NCCE: 12
 NREGUsed: 108
 NREUsed: 432
 MTot: 904
 NSymbols: 3

cw = randi([0,1],pdcchInfo.MTot,1);

pdcchSeq = ltePDCCHPRBS(enb,length(cw));

Scramble codeword with PDCCH PRBS.

scrambled = xor(pdcchSeq,cw);

Return Signed PDCCH Scrambling Sequence

Generate the first 7 outputs of the pseudorandom scrambling sequence for PDCCH in signed format.

enb = lteRMCDL('R.0');
pdcchSeqSigned = ltePDCCHPRBS(enb,7,'signed')

pdcchSeqSigned = 7×1

 1
 1
 1
 1
 1
 1
 -1

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure. This argument contains the following fields.

2 Functions

2-584

NCellID — Physical layer cell identity
0,...,503

Physical layer cell identity, specified as a nonnegative scalar integer from 0 through 503.
Data Types: double

NSubframe — Subframe number
positive scalar integer

Subframe number, specified as a positive scalar integer greater than 0.
Data Types: double

Data Types: struct

n — Number of elements in returned sequence
numeric scalar

Number of elements in returned sequence, seq, specified as a numeric scalar.
Data Types: double

pn — Range of elements in returned subsequence
row vector

Range of elements in returned subsequence, subseq, specified as a row vector of [p n]. The
subsequence returns n values of the PRBS generator, starting at position p (0-based).
Data Types: double

mapping — Output sequence formatting
'binary' (default) | 'signed'

Output sequence formatting, specified as 'binary' or 'signed'. mapping controls the format of
the returned sequence.

• 'binary' maps true to 1 and false to 0.
• 'signed' maps true to –1 and false to 1.

Data Types: char | string

Output Arguments
seq — PDCCH pseudorandom scrambling sequence
logical column vector | numeric column vector

PDCCH pseudorandom scrambling sequence, returned as a logical column vector or a numeric
column vector. seq contains the first n outputs of the PDCCH scrambling sequence when initialized
according to cell-wide settings structure, enb. If you set mapping to 'signed', the output data type
is double. Otherwise, the output data type is logical.
Data Types: logical | double

subseq — PDCCH pseudorandom scrambling subsequence
logical column vector | numeric column vector

 ltePDCCHPRBS

2-585

PDCCH pseudorandom scrambling subsequence, returned as a logical column vector or a numeric
column vector. subseq contains the values of the PRBS generator specified by pn. If you set mapping
to 'signed', the output data type is double. Otherwise, the output data type is logical.
Data Types: logical | double

cinit — Initialization value for PRBS generator
numeric scalar

Initialization value for PRBS generator, returned as a numeric scalar.
Data Types: uint32

Version History
Introduced in R2014a

See Also
ltePDCCH | ltePDCCHDecode | ltePDCCHIndices | ltePDCCHInterleave |
ltePDCCHDeinterleave | ltePDCCHInfo | ltePDCCHSpace | ltePDCCHSearch

2 Functions

2-586

ltePDCCHSearch
PDCCH downlink control information search

Syntax
[dcistr,dcibits] = ltePDCCHSearch(enb,chs,softbits)

Description
[dcistr,dcibits] = ltePDCCHSearch(enb,chs,softbits) recovers downlink control
information (DCI) message structures, dcistr, and corresponding vectors of DCI message bits,
dcibits, after blind decoding the multiplexed physical downlink control channels (PDCCHs) within
the control region given by the softbits input vector, cell-wide configuration, enb, and UE-specific
channel configuration, chs. For more information, see “PDCCH Search Processing” on page 2-601.

Examples

Get DCI Message Structure and Bits

Extract and decode the PDCCH symbols from the control region of a subframe grid created by the DL
waveform generator, lteRMCDLTool. Use the blind search function, ltePDCCHSearch, to search the
common and UE-specific spaces by demasking all PDCCH candidates with the configured RNTI.

Use a waveform generator to create a full subframe grid containing a reference PDSCH and
associated DCI in UE-specific search space. Extract and decode all the PDCCH multiplex (control
region) bits.

rmc = lteRMCDL('R.0');
[~,txGrid] = lteRMCDLTool(rmc,[1;0;0;1]);

pdcchSymbols = txGrid(ltePDCCHIndices(rmc));
rxPdcchBits = ltePDCCHDecode(rmc,pdcchSymbols);

Configure the UE-specific parameters that affect the DCI message lengths to match those of the
reference UE.

ueConfig.RNTI = rmc.PDSCH.RNTI;
ueConfig.EnableCarrierIndication = 'Off';
ueConfig.EnableSRSRequest = 'Off';
ueConfig.EnableMultipleCSIRequest = 'Off';
ueConfig.NTxAnts = 1;

Use PDCCH blind search to find the DCI that schedules the PDSCH. Extract and display first DCI
message structure from the search list. Compare the format of the DCI message returned in the
previous step with the format used by the waveform generator.

[rxDCI,rxDCIBits] = ltePDCCHSearch(rmc,ueConfig,rxPdcchBits);

decDCI = rxDCI{1}

 ltePDCCHSearch

2-587

decDCI = struct with fields:
 DCIFormat: 'Format1'
 CIF: 0
 AllocationType: 1
 Allocation: [1x1 struct]
 ModCoding: 14
 HARQNo: 0
 NewData: 1
 RV: 0
 TPCPUCCH: 0
 TDDIndex: 0
 HARQACKResOffset: 0

decDCIFormat = decDCI.DCIFormat

decDCIFormat =
'Format1'

txDCIFormat = rmc.PDSCH.DCIFormat

txDCIFormat =
'Format1'

Get Two DCI Messages

Map a pair of format 0 uplink and format 1A downlink grants into a UE-specific search space in the
PDCCH multiplex. Use the blind search function to recover them. Because the search space is UE-
specific, you can extend the messages to include the Release 10 SRS request field and a 2-bit CSI
request field for the format 0 DCI. For simplicity, the example does not include any PDCCH channel
processing steps.

Create a vector containing the control region PDCCH multiplex bits.

enb = lteRMCDL('R.0');
pdcchinfo = ltePDCCHInfo(enb);
pdcchmux = zeros(1,pdcchinfo.MTot);

Configure the UE-specific parameters to control the DCI and encoding.

chs = struct('RNTI',1,'PDCCHFormat',2);
chs.ControlChannelType = 'PDCCH';
chs.SearchSpace = 'UESpecific';
chs.EnableCarrierIndication = 'Off';
chs.EnableSRSRequest = 'On';
chs.EnableMultipleCSIRequest = 'On';
chs.NTxAnts = 1;

List the formats to create and get the UE-specific search space candidate locations in the PDCCH
multiplex.

formats = {'Format0','Format1A'};
candidates = ltePDCCHSpace(enb,chs);

For each DCI format, create the DCI info bits and encode them for PDCCH mapping. Demonstrate
setting of the ModCoding field to a nondefault value. Select a candidate to carry the target PDCCH.

2 Functions

2-588

for f = 1:length(formats)

 dciin = struct('DCIFormat',formats{f},'ModCoding',f);
 [dci,dcibits] = lteDCI(enb,chs,dciin);
 pdcch = lteDCIEncode(chs,dcibits);

 pdcchmux(candidates(f,1):candidates(f,2)) = pdcch;
end

Search PDCCH multiplex bits for any DCI messages directed at UE RNTI.

rxDCI = ltePDCCHSearch(enb,chs,pdcchmux)

rxDCI=1×2 cell array
 {1x1 struct} {1x1 struct}

rxDCI{:}

ans = struct with fields:
 DCIFormat: 'Format1A'
 CIF: 0
 AllocationType: 0
 Allocation: [1x1 struct]
 ModCoding: 2
 HARQNo: 0
 NewData: 0
 RV: 0
 TPCPUCCH: 0
 TDDIndex: 0
 SRSRequest: 0
 HARQACKResOffset: 0

ans = struct with fields:
 DCIFormat: 'Format0'
 CIF: 0
 FreqHopping: 0
 Allocation: [1x1 struct]
 ModCoding: 1
 NewData: 0
 TPC: 0
 CShiftDMRS: 0
 TDDIndex: 0
 CSIRequest: 0
 SRSRequest: 0
 AllocationType: 0

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure with these fields.

 ltePDCCHSearch

2-589

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)

For information on link bandwidth
assignment, see “Specifying
Number of Resource Blocks” on
page 2-601.

NULRB Required Scalar integer from 6 to 110 Number of uplink resource blocks.
(NRB

UL)

For information on link bandwidth
assignment, see “Specifying
Number of Resource Blocks” on
page 2-601.

NSubframe Required 0 (default), nonnegative scalar
integer

Subframe number

CellRefP Required 1, 2, 4 Number of cell-specific reference
signal (CRS) antenna ports

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as one
of the following:

• 'FDD' — Frequency division
duplex (default)

• 'TDD' — Time division duplex

Data Types: struct

chs — User-equipment-related channel configuration
structure

User-equipment-related (UE-related) channel configuration, specified as a structure containing the
following UE-specific fields.

RNTI — Radio network temporary identifier
1 (default) | numeric scalar

Radio network temporary identifier value, specified as a numeric scalar.
Data Types: double

EnableCarrierIndication — Option to enable carrier indication
'Off' (default) | 'On' | optional

Option to enable carrier indication UE configuration, specified as 'Off' or 'On'. Default
configuration is disabled. When enabled, 'On', the carrier indication field is present.
Data Types: char | string

EnableSRSRequest — Option to enable SRS request
'Off' (default) | 'On' | optional

2 Functions

2-590

Option to enable SRS request in the UE configuration, specified as 'Off' or 'On'. By default,
EnableSRSRequest is disabled. When EnableSRSRequest is enabled ('On'), the SRS request field
is present in UE-specific formats 0/1A for FDD or TDD and formats 2B/2C/2D for TDD.
Data Types: char | string

EnableMultipleCSIRequest — Option to enable multiple CSI requests
'Off' (default) | 'On' | optional

Option to enable multiple CSI requests in the UE configuration, specified as 'Off' or 'On'. By
default, EnableMultipleCSIRequest is disabled. When EnableMultipleCSIRequest is enabled
('On'), the UE is configured to process multiple channel state information (CSI) requests from cells.
Enabling multiple CSI requests affects the length of the CSI request field in UE-specific formats 0 and
4.
Data Types: char | string

NTxAnts — Number of UE transmission antennas
1 (default) | 2 | 4 | optional

Number of UE transmission antennas, specified as 1, 2, or 4. The number of UE transmission
antennas affects the length of the precoding information field in DCI format 4.
Data Types: double

Data Types: struct

softbits — Input vector of soft bits
numeric column vector

Input vector of soft bits, specified as a column vector.
Data Types: double

Output Arguments
dcistr — Downlink control information (DCI) message structures
cell array of structures

Downlink control information (DCI) message structures, returned as a cell array of structures. Each
structure represents a successfully decoded DCI whose fields match fields of the associated DCI
format. Each structure contains the fields associated with one or more decoded DCI messages.
Because multiple PDCCHs can be transmitted in a subframe, the UE must monitor all possible
PDCCHs directed at it. If more than one PDCCH is directed to the UE or is successfully decoded,
dcistr contains that number of decoded DCI messages.

Each cell contains a structure with the fields associated with the DCI format of the received PDCCHs.

DCIFormat — DCI format type
'Format0' | 'Format1' | 'Format1A' | 'Format1B' | 'Format1C' | 'Format1D' | 'Format2' |
'Format2A' | 'Format2B' | 'Format2C' | 'Format3' | 'Format3A' | 'Format4' | 'Format5'

DCI format type, specified as a character vector. This table presents the fields associated with each
DCI format as defined in TS 36.212 [1], Section 5.3.3.

 ltePDCCHSearch

2-591

DCI Formats dciout Fields Size Description
'Format0' DCIFormat - 'Format0'

CIF 0 or 3 bits Carrier indicator field
FreqHopping 1 bit PUSCH frequency hopping flag
Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation, coding scheme, and

redundancy version
NewData 1 bit New data indicator
TPC 2 bits PUSCH TPC command
CShiftDMRS 3 bits Cyclic shift for DM RS
TDDIndex 2 bits For TDD config 0, this field is the Uplink

Index.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
CSIRequest 1, 2, or 3 bits CSI request
SRSRequest 0 or 1 bit SRS request. This field can only be

present in DCI formats scheduling
PUSCH which are mapped onto the UE
specific search space given by the C-
RNTI

AllocationType 1 bit Resource allocation type, only present if
NRB

UL≤NRB
DL.

'Format1' DCIFormat - 'Format1'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation and coding scheme
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

NewData 1 bit New data indicator
RV 2 bits Redundancy version
TPCPUCCH 2 bits PUCCH TPC command

2 Functions

2-592

DCI Formats dciout Fields Size Description
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format1A' DCIFormat - 'Format1A'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit VRB assignment flag: 0 (localized), 1

(distributed)
Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation and coding scheme
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

NewData 1 bit New data indicator
RV 2 bits Redundancy version
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
SRSRequest 0 or 1 bit SRS request. This field can only be

present in DCI formats scheduling
PUSCH which are mapped onto the UE
specific search space given by the C-
RNTI

HARQACKResOffset 2 bits HARQ-ACK resource offset. Present
when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format1B' DCIFormat - 'Format1B'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit VRB assignment flag: 0 (localized), 1

(distributed)
Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation and coding scheme

 ltePDCCHSearch

2-593

DCI Formats dciout Fields Size Description
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

NewData 1 bit New data indicator
RV 2 bits Redundancy version
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
TPMI 2 bits for two

antennas

4 bits for four
antennas

PMI information

PMI 1 bit PMI confirmation
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format1C' DCIFormat - 'Format1C'
Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation and coding scheme

'Format1D' DCIFormat - 'Format1D'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit VRB assignment flag: 0 (localized), 1

(distributed)
Allocation Varies Resource block assignment/allocation
ModCoding 5 bits Modulation and coding scheme
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

NewData 1 bit New data indicator
RV 2 bits Redundancy version
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.

2 Functions

2-594

DCI Formats dciout Fields Size Description
TPMI 2 bits for two

antennas

4 bits for four
antennas

Precoding TPMI information

DlPowerOffset 1 bit Downlink power offset
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format2' DCIFormat - 'Format2'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

SwapFlag 1 bit Transport block to codeword swap flag
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1
RV1 2 bits Redundancy version for transport block

1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
RV2 2 bits Redundancy version for transport block

2
PrecodingInfo 3 bits for two

antennas

6 bits for four
antennas

Precoding information

 ltePDCCHSearch

2-595

DCI Formats dciout Fields Size Description
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format2A' DCIFormat - 'Format2A'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

SwapFlag 1 bit Transport block to codeword swap flag
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1
RV1 2 bits Redundancy version for transport block

1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
RV2 2 bits Redundancy version for transport block

2
PrecodingInfo 0 bits for two

antennas

2 bits for four
antennas

Precoding information

HARQACKResOffset 2 bits HARQ-ACK resource offset. Present
when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format2B' DCIFormat - 'Format2B'
CIF 0 or 3 bits Carrier indicator field

2 Functions

2-596

DCI Formats dciout Fields Size Description
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

ScramblingId 1 bit Scrambling identity
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1
RV1 2 bits Redundancy version for transport block

1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
RV2 2 bits Redundancy version for transport block

2
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format2C' DCIFormat - 'Format2C'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation
TPCPUCCH 2 bits PUCCH TPC command

 ltePDCCHSearch

2-597

DCI Formats dciout Fields Size Description
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

TxIndication 3 bits Antenna ports, scrambling identity, and
number of layers indicator

SRSRequest Varies SRS request. Only present for TDD.
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1
RV1 2 bits Redundancy version for transport block

1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
RV2 2 bits Redundancy version for transport block

2
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format2D' DCIFormat - 'Format2D'
CIF 0 or 3 bits Carrier indicator field
AllocationType 1 bit Resource allocation header: type 0, type

1. If downlink bandwidth is ≤10 PRBs
there is no resource allocation header
and resource allocation type 0 is
assumed.

Allocation Varies Resource block assignment/allocation
TPCPUCCH 2 bits PUCCH TPC command
TDDIndex 2 bits For TDD config 0, this field is not used.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
HARQNo 3 bits (FDD)

4 bits (TDD)

HARQ process number

2 Functions

2-598

DCI Formats dciout Fields Size Description
TxIndication 3 bits Antenna ports, scrambling identity, and

number of layers indicator
SRSRequest Varies SRS request. Only present for TDD.
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1
RV1 2 bits Redundancy version for transport block

1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
RV2 2 bits Redundancy version for transport block

2
REMappingAndQCL 2 bits PDSCH RE Mapping and Quasi-Co-

Location Indicator
HARQACKResOffset 2 bits HARQ-ACK resource offset. Present

when this format is carried by EPDCCH.
Not present when this format is carried
by PDCCH

'Format3' DCIFormat - 'Format3'
TPCCommands Varies TPC commands for PUCCH and PUSCH

'Format3A' DCIFormat - 'Format3A'
TPCCommands Varies TPC commands for PUCCH and PUSCH

'Format4' DCIFormat - 'Format4'
CIF 0 or 3 bits Carrier indicator field
Allocation Varies Resource block assignment/allocation
TPC 2 bits PUSCH TPC command
CShiftDMRS 3 bits Cyclic shift for DM-RS
TDDIndex 2 bits For TDD config 0, this field is Uplink

Index.

For TDD config 1–6, this field is the
Downlink Assignment Index.

Not present for FDD.
CSIReq Varies CSI request
SRSRequest 2 bits SRS request
AllocationType 1 bit Resource allocation header type 0 or

type 1.
ModCoding 5 bits Modulation, coding scheme, and

redundancy version

 ltePDCCHSearch

2-599

DCI Formats dciout Fields Size Description
NewData 1 bit New data indicator
ModCoding1 5 bits Modulation and coding scheme for

transport block 1
NewData1 1 bit New data indicator for transport block 1
ModCoding2 5 bits Modulation and coding scheme for

transport block 2
NewData2 1 bit New data indicator for transport block 2
PrecodingInfo 3 bits for two

antennas

6 bits for four
antennas

Precoding information

'Format5' DCIFormat - 'Format5'
PSCCHResource 6 bits Resource for PSCCH
TPC 1 bit TPC command for PSCCH and PSSCH
FreqHopping 1 bit Frequency hopping flag
Allocation Varies Resource block assignment and hopping

resource allocation
TimeResourcePatte
rn

7 bits Time resource pattern

'Format5A' DCIFormat - 'Format5A'
CIF 3 bits Carrier indicator
FirstSubchannelId
x

log2 Nsubchannel
SL Lowest index of the subchannel

allocation to the initial transmission
RIV from 0 to 13 bits,

log2

Nsubchannel
SL × Nsubchannel

SL + 1
2

Resource indication value

TimeGap 4 bits Time gap between initial transmission
and retransmission

SLIndex 2 bits SL SPS configuration index

Data Types: char

Data Types: cell

2 Functions

2-600

dcibits — DCI message bits
cell array of numeric vectors

DCI message bits, returned as a cell array of one or more numeric vectors. Each vector contains the
bit stream of a recovered DCI message, including any zero-padding. Each vector of bit values
corresponds to successfully decoded DCI messages. For more information, see lteDCI.
Data Types: cell

More About
PDCCH Search Processing

PDCCH search processing blindly decodes DCI messages based on their lengths. The lengths and
order in which DCI messages are searched for is provided by lteDCIInfo. If one or more messages
have the same length, the first message format in the list is used to decode the message. The other
potential message formats are ignored. The ltePDCCHSearch function does not consider
transmission mode (TM) during blind search, and no DCI message format is filtered based on
transmission mode. It also does not search for format 3 and 3A (power adjustment commands for
PUSCH and PUCCH). For more information on the association between transmission mode,
transmission scheme, DCI format, and search space, see TS 36.213 [2], Section 7.1 and Table 7.1-5.

The UE is required to monitor multiple PDCCHs within the control region. The UE is informed only of
the width, in OFDM symbols, of the control region within a subframe, and is not aware of the exact
location of PDCCHs relevant to it. The UE finds the PDCCHs relevant to it by monitoring a set of
PDCCH candidates, that is, a set of consecutive control candidate elements (CCEs) on which PDCCH
can be mapped, in every subframe. For details, see ltePDCCHSpace. This process is referred to as
blind decoding.

To simplify the decoding task at the UE, the whole control region is subdivided into common and UE-
specific search spaces which the UE monitors (monitor implies attempting to decode each PDCCH).
Each search space comprises 2, 4, or 6 PDCCH candidates whose data length depends on its
corresponding PDCCH format. Each PDCCH must be transmitted on 1, 2, 4, or 8 CCE (1 CCE = 72
bits). The common search space is limited to only two aggregation levels, 4 and 8, while the UE-
specific search space can have an aggregation level of 1, 2, 4, or 8.

All UEs within a cell monitor the common search space that carries control information common to all
UEs. The common control information carries initial important information including paging
information, system information, and random access procedures. The UE monitors the common
search space by demasking each PDCCH candidate with different RNTIs, for example, P-RNTI, SI-
RNTI, RA-RNTI and so on.

In the UE-specific search space, the UE finds the PDCCH relevant to it by monitoring a set of PDCCH
candidates in every subframe. If no CRC error is detected when the UE demasks a PDCCH candidate
with its RNTI (16-bit C-RNTI value), the UE determines that the PDCCH candidate carries its own
control information.

The number and location of candidates within a search space is different for each PDCCH format.
There are four PDCCH formats (0, 1, 2, or 3). If the UE fails to decode any PDCCH candidates for a
given PDCCH format, it tries to decode candidates for another PDCCH format.

Specifying Number of Resource Blocks

The number of resource blocks specifies the uplink and downlink bandwidth. The LTE Toolbox
implementation assumes symmetric link bandwidth unless you specifically assign different values to

 ltePDCCHSearch

2-601

NULRB and NDLRB. If the number of resource blocks is initialized in only one link direction, then the
initialized number of resource blocks (NULRB or NDLRB) is used for both uplink and downlink. When
this mapping is used, no warning is displayed. An error occurs if NULRB and NDLRB are both
undefined.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePDCCH | ltePDCCHDecode | ltePDCCHIndices | ltePDCCHInterleave |
ltePDCCHDeinterleave | ltePDCCHInfo | ltePDCCHSpace | ltePDCCHPRBS

2 Functions

2-602

https://www.3gpp.org
https://www.3gpp.org

ltePDCCHSpace
PDCCH search space candidates

Syntax
ind = ltePDCCHSpace(enb,ue)
ind = ltePDCCHSpace(enb,ue,opts)

Description
ind = ltePDCCHSpace(enb,ue) returns the (0,2,4,6)-by-2 matrix ind of search space PDCCH
candidate indices given the structures enb and ue. Depending on input parameters, each search
space contains (0,2,4, or 6) PDCCH candidate locations defined by the rows of ind. Each two-element
row contains the inclusive [begin,end] indices of a single PDCCH candidate location. By default,
the one-based indices define the PDCCH locations in the block of all multiplexed PDCCH data bits to
be transmitted in that subframe.

The control region of a downlink subframe comprises the multiplexing of all PDCCHs bits into a
single block of data which is then processed and interleaved before PDCCH resource mapping. A UE
has to blindly decode individual PDCCH directed at it. This task is simplified by subdividing the whole
region into common and UE-specific search spaces which the UE should monitor. Each space
comprises 2, 4, or 6 PDCCH candidates whose data length depends on its PDCCH format. Each
PDCCH must be transmitted on 1, 2, 4, or 8 control channel elements (CCE) (1 CCE = 72 bits).

The returned search space is of the UE-specific type unless the RNTI field is missing from the
structure ue when a common search space is returned. The search space always contains 2, 4, or 6
candidates; therefore, ind has 2, 4, or 6 rows, unless the parameter combinations are not valid, in
which case the ind output returned is empty. For more information, see TS 36.213 [1], Section 9.1.1.
The candidates in a space do not need to be unique, especially for smaller bandwidths.

ind = ltePDCCHSpace(enb,ue,opts) formats the returned indices using options specified by
opts.

Examples

Get PDCCH Search Space Candidates

Find and use PDCCH search space candidates.

To illustrate the search space structuring of the PDCCH, set up a cell wide parameter structure, enb,
with the following field values.

enb.NDLRB = 50;
enb.CFI = 2;
enb.CellRefP = 2;
enb.Ng = 'Sixth';
enb.NSubframe = 0;

This configuration defines a control region with the following information.

 ltePDCCHSpace

2-603

resInfo = ltePDCCHInfo(enb)

resInfo = struct with fields:
 NREG: 240
 NRE: 960
 NCCE: 26
 NREGUsed: 234
 NREUsed: 936
 MTot: 1920
 NSymbols: 2

The entire data block of padded, multiplexed PDCCHs needs to be 1920 bits, resInfo.MTot, in
length. Using -1 to represent NIL padding "bits", create an "empty" multiplex.

pdcchs = -1*ones(1,resInfo.MTot);

Suppose you want to transmit all zeros in the first candidate of the UE-specific search space for
PDCCH format 2 and the UE's RNTI = 1. For this format, a PDCCH spans 4 CCE or 288 bits, and the
UE-specific search space contains two PDCCH candidates.

candidates = ltePDCCHSpace(enb,struct('PDCCHFormat',2,'RNTI',1))

candidates = 2x2 uint32 matrix

 1441 1728
 1 288

These location values arise for enb.NSubframe = 0. They change in a pseudorandom fashion as the
subframe number increases. Since the default candidate indices define inclusive, 1-based bounds, we
can use them to index the PDCCH data multiplex directly by using the MATLAB® colon operator.

pdcchs(candidates(1,1):candidates(1,2)) = 0;

This command sets the 288 bits of the first PDCCH candidate to all zeros. The second candidate
actually falls within the common search space also.

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure with these fields.

Parameter
Field

Required or
Optional

Values Description

NSubframe Required 0 (default),
nonnegative scalar
integer

0 is default

Subframe number

2 Functions

2-604

Parameter
Field

Required or
Optional

Values Description

NREG Optional Nonnegative scalar
integer

Total number of resource element
groups (REGs) associated with PDCCHs,
specified as a nonnegative scalar
integer.

If NREG is absent, then 'enb' must contain these fields.
 NDLRB Optional Numeric scalar value

6, 15, 25, 50, 75, and
100

Number of downlink resource blocks
(NRB

DL)

 
CyclicPref
ix

Optional 'Normal' (default),
'Extended'

Cyclic prefix length

 CFI Optional 1, 2, 3 Control format indicator value, specified
as a double value.

 CellRefP Optional 1, 2, 4 Number of cell-specific reference signal
(CRS) antenna ports

 Ng Optional 'Sixth', 'Half',
'One', 'Two'

HICH group multiplier

 
DuplexMode

Optional 'FDD' (default),
'TDD'

Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

The following field is required only when DuplexMode is set to 'TDD'.
 
TDDConfig

Optional 0, 1 (default), 2, 3, 4,
5, 6

Uplink–downlink configuration

Data Types: struct

ue — UE-specific cell-wide settings
structure

UE-specific cell-wide settings, specified as a structure with the following fields.

Parameter
Field

Required or
Optional

Values Description

PDCCHForma
t

Required 0, 1, 2, 3 PDCCH format

RNTI Optional Scalar integer
between 0 and 65535

Radio network temporary identifier
(RNTI) value (16 bits). If RNTI field is
missing, see Description section for
specific behaviour.

Data Types: struct

opts — Index generation options
character vector | cell array of character vectors | string array

 ltePDCCHSpace

2-605

Index generation options, specified as a character vector, cell array of character vectors, or string
array. For convenience, you can specify several options as a single character vector or string scalar
by a space-separated list of values placed inside the quotes. Values for opts when specified as a
character vector include (use double quotes for string):

Option Values Description
Index base '1based' (default), '0based' Base value of the returned indices. Specify

'1based' to generate indices where the first
value is 1. Specify '0based' to generate
indices where the first value is 0.

Indexing unit 'bits' (default), 'cce' Unit of the returned indices. Specify 'bits' to
indicate that the returned values correspond to
bit indices. Specify 'cce' to indicate that the
returned values correspond to control channel
elements (CCEs) indices.

Example: '1based bits', "1based bits", {'1based','bits'}, or ["1based","bits"]
specify the same formatting options.
Data Types: char | string | cell

Output Arguments
ind — Search space PDCCH candidate indices
(0,2,4,6)-by-2 matrix

Search space PDCCH candidate indices, returned as a (0,2,4,6)-by-2 matrix given the structures enb
and ue. It is a matrix of indices identifying a common or UE-specific PDCCH search space. Each two-
element row contains the inclusive [begin,end] indices of a single PDCCH candidate location. By
default, the one-based indices define the PDCCH locations in the block of all multiplexed PDCCH data
bits to be transmitted in that subframe. opts defines alternative formats for returning the indices.
Data Types: double

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer

procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePDCCH | ltePDCCHDecode | ltePDCCHIndices | ltePDCCHInterleave |
ltePDCCHDeinterleave | ltePDCCHInfo | ltePDCCHSearch | ltePDCCHPRBS

2 Functions

2-606

https://www.3gpp.org

ltePDSCH
Physical downlink shared channel

Syntax
sym = ltePDSCH(enb,chs,cws)

Description
sym = ltePDSCH(enb,chs,cws) returns a matrix containing the physical downlink shared channel
(PDSCH) complex symbols for cell-wide settings, enb, channel transmission configuration, chs, and
the codeword or codewords contained in cws. The channel processing includes the stages of
scrambling, symbol modulation, layer mapping, and precoding.

Examples

Generate PDSCH symbols for Test Model E-TM1.1 10MHz

Generate the configuration structure for Test Model E-TM1.1 10 MHz, as specified in TS36.141

Initialize the test model using lteTestModel. Generate information related to PDSCH indices and
use info.Gd output to determine the required transport block. Execute lteDLSCH to create the
codeword, then generate the PDSCH symbols.

tm = lteTestModel('1.1','10MHz');
tm.PDSCH.RNTI = 0;
tm.PDSCH.RV = 0;

prbset = (0:tm.NDLRB-1)';
[ind,info] = ltePDSCHIndices(tm,tm.PDSCH,prbset);

trBlk = randi([0,1],info.Gd,1);
cw = lteDLSCH(tm,tm.PDSCH,info.G,trBlk);
pdschSym = ltePDSCH(tm,tm.PDSCH,cw);

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required
or Optional

Values Description

NCellID Required Integer from 0 to 503 Physical layer cell identity

 ltePDSCH

2-607

Parameter Field Required
or Optional

Values Description

NSubframe Required 0 (default), nonnegative
scalar integer

Subframe number

CellRefP Required 1, 2, 4 Number of cell-specific reference signal
(CRS) antenna ports

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

The following parameters are dependent upon the condition that DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5,

6
Uplink–downlink configuration

  SSC Optional 0 (default), 1, 2, 3, 4, 5,
6, 7, 8, 9

Special subframe configuration (SSC)

The following parameter fields are dependent upon the condition that chs.TxScheme is set to 'SpatialMux'
or 'MultiUser'.
  CFI Required 1, 2, or 3

Scalar or if the CFI
varies per subframe, a
vector of length 10
(corresponding to a
frame).

Control format indicator (CFI) value. In TDD
mode, CFI varies per subframe for the
RMCs ('R.0', 'R.5', 'R.6',
'R.6-27RB', 'R.12-9RB')

  NDLRB Required Scalar integer from 6 to
110

Number of downlink resource blocks (NRB
DL)

  CyclicPrefix Optional 'Normal' (default),
'Extended'

Cyclic prefix length

chs — Channel-specific transmission configuration
structure

Channel-specific transmission configuration, specified as a structure that can contain the following
parameter fields.

Parameter Field Required
or Optional

Values Description

Modulation Required 'QPSK', '16QAM',
'64QAM', '256QAM',
'1024QAM'

Modulation type, specified as a character
vector, cell array of character vectors, or
string array. If blocks, each cell is associated
with a transport block.

RNTI Required 0 (default), scalar
integer

Radio network temporary identifier (RNTI)
value (16 bits)

2 Functions

2-608

Parameter Field Required
or Optional

Values Description

TxScheme Optional 'Port0' (default),
'TxDiversity',
'CDD',
'SpatialMux',
'MultiUser',
'Port5', 'Port7-8',
'Port8',
'Port7-14'.

PDSCH transmission scheme, specified as
one of the following options.

Transmission scheme Description
'Port0' Single antenna port, port

0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay

diversity scheme
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port

5
'Port7-8' Single-antenna port, port

7, when NLayers = 1.
Dual layer transmission,
ports 7 and 8, when
NLayers = 2.

'Port8' Single-antenna port, port
8

'Port7-14' Up to eight layer
transmission, ports 7–14

The following parameters are dependent upon the condition that TxScheme is set to 'CDD', 'SpatialMux',
'MultiUser', 'Port7-8'or 'Port7-14'.
  NLayers Required Integer from 1 to 8 Number of transmission layers.

The number of layers is dependent on
TxScheme.

  PMISet Required Integer vector with
element values from 0
to 15.

Precoder matrix indication (PMI) set. It can
contain either a single value, corresponding
to single PMI mode, or multiple values,
corresponding to multiple or subband PMI
mode. The number of values depends on
CellRefP, transmission layers and TxScheme.
For more information about setting PMI
parameters, see ltePMIInfo.

 ltePDSCH

2-609

Parameter Field Required
or Optional

Values Description

  PRBSet Required Integer column vector
or two-column matrix

Zero-based physical resource block (PRB)
indices corresponding to the slot wise
resource allocations for this PDSCH. PRBSet
can be assigned as:

• a column vector, the resource allocation
is the same in both slots of the subframe,

• a two-column matrix, this parameter
specifies different PRBs for each slot in a
subframe,

• a cell array of length 10 (corresponding
to a frame, if the allocated physical
resource blocks vary across subframes).

PRBSet varies per subframe for the RMCs
'R.25'(TDD), 'R.26'(TDD), 'R.27'(TDD),
'R.43'(FDD), 'R.44', 'R.45', 'R.48',
'R.50', and 'R.51'.

The following parameters are dependent upon the condition that TxScheme is set to 'Port5', 'Port7-8',
'Port8', or 'Port7-14'.
  W Optional Numeric matrix, []

(default)
NLayers-by-P precoding matrix for the
wideband UE-specific beamforming of the
PDSCH symbols. P is the number of transmit
antennas. When W is not specified, no
precoding is applied.

cws — Codeword or codewords
numeric vector | cell array

Codeword or codewords, specified as a vector of bit values for one codeword to be modulated, or a
cell array containing one or two vectors of bit values corresponding to the one or two codewords to
be modulated.

Output Arguments
sym — PDSCH symbols
complex numeric matrix

PDSCH symbols, returned as a complex numeric matrix. It has size N-by-P, where N is the number of
modulation symbols for one antenna port and P is the number of transmission antennas. The complex
symbols are generated using cell-wide settings, enb, channel transmission configuration, chs, and
the codeword or codewords contained in cws.
Data Types: double
Complex Number Support: Yes

Version History
Introduced in R2014a

2 Functions

2-610

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network.

[2] 3GPP TS 36.141. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS)
conformance testing.” 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network.

See Also
ltePDSCHDecode | ltePDSCHIndices | ltePDSCHPRBS | lteDLSCH

 ltePDSCH

2-611

ltePDSCHDecode
Physical downlink shared channel decoding

Syntax
[cws,symbols] = ltePDSCHDecode(enb,chs,sym)
[cws,symbols] = ltePDSCHDecode(enb,chs,sym,hest,noiseest)
[cws,symbols] = ltePDSCHDecode(enb,chs,rxgrid,hest,noiseest)

Description
[cws,symbols] = ltePDSCHDecode(enb,chs,sym) performs the inverse of physical downlink
shared channel (PDSCH) processing on the matrix of complex modulated PDSCH symbols, sym, using
cell-wide settings structure, enb, and channel-specific configuration structure, chs. The channel
inverse processing includes inverting the channel precoding, layer demapping and codeword
separation, soft demodulation, and descrambling. Inverting the precoding is accomplished by matrix
pseudoinversion of the precoding matrices. It returns a cell array, cws, of soft bit vectors, and a cell
array, symbols, of received constellation symbol vectors resulting from performing the inverse of
Physical Downlink Shared Channel (PDSCH) processing. For more information, see TS 36.211 [1],
Section 6.4 and ltePDSCH. cws is optionally scaled by channel state information (CSI) calculated
during the equalization process.

[cws,symbols] = ltePDSCHDecode(enb,chs,sym,hest,noiseest) performs the decoding of
the complex modulated PDSCH symbols sym using cell-wide settings, enb, channel-specific
configuration, chs, channel estimate, hest, and the noise estimate, noiseest.

The behavior varies based on the chs.TxScheme setting. For the 'TxDiversity' transmission
scheme, the precoding inversion is performed using an orthogonal space frequency block code
(OSFBC) decoder. For the 'SpatialMux', 'CDD', and 'MultiUser' transmission schemes, the
precoding inversion is performed using a multiple-input, multiple-output (MIMO) minimum mean
square error (MMSE) equalizer, equalizing between transmitted and received layers. For the
'Port0', 'Port5', 'Port7-8', 'Port8', and 'Port7-14' transmission schemes, the reception is
performed using MMSE equalization. The input channel estimate, hest, is assumed to be with
reference to the transmission layers, using the UE-specific reference signals, so the MMSE
equalization will produce MMSE equalized layers.

noiseest is an estimate of the noise power spectral density per RE on the received subframe. This
estimate is provided by the lteDLChannelEstimate function.

[cws,symbols] = ltePDSCHDecode(enb,chs,rxgrid,hest,noiseest) accepts the full
received resource grid, rxgrid, for one subframe, in place of the sym input; the decoder will
internally extract the PDSCH REs to obtain the complex modulated PDSCH symbols. rxgrid is a 3-D
M-by-N-by-NRxAnts array of resource elements, where M and N are the number of subcarriers and
symbols for one subframe for cell-wide settings enb and NRxAnts is the number of receive antennas.
In this case, hest is a 4-D M-by-N-by-NRxAnts-by-CellRefP array where M and N are the number of
subcarriers and symbols for one subframe for cell-wide settings enb, NRxAnts is the number of
receive antennas, and CellRefP is the number of cell-specific reference signal antenna ports, given
by enb.CellRefP. hest is processed to extract the channel estimates relevant to the PDSCH, those
in the time and frequency locations corresponding to the PDSCH REs in rxgrid.

2 Functions

2-612

Examples

Decode PDSCH Symbols

Generate and decode PDSCH symbols.

Initialize cell parameter structure enb for RMC R.0.

enb = lteRMCDL('R.0');

Populate a complex codeword matrix and generate modulated PDSCH symbols.

codewordBits = randi([0,1],enb.PDSCH.CodedTrBlkSizes(1),1);

pdschSym = ltePDSCH(enb,enb.PDSCH,codewordBits);

Decode and plot the PDSCH symbols.

[rxCodewords,rxSymbols] = ltePDSCHDecode(enb,enb.PDSCH,pdschSym);

plot (rxSymbols{:},'k.')
title('decoded PDSCH symbols')

Show size and first 5 elements of output codewords to be modulated, rxCws, and received symbols,
symbols.

size_rxCodewords = size(rxCodewords{:})

 ltePDSCHDecode

2-613

size_rxCodewords = 1×2

 504 1

rxCodewords{1}(1:1:5)

ans = 5×1

 0.9487
 0.9487
 -0.3162
 0.3162
 0.3162

size_rxSymbols = size(rxSymbols{:})

size_rxSymbols = 1×2

 126 1

rxSymbols{1}(1:5)

ans = 5×1 complex

 -0.9487 - 0.9487i
 -0.3162 + 0.9487i
 -0.3162 - 0.9487i
 -0.3162 - 0.3162i
 0.9487 - 0.9487i

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required
or Optional

Values Description

NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative

scalar integer
Subframe number

CellRefP Required 1, 2, 4 Number of cell-specific reference signal
(CRS) antenna ports

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

2 Functions

2-614

Parameter Field Required
or Optional

Values Description

The following parameters are dependent upon the condition that DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5,

6
Uplink–downlink configuration

  SSC Optional 0 (default), 1, 2, 3, 4, 5,
6, 7, 8, 9

Special subframe configuration (SSC)

The following parameter fields are dependent upon the condition that chs.TxScheme is set to 'SpatialMux'
or 'MultiUser'.
  NDLRB Required Scalar integer from 6 to

110
Number of downlink resource blocks (NRB

DL)

  CFI Required 1, 2, or 3
Scalar or if the CFI
varies per subframe, a
vector of length 10
(corresponding to a
frame).

Control format indicator (CFI) value. In TDD
mode, CFI varies per subframe for the
RMCs ('R.0', 'R.5', 'R.6',
'R.6-27RB', 'R.12-9RB')

  CyclicPrefix Optional 'Normal' (default),
'Extended'

Cyclic prefix length

chs — Channel-specific transmission configuration
structure

Channel-specific transmission configuration, specified as a structure that can contain the following
parameter fields.

Parameter Field Required
or Optional

Values Description

Modulation Required 'QPSK', '16QAM',
'64QAM', '256QAM',
'1024QAM'

Modulation type, specified as a character
vector, cell array of character vectors, or
string array. If blocks, each cell is associated
with a transport block.

RNTI Required 0 (default), scalar
integer

Radio network temporary identifier (RNTI)
value (16 bits)

 ltePDSCHDecode

2-615

Parameter Field Required
or Optional

Values Description

TxScheme Required 'Port0',
'TxDiversity',
'CDD',
'SpatialMux',
'MultiUser',
'Port5', 'Port7-8',
'Port8',
'Port7-14'.

PDSCH transmission scheme, specified as
one of the following options.

Transmission scheme Description
'Port0' Single antenna port, port

0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay

diversity scheme
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port

5
'Port7-8' Single-antenna port, port

7, when NLayers = 1.
Dual layer transmission,
ports 7 and 8, when
NLayers = 2.

'Port8' Single-antenna port, port
8

'Port7-14' Up to eight layer
transmission, ports 7–14

NLayers Required Integer from 1 to 8 Number of transmission layers.
CSI Optional 'Off' (default), 'On' Flag provides control over weighting the soft

values that are used to determine the output
values with the channel state information
(CSI) calculated during the equalization
process. If 'On', soft values are weighted by
CSI.

The following parameters are dependent upon the condition that TxScheme is set to 'SpatialMux' or
'MultiUser'.
  PMISet Required Integer vector with

element values from 0
to 15.

Precoder matrix indication (PMI) set. It can
contain either a single value, corresponding
to single PMI mode, or multiple values,
corresponding to multiple or subband PMI
mode. The number of values depends on
CellRefP, transmission layers and TxScheme.
For more information about setting PMI
parameters, see ltePMIInfo.

2 Functions

2-616

Parameter Field Required
or Optional

Values Description

  PRBSet Required Integer column vector
or two-column matrix

Zero-based physical resource block (PRB)
indices corresponding to the slot wise
resource allocations for this PDSCH. PRBSet
can be assigned as:

• a column vector, the resource allocation
is the same in both slots of the subframe,

• a two-column matrix, this parameter
specifies different PRBs for each slot in a
subframe,

• a cell array of length 10 (corresponding
to a frame, if the allocated physical
resource blocks vary across subframes).

PRBSet varies per subframe for the RMCs
'R.25'(TDD), 'R.26'(TDD), 'R.27'(TDD),
'R.43'(FDD), 'R.44', 'R.45', 'R.48',
'R.50', and 'R.51'.

The following parameters are dependent upon the condition that TxScheme is set to 'Port5', 'Port7-8',
'Port8', or 'Port7-14'.
  W Optional Numeric matrix, []

(default)
NLayers-by-P precoding matrix for the
wideband UE-specific beamforming of the
PDSCH symbols. P is the number of transmit
antennas. When W is not specified, no
precoding is applied.

sym — Complex modulated PDSCH symbols
numeric matrix

Complex modulated PDSCH symbols, specified as a numeric matrix of size NRE-by-NRxAnts. NRE is
the number of QAM symbols per antenna assigned to the PDSCH and NRxAnts is the number of
receive antennas.
Data Types: double
Complex Number Support: Yes

hest — Channel estimate
3-D numeric array | 4-D numeric array

Channel estimate, specified as a 3-D or 4-D numeric array. For the 'Port0', 'TxDiversity',
'SpatialMux', 'CDD', and 'MultiUser' transmission schemes, the array size is NRE-by-NRxAnts-
by-CellRefP, where NRE is the number of QAM symbols per antenna assigned to the PDSCH,
NRxAnts is the number of receive antennas, and CellRefP is the number of cell-specific reference
signal antennas, given by enb.CellRefP. For the 'Port5', 'Port7-8', 'Port8', and
'Port7-14' transmission schemes, the array size is NRE-by-NRxAnts-by-NLayers, where NLayers
is the number of transmission layers given by chs.NLayers.

When rxgrid is supplied, hest is a 4-D numeric array of size M-by-N-by-NRxAnts-by-CellRefP,
where M and N are the number of subcarriers and symbols for one subframe for cell-wide settings,

 ltePDSCHDecode

2-617

enb, NRxAnts is the number of receive antennas, and CellRefP is the number of cell-specific
reference signal antenna ports, given by enb.CellRefP.
Data Types: double

noiseest — Noise estimate
numeric array

Noise estimate of the noise power spectral density per RE on the received subframe, specified as a
numeric array.
Data Types: double

rxgrid — Full received resource grid
numeric array

Full received resource grid, specified as a 3-D M-by-N-by-NRxAnts array of resource elements, where
M and N are the number of subcarriers and symbols for one subframe for cell-wide settings enb and
NRxAnts is the number of receive antennas.
Data Types: double
Complex Number Support: Yes

Output Arguments
cws — Codeword or codewords
cell array

Codeword or codewords, returned as a cell array containing one or two vectors of bit values
corresponding to the one or two codewords to be modulated.
Data Types: double

symbols — Received constellation symbols
cell array of column vectors

Received constellation symbols, returned as a cell array of complex double column vectors, resulting
from performing the inverse of PDSCH processing.
Data Types: cell

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePDSCH | ltePDSCHIndices | ltePDSCHPRBS | lteDLSCHDecode

2 Functions

2-618

https://www.3gpp.org

ltePDSCHIndices
Physical downlink shared channel (PDSCH) resource element indices

Syntax
[ind,info] = ltePDSCHIndices(enb,chs,prbset)
[ind,info] = ltePDSCHIndices(enb,chs,prbset,opts)

Description
[ind,info] = ltePDSCHIndices(enb,chs,prbset) returns a matrix, ind, containing physical
downlink shared channel (PDSCH) resource element (RE) indices and a structure, info, containing
information related to the PDSCH indices. By default, the output indices are a one-based linear
indexed 3D array representing the subframe resource element grid for all antenna ports. You can use
ind to index elements of the subframe resource grid directly for all antenna ports. This function is
initialized with cell-wide settings, enb, channel transmission configuration, chs, and physical
resource block indices, prbset.

prbset contains the physical resource block (PRB) indices corresponding to the resource allocation
for this PDSCH transmission. You can specify prbset as either a column vector or a two-column
matrix. If you specify a column vector, the resource allocation is the same in both slots of the
subframe. If the PRBs in the first and second slots of the subframe differ, you can use the two-column
matrix to specify PRBs. The PRB indices are zero-based.

Each column of the returned N-by-P matrix, ind, contains the per-antenna indices for the N resource
elements in each of the P resource array planes. For the 'Port0', 'TxDiversity', 'CDD',
'SpatialMux', and 'MultiUser' transmission schemes, P = enb.CellRefP. For the other
transmission schemes, P = chs.NTxAnts. If chs.NTxAnts = 0 or is absent, ind is an N-by-NU
matrix containing the per-layer indices for the N resource elements in each of NU resource array
planes. The planes are associated with the layers, where NU = chs.NLayers.

The info structure contains parameter fields G and Gd. info.G provides the appropriate size of the
DL-SCH coder output, which is required as the parameter outlen provided to the lteDLSCH
function. info.Gd is the number of coded and rate-matched DL-SCH data symbols per layer, equal to
the number of rows in the PDSCH indices. To provide accurate information in info, the
Modulation, TxScheme, and Nlayers fields are required in chs.

Note The Modulation and Nlayers fields are required only if the info output is assigned when
you call the function.

[ind,info] = ltePDSCHIndices(enb,chs,prbset,opts) formats the returned indices using
options specified by opts.

Examples

 ltePDSCHIndices

2-619

Generate PDSCH RE Indices

This example generates the 0-based PDSCH resource element (RE) indices mapping in linear index
form for the 4-antenna case.

Create the cell-wide settings structure, enb.

enb = lteRMCDL('R.14');
enb.NDLRB = 6;
enb.CFI = 1;
enb.PDSCH.PRBSet = (1:enb.NDLRB-1).';

Generate PDSCH RE indices, specifying the 0-based and linear options.

ind = ltePDSCHIndices(enb,enb.PDSCH, ...
 enb.PDSCH.PRBSet,{'0based','ind'});
ind(1:10,:)

ans = 10x4 uint32 matrix

 156 1164 2172 3180
 157 1165 2173 3181
 158 1166 2174 3182
 159 1167 2175 3183
 160 1168 2176 3184
 161 1169 2177 3185
 162 1170 2178 3186
 163 1171 2179 3187
 164 1172 2180 3188
 165 1173 2181 3189

The result, ind, is a matrix of 0-based mapping indices in linear index form. Since this is example is
for the 4-antenna case, ind, has 4 columns.

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
CyclicPrefix Optional 'Normal' (default), 'Extended' Cyclic prefix length
CellRefP Required 1, 2, 4 Number of cell-specific reference

signal (CRS) antenna ports
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

2 Functions

2-620

Parameter Field Required or
Optional

Values Description

CFI Required 1, 2, or 3
Scalar or if the CFI varies per
subframe, a vector of length 10
(corresponding to a frame).

Control format indicator (CFI)
value. In TDD mode, CFI varies
per subframe for the RMCs
('R.0', 'R.5', 'R.6',
'R.6-27RB', 'R.12-9RB')

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as one
of the following:

• 'FDD' — Frequency division
duplex (default)

• 'TDD' — Time division duplex
The following apply when DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6, 7, 8, 9 Special subframe configuration

(SSC)

The following table shows enb structure fields only required when the transmission scheme
chs.TxScheme is set to 'Port7-14'.

Parameter Field Required or
Optional

Values Description

NFrame Optional 0 (default), nonnegative scalar
integer

Frame number

CSIRSPeriod Optional 'Off' (default), 'On', Icsi-rs
(0,...,154), [Tcsi-rs Dcsi-rs].
You can also specify values in a
cell array of configurations for
each resource.

CSI-RS subframe configurations
for one or more CSI-RS resources.
Multiple CSI-RS resources can be
configured from a single common
subframe configuration or from a
cell array of configurations for
each resource.

The following CSI-RS resource parameters apply only when CSIRSPeriod sets one or more CSI-RS subframe
configurations to any value other than 'Off'. Each parameter length must be equal to the number of CSI-RS
resources required.
  CSIRSConfig Required Nonnegative scalar integer Array CSI-RS configuration

indices. See TS 36.211, Table
6.10.5.2-1.

  CSIRefP Required 1 (default), 2, 4, 8 Array of number of CSI-RS
antenna ports

 ltePDSCHIndices

2-621

Parameter Field Required or
Optional

Values Description

ZeroPowerCSIRSPeri
od

Optional 'Off' (default), 'On', Icsi-rs
(0,...,154), [Tcsi-rs Dcsi-rs].
You can also specify values in a
cell array of configurations for
each resource.

Zero power CSI-RS subframe
configurations for one or more
zero power CSI-RS resource
configuration index lists. Multiple
zero power CSI-RS resource lists
can be configured from a single
common subframe configuration
or from a cell array of
configurations for each resource
list.

The following zero power CSI-RS resource parameter is only required if one or more of the above zero power
subframe configurations is set to any value other than 'Off'.
  
ZeroPowerCSIRSConf
ig

Required 16-bit bitmap character vector or
string scalar (truncated if not 16
bits or '0' MSB extended), or a
numeric list of CSI-RS
configuration indices. You can also
specify values in a cell array of
configurations for each resource.

Zero power CSI-RS resource
configuration index lists (TS
36.211 Section 6.10.5.2). Specify
each list as a 16-bit bitmap
character vector or string scalar
(if less than 16 bits, then '0' MSB
extended), or as a numeric list of
CSI-RS configuration indices from
TS 36.211 Table 6.10.5.2-1 in the
'4' CSI reference signal column.
Multiple lists can be defined using
a cell array of individual lists.

See [1].

Data Types: struct

chs — PDSCH-specific channel transmission configuration
structure

PDSCH-specific channel transmission configuration, specified as a structure that can contain the
following parameter fields.

2 Functions

2-622

Parameter
Field

Required or
Optional

Values Description

TxScheme Optional 'Port0' (default), 'TxDiversity',
'CDD', 'SpatialMux',
'MultiUser', 'Port5',
'Port7-8', 'Port8', 'Port7-14'.

PDSCH transmission scheme,
specified as one of the following
options.

Transmission
scheme

Description

'Port0' Single antenna port,
port 0

'TxDiversity' Transmit diversity
'CDD' Large delay cyclic

delay diversity scheme
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port,

port 5
'Port7-8' Single-antenna port,

port 7, when
NLayers = 1. Dual
layer transmission,
ports 7 and 8, when
NLayers = 2.

'Port8' Single-antenna port,
port 8

'Port7-14' Up to eight layer
transmission, ports 7–
14

The following parameters apply when TxScheme is set to 'Port5', 'Port7-8', 'Port8', or 'Port7-14'.
  NTxAnts Optional Nonnegative integer, 0 (default) Number of transmission antenna

ports. This argument is present only
for UE-specific demodulation
reference symbols.

To provide accurate information in info, you are required to define TxScheme and the following additional
parameters. These fields are only required when info is output.
  
Modulation

Optional 'QPSK' (default), '16QAM',
'64QAM', '256QAM', '1024QAM'

Codeword modulation format,
specified as a character vector or
string scalar for one codeword, or as
cell array or string array for two
codewords.

  NLayers Optional 1 (default), 2, 3, 4, 5, 6, 7, 8 Number of transmission layers.

The number of layers is dependent on
TxScheme.

 ltePDSCHIndices

2-623

Data Types: struct

prbset — Physical resource block indices
column vector | 2-column numeric matrix

Physical resource block indices, specified as a column vector or a two-column numeric matrix. This
argument contains the Physical Resource Block (PRB) indices corresponding to the resource
allocation for this PDSCH transmission. If you specify a column vector, the resource allocation is the
same in both slots of the subframe. If the PRBs in the first and second slots of the subframe differ, you
can use the two-column matrix to specify PRBs. The PRB indices are zero-based.
Data Types: double

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — Physical downlink shared channel (PDSCH) resource element (RE) indices
matrix

Physical downlink shared channel (PDSCH) resource element (RE) indices, specified as a matrix.
Each column of the N-by-P matrix, ind, contains the per-antenna indices for the N resource elements
in each of the P resource array planes. For the 'Port0', 'TxDiversity', 'CDD', 'SpatialMux',
and 'MultiUser' transmission schemes, P = enb.CellRefP. For the other transmissions schemes,
P = chs.NTxAnts. If chs.NTxAnts = 0 or is absent, the ind matrix is of size N-by-NU. In this case,
indcontains the per-layer indices for the N resource elements in each of NU resource array planes
associated with the layers, where NU = chs.NLayers. You can return the indices in alternative
indexing formats using the argument opts.

Note The active or zero-power CSI-RS resource elements are excluded from the output indices only
for the Release 10/11, 'Port7-14' transmission scheme. For all other schemes, the CSI-RS resource

2 Functions

2-624

element indices are not avoided, which results in a Release 8/9 compatible PDSCH. Any active or
zero-power CSI-RS would overwrite the associated PDSCH REs later in the subframe construction.

info — Information related to PDSCH indices
structure

Information related to PDSCH indices, returned as a structure. To provide accurate information in
info, the channel transmission configuration structure, chs, must contain the fields TxScheme,
Modulation, and NLayers. The structure info has the following fields.

Parameter Field Description Values Data Type
G Number of coded and rate-

matched DL-SCH data bits
for each codeword.

one or two element vector uint32

Gd Number of coded and rate-
matched DL-SCH data
symbols per layer.

Integer equal to the
number of rows in the
PDSCH indices

uint32

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePDSCH | ltePDSCHDecode | ltePDSCHPRBS

 ltePDSCHIndices

2-625

https://www.3gpp.org

ltePDSCHPRBS
PDSCH pseudorandom scrambling sequence

Syntax
[seq,cinit] = ltePDSCHPRBS(enb,rnti,cwIndex,n)
[seq,cinit] = ltePDSCHPRBS(enb,rnti,cwIndex,n,mapping)

[subseq,cinit] = ltePDSCHPRBS(enb,rnti,cwIndex,pn)
[subseq,cinit] = ltePDSCHPRBS(enb,rnti,cwIndex,pn,mapping)

Description
[seq,cinit] = ltePDSCHPRBS(enb,rnti,cwIndex,n) returns a column vector containing the
first n outputs of the Physical Downlink Shared Channel (PDSCH) scrambling sequence. It also
returns an initialization value cinit for the pseudorandom binary sequence (PRBS) generator. The
function is initialized according to cell-wide settings, enb, 16-bit rnti, and cwIndex, indicating
which codeword this sequence scrambles.

[seq,cinit] = ltePDSCHPRBS(enb,rnti,cwIndex,n,mapping) allows control over the format
of the returned sequence seq with the input mapping.

[subseq,cinit] = ltePDSCHPRBS(enb,rnti,cwIndex,pn) returns a subsequence of a full
PRBS sequence, specified by pn.

[subseq,cinit] = ltePDSCHPRBS(enb,rnti,cwIndex,pn,mapping) allows additional control
over the format of the returned subsequence, subseq, with the input mapping

Examples

Scramble Codeword Using PDSCH PRBS

Scramble the contents of a codeword using the PDSCH scrambling sequence.

Create cell-wide configuration structure for reference channel R.0, get PDSCH indices, and a create
codeword.

enb = lteRMCDL('R.0');
pdsch = enb.PDSCH;
[~,pdschInfo] = ltePDSCHIndices(enb,pdsch,pdsch.PRBSet);
codedTrBlkSize = pdschInfo.G;
cw = randi([0 1],codedTrBlkSize,1);

Generate PDSCH scrambling sequence, and scramble the codeword using the PDSCH scrambling
sequence.

RNTI = 11;
ncw = 0;
pdschPrbsSeq = ltePDSCHPRBS(enb,RNTI,ncw,length(cw));
scrambled = xor(pdschPrbsSeq, cw);

2 Functions

2-626

Scramble Two Codewords Using PDSCH PRBS

Scramble the contents of two codewords using the PDSCH scrambling sequence. When transmitting
multiple codewords via spatial multiplexing, each codeword uses a different scrambling sequence.

Create cell-wide configuration structure for reference channel R.14, get PDSCH indices.

rmc.RC = 'R.14';
rmc = lteRMCDL(rmc,2);
pdsch = rmc.PDSCH;
[~,pdschInfo] = ltePDSCHIndices(rmc,pdsch,pdsch.PRBSet);
codedTrBlkSize1 = pdschInfo.G(1);
codedTrBlkSize2 = pdschInfo.G(2);
cws{1} = randi([0 1],codedTrBlkSize1,1);
cws{2} = randi([0 1],codedTrBlkSize2,1);

Generate PDSCH scrambling sequences for two codewords, and scramble the codewords using the
PDSCH scrambling sequences.

RNTI = 11;
ncw = 0;
pdschPrbsSeq1 = ltePDSCHPRBS(rmc,RNTI,ncw,length(cws{1}));
ncw = 1;
pdschPrbsSeq2 = ltePDSCHPRBS(rmc,RNTI,ncw,length(cws{2}));
scrambled1 = xor(pdschPrbsSeq1, cws{1});
scrambled2 = xor(pdschPrbsSeq2, cws{2});

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure. enb contains the following fields.

NCellID — Physical layer cell identity
nonnegative integer

Physical layer cell identity, specified as a nonnegative integer.
Data Types: double

NSubframe — Subframe number
nonnegative integer

Subframe number, specified as a nonnegative integer.
Data Types: double

Data Types: struct

rnti — Radio network temporary identifier
nonnegative integer

Radio network temporary identifier, specified as nonnegative integer.

 ltePDSCHPRBS

2-627

Data Types: double

cwIndex — Codeword index
0 | 1

Codeword index, specified as a 0 or 1. This input indicates which codeword this sequence scrambles.
Data Types: double

n — Length of scrambling sequence
positive integer

Length of scrambling sequence, specified as a positive integer.
Data Types: double

pn — Range of scrambling subsequence
row vector

Range of scrambling subsequence, subseq, specified as a row vector of [p n]. The subsequence
returns n values of the PRBS generator, starting at position p (0-based).
Data Types: double

mapping — Output sequence formatting
'binary' (default) | 'signed'

Output sequence formatting, specified as 'binary' or 'signed'. mapping controls the format of
the returned sequence.

• 'binary' maps true to 1 and false to 0.
• 'signed' maps true to –1 and false to 1.

Data Types: char | string

Output Arguments
seq — PDSCH scrambling sequence
logical column vector | numeric column vector

PDSCH scrambling sequence, returned as a logical column vector or a numeric column vector. seq
argument contains the first n outputs of the PDSCH pseudorandom scrambling sequence. If mapping
is set to 'signed', seq is a vector of data type double. Otherwise, it is a vector of data type logical.
Data Types: logical | double

subseq — PDSCH scrambling subsequence
logical column vector | numeric column vector

PDSCH scrambling subsequence, returned as a logical column vector or a numeric column vector.
subseq contains the values of the PRBS generator specified by pn. If you set mapping to 'signed',
the output data type is double. Otherwise, the output data type is logical
Data Types: logical | double

cinit — Initialization value for PRBS generator
numeric scalar

2 Functions

2-628

Initialization value for PRBS generator, returned as a numeric scalar.
Data Types: uint32

Version History
Introduced in R2014a

See Also
ltePDSCH | ltePDSCHDecode | ltePDSCHIndices

 ltePDSCHPRBS

2-629

ltePHICH
Physical hybrid ARQ indicator channel

Syntax
[sym] = ltePHICH(enb,hiset)
[sym,info] = ltePHICH(enb,hiset)

Description
[sym] = ltePHICH(enb,hiset) returns a matrix, sym, of symbols generated by the set of physical
hybrid ARQ indicator channels (PHICH) in a subframe, given the cell-wide settings configuration
structure, enb, and HARQ indicator set, hiset. For more information, see “PHICH Generation” on
page 2-635.

[sym,info] = ltePHICH(enb,hiset) also returns an info structure, containing control
resourcing information about the output symbols.

Examples

Generate PHICH Symbols

Generate physical HARQ indicator channel (PHICH) symbols for three different HARQ indicator (HI)
sets. An HI set is comprised of the PHICH group index number, the sequence number within the
group, and an ACK/NACK.

Create a cell-wide settings configuration structure with a single antenna (enb.CellRefP=1), normal
CP, fifty downlink resource blocks (enb.NDLRB=50), and a one sixth HICH group multiplier
(enb.Ng='Sixth'). For this system configuration, 16 PHICH are available. The available PHICH are
split between two groups of eight sequences. The sequences are mapped to info.NRE=24 resource
elements. Calling lteRMCDL with RMC R.7 provides the desired configuration structure.

Generate PHICH symbols with various HI set configurations.

PHICH Symbols for Empty HI Set

Generate ltePHICH output for an empty HI set.

enb = lteRMCDL('R.7');
[sym,info] = ltePHICH(enb,[])

sym = 24×1 complex

 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i

2 Functions

2-630

 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 ⋮

info = struct with fields:
 NREG: 6
 NRE: 24
 NPHICH: 16
 NGroups: 2
 NMappingUnits: 2
 NSequences: 8
 PHICHDuration: 1
 ActiveHISet: []

sizeSym = size(sym)

sizeSym = 1×2

 24 1

ltePHICH returns an NRE-by-CellRefP matrix of zeros. The transmission configuration is one
antenna, as shown by the second dimension of the sym matrix. The info output structure is
populated based on inputs to ltePHICH.

PHICH Symbols for Single HI Set

Modulate a NACK (hi=0) onto the third orthogonal sequence (nSeq=2) of the second group
(nGroup=1). Generate PHICH symbols specifying the HI set as [nGroup=1 nSeq=2 hi=0].

enb = lteRMCDL('R.7');
sym = ltePHICH(enb,[1 2 0])

sym = 24×1 complex

 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 ⋮

sizeSym = size(sym)

sizeSym = 1×2

 24 1

The result remains an NRE-by-CellRefP matrix.

 ltePHICH

2-631

PHICH Symbols for Multiple HI Sets

For the second PHICH, add an ACK (hi=1) on the last sequence (nSeq=7) of the first group
(nGroup=0). Generate PHICH symbols specifying the HI sets as [[nGroup=1 nSeq=2 hi=0];
[nGroup=0 nSeq=7 hi=1]].

enb = lteRMCDL('R.7');
[sym,info] = ltePHICH(enb,[[1 2 0];[0 7 1]])

sym = 24×1 complex

 0.7071 - 0.7071i
 0.7071 - 0.7071i
 -0.7071 + 0.7071i
 0.7071 - 0.7071i
 0.7071 - 0.7071i
 -0.7071 + 0.7071i
 -0.7071 + 0.7071i
 -0.7071 + 0.7071i
 -0.7071 + 0.7071i
 -0.7071 + 0.7071i
 ⋮

info = struct with fields:
 NREG: 6
 NRE: 24
 NPHICH: 16
 NGroups: 2
 NMappingUnits: 2
 NSequences: 8
 PHICHDuration: 1
 ActiveHISet: [2x3 double]

sizeSym = size(sym)

sizeSym = 1×2

 24 1

The result remains an NRE-by-CellRefP matrix.

Input Arguments
enb — Cell-wide settings
scalar structure

Cell-wide settings, specified as a scalar structure. enb contains the following fields.

NDLRB — Number of downlink resource blocks
positive integer

Number of downlink resource blocks, specified as a positive integer.
Data Types: double

2 Functions

2-632

NCellID — Physical layer cell identity
nonnegative integer

Physical layer cell identity, specified as a nonnegative integer.
Data Types: double

CellRefP — Number of cell-specific reference signal antenna ports
1 | 2 | 4

Number of cell-specific reference signal antenna ports, specified as 1, 2, or 4.
Data Types: double

CyclicPrefix — Cyclic prefix length
'Normal' (default) | optional | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

NSubframe — Subframe number
nonnegative integer

Subframe number, specified as a nonnegative integer.
Data Types: double

Ng — HICH group multiplier
'Sixth' | 'Half' | 'One' | 'Two'

HICH group multiplier, specified as 'Sixth', 'Half', 'One', or 'Two'.
Data Types: char | string

DuplexMode — Duplex mode
'FDD' (default) | optional | 'TDD'

Duplex mode, specified as 'FDD' or 'TDD'.
Data Types: char | string

TDDConfig — Uplink or downlink configuration
0 (default) | optional | 1 | 2 | 3 | 4 | 5 | 6

Uplink or downlink configuration, specified as a nonnegative scalar integer from 0 through 6. This
argument is only required if DuplexMode is set to 'TDD'.
Data Types: double

Data Types: struct

hiset — HARQ indicator set
numeric matrix | []

HARQ indicator set, specified as an R-by-3 numeric matrix. R is the number of rows. Each row of
hiset defines a single PHICH in terms of [nGroup,nSeq,hi].

 ltePHICH

2-633

• nGroup is the PHICH group index number.
• nSeq is the sequence index number within the group.
• hi is 1 or 0 representing hybrid ARQ indicator ACK or NACK, respectively.

The nGroup and nSeq indices are zero-based. For more information, see “PHICH Generation” on
page 2-635.
Data Types: double
Complex Number Support: Yes

Output Arguments
sym — PHICH symbols
numeric matrix

PHICH symbols, returned as an NRE-by-CellRefP numeric matrix. NRE is the number of resource
elements, and CellRefP is the number of cell-specific reference signal antenna ports. Each column
of sym contains the per-antenna symbols for the combined set of PHICHs. The output matrix, sym,
always contains info.NRE symbols to map into the total PHICH resource allocation, even if less than
the full set of NPHICH channels are configured. For more information, see “PHICH Generation” on
page 2-635.
Data Types: double
Complex Number Support: Yes

info — PHICH subframe resourcing information about output symbols
scalar structure

PHICH subframe resourcing information about the output symbols, returned as a scalar structure.
info contains the following fields. For background on the info structure, see ltePHICHInfo.

NREG — Number of resource element groups assigned to all PHICH
positive integer

Number of resource element groups assigned to all PHICH, returned as a positive integer.
Data Types: uint64

NRE — Number of resource elements assigned to all PHICH
positive integer

Number of resource elements assigned to all PHICH, returned as a positive integer.
Data Types: uint64

NPHICH — Number of individual PHICH available
positive integer

Number of individual PHICH available, returned as a positive integer.
Data Types: uint64

NGroups — Number of PHICH groups
positive integer

Number of PHICH groups, returned as a positive integer.

2 Functions

2-634

Data Types: int8

NMappingUnits — Number of PHICH mapping units
positive integer

Number of PHICH mapping units, returned as a positive integer.
Data Types: int8

NSequences — Number of orthogonal sequences in each PHICH group
positive integer

Number of orthogonal sequences in each PHICH group, returned as a positive integer.
Data Types: int8

PHICHDuration — PHICH duration
integer

PHICH duration, returned as an integer.
Data Types: int8

ActiveHISet — Active HARQ indicator set
matrix | []

Active HARQ indicator set, returned as an N-by-3 matrix. N is the number of rows with a valid hiset
defined. ActiveHISet contains only rows that define a valid HARQ indicator set, even if the input
hiset has rows in which NGroup ≥ info.NGroups. If hiset is empty, ActiveHISet is returned as
an empty matrix, [].
Data Types: int8

Data Types: struct

More About
PHICH Generation

The physical hybrid ARQ indicator channel (PHICH) processing includes the stages of BPSK
modulation, orthogonal sequence spreading, scrambling, resource element group (REG) alignment,
layer mapping, precoding, PHICH group summation, and mapping unit creation. For details, see TS
36.211 [1], Section 6.9.

The control region of a subframe can contain up to info.NPHICH separate PHICH, each carrying a
single hybrid ARQ (HARQ) acknowledgment (ACK), or negative acknowledgment (NACK). Settings in
the enb structure define NPHICH.

The input hiset specifies an R-by-3 matrix, configuring individual PHICH that are combined in the
output. R is the number of rows. Each row of hiset defines a single PHICH in terms of
[nGroup,nSeq,hi]. In the info structure fields, the following conditions apply for the sets of
hybrid indicators defined:

• nGroup < info.NGroups
• nSeq < info.NSequences

 ltePHICH

2-635

To generate PHICH symbol, ltePHICH uses the rows of hiset in which nGroup < info.NGroups.
These rows are present in info.ActiveHISet. Any other rows present in hiset are ignored.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePHICHDecode | ltePHICHPrecode | ltePHICHIndices | ltePHICHInfo | ltePHICHPRBS

2 Functions

2-636

https://www.3gpp.org

ltePHICHDecode
Physical hybrid ARQ indicator channel decoding

Syntax
[hi,symbols] = ltePHICHDecode(enb,hires,sym)
[hi,symbols] = ltePHICHDecode(enb,hires,sym,hest,noiseest)
[hi,symbols] = ltePHICHDecode(enb,hires,sym,hest,noiseest,alg)

Description
[hi,symbols] = ltePHICHDecode(enb,hires,sym) performs the inverse of Physical Hybrid
ARQ Indicator Channel (PHICH) processing given the cell-wide settings structure, enb, PHICH
resources, hires, and the matrix of PHICH symbols, sym. It returns a column vector of hybrid ARQ
indicator values, hi, and the received symbol constellation matrix, symbols. The channel inverse
processing includes deprecoding, descrambling, despreading and symbol demodulation. For details,
see TS 36.211 [1], Section 6.9 and ltePHICH.

[hi,symbols] = ltePHICHDecode(enb,hires,sym,hest,noiseest), where hest contains
the channel estimate, and noiseest contains the noise estimate.

• For the TxDiversity transmission scheme (CellRefP=2 or 4), the reception is performed using
an Orthogonal Space Frequency Block Code (OSFBC) decoder.

• For the 'Port0' transmission scheme (CellRefP=1), the reception is performed using MMSE
equalization.

[hi,symbols] = ltePHICHDecode(enb,hires,sym,hest,noiseest,alg), where specifying
alg provides control over weighting the soft values that are used to determine hi with the channel
state information (CSI) calculated during the equalization process.

Examples

Decode HARQ

Decode the HARQ bits given PHICH symbols. Two HARQ bits are encoded into PHICH symbols using
an hiset matrix, where each row is used to define an individual PHICH. The generated PHICH
symbols are then decoded with the same parameters used to define the PHICHs in the encoder.

Using lteRMCDL to create a cell-wide settings configuration structure with RMC R.1, initializes
relevant parameters for this example.

rc = 'R.1';
enb = lteRMCDL(rc);

Define the hiset input and generate PHICH symbols. First PHICH: [nGroup=1 nSeq=1 hi=1],
second PHICH: [nGroup=1 nSeq=2 hi=0].

hiset = [1 1 1; 1 2 0];
phichSym = ltePHICH(enb,hiset);

 ltePHICHDecode

2-637

Define the hires input. PHICH resources: same as the encoder, first PHICH: [nGroup=1 nSeq=1],
second PHICH: [nGroup=1 nSeq=2].

hires = [1 1; 1 2];

Decode the PHICH.

hi = ltePHICHDecode(enb,hires,phichSym);

Check decoded hi bits are the same as encoded bits.

isequal(hi,hiset(:,3))

ans = logical
 1

Input Arguments
enb — Cell-wide settings
scalar structure

Cell-wide settings, specified as a scalar structure. enb is a structure having the following fields.

Parameter Field Required or
Optional

Values Description

NCellID Required Integer from 0 to 503 Physical layer cell identity
CellRefP Required 1, 2, 4 Number of cell-specific

reference signal (CRS) antenna
ports

NSubframe Required 0 (default), nonnegative scalar
integer

Subframe number

CyclicPrefix Optional 'Normal' (default),
'Extended'

Cyclic prefix length

Data Types: struct

hires — PHICH resources
numeric matrix

PHICH resources, specified as an R-by-2 numeric matrix. This matrix configures up to NPHICH
individual PHICH for decoding by ltePHICHDecode. Each row of hires defines a single PHICH in
terms of [nGroup,nSeq], where nGroup is the PHICH group index number and nSeq is the
sequence index number. These indices are zero-based.

Each row of output, hi, represents the received Hybrid ARQ indicator values for the PHICH defined
in the corresponding row of hires. Similarly, each row of the output, symbols, contains the three
received symbols (after despreading) for the corresponding row of hires.

In terms of ltePHICHInfo info structure fields, the following conditions apply:
nGroup < info.NGroups
nSeq < info.NSequences

2 Functions

2-638

Rows of hires with nGroup ≥ info.NGroups are ignored and output for these rows in hi and
symbols is set to zero.
Data Types: double
Complex Number Support: Yes

sym — Complex modulated PHICH symbols
numeric matrix

Complex modulated PHICH symbols, specified as an NRE-by-NRxAnts numeric matrix of PHICH
symbols. NRE is the number of BPSK symbols per antenna assigned to the PHICH, and NRxAnts is the
number of receive antennas. Even if less than the full set of NPHICH channels were configured,
ensure the sym input matrix contains info.NRE symbols corresponding to the total PHICH resource
allocation. Use ltePHICHInfo to view the info structure fields.
Data Types: double
Complex Number Support: Yes

hest — Channel estimate
3-D numeric array

Channel estimate, specified as an NRE-by-NRxAnts-by-enb.CellRefP numeric array, where:

• NRE are the frequency and time locations corresponding to the PCFICH RE positions (a total of
NRE positions).

• NRxAnts is the number of receive antennas.
• enb.CellRefP is the number of cell-specific reference signal antennas.

Data Types: double
Complex Number Support: Yes

noiseest — Noise estimate
numeric scalar

Noise estimate, specified as a numeric scalar. This input argument is an estimate of the noise power
spectral density per RE on received subframe. Such an estimate is provided by the
lteDLChannelEstimate function.
Data Types: double

alg — Weighting algorithm
structure

Weighting algorithm, specified as a structure. This input argument controls weighting output soft
bits, bits, with CSI. alg contains the following fields.

 ltePHICHDecode

2-639

Parameter Field Required or
Optional

Values Description

CSI Optional 'On' (default), 'Off' Flag provides control over
weighting the soft values that
are used to determine the
output values with the channel
state information (CSI)
calculated during the
equalization process. If 'On',
soft values are weighted by CSI.

Data Types: struct

Output Arguments
hi — Hybrid ARQ indicator values
numeric column vector

Hybrid ARQ indicator values, returned as a numeric column vector. Each row represents the received
Hybrid ARQ indicator values for the PHICH defined in the corresponding row of hires.
Data Types: double

symbols — Received symbols
numeric matrix

Received symbols, returned as a numeric matrix. Each row contains the received constellation
symbols (after despreading) for the corresponding row of hires.
Data Types: double
Complex Number Support: Yes

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePHICH | ltePHICHDeprecode | ltePHICHIndices | ltePHICHInfo | ltePHICHPRBS |
ltePHICHTransmitDiversityDecode

2 Functions

2-640

https://www.3gpp.org

ltePHICHDeprecode
PHICH deprecoding

Syntax
out = ltePHICHDeprecode(in,cp,ngroup)
out = ltePHICHDeprecode(enb,ngroup,in)

Description
out = ltePHICHDeprecode(in,cp,ngroup) performs deprecoding of the N-by-P matrix of
antennas, in, onto NU=P layers, given cyclic prefix length, cp, and PHICH group, ngroup. N is the
number of symbols per antenna. It performs PHICH deprecoding using matrix pseudoinversion to
undo the processing described in TS 36.211, Section 6.9.2 [1]. This function returns out, an M-by-NU
matrix, where NU is the number of transmission layers and M is the number of symbols per layer.

out = ltePHICHDeprecode(enb,ngroup,in) performs deprecoding of the N-by-P matrix of
antennas, in, onto NU=P layers, for PHICH group, ngroup, using the cell-wide settings structure,
enb.

Examples

Deprecode PHICH symbols2

This example shows the deprecoding of a set of physical HARQ indicator channel (PHICH) symbols
for reference measurement channel (RMC) R.11.

Initialize a cell-wide parameter configuration structure, enb, for RMC R.11.

rc = 'R.11';
enb = lteRMCDL(rc);
nLayers = enb.PDSCH.NLayers;

Generate an arbitrary set of input symbols as the PHICH symbols.

phichSym = reshape(lteSymbolModulate(randi([0,1],40*nLayers*2,1), ...
 'QPSK'),40,nLayers);

Precode the PHICH symbols using normal cyclic prefix (setting for enb.CyclicPrefix as per R.11)
and PHICH group 1.

nGroup = 1;
precodedSym = ltePHICHPrecode(phichSym,enb.CyclicPrefix,nGroup);

Deprecode the precoded PHICH symbols using normal cyclic prefix and PHICH group 1.

out = ltePHICHDeprecode(precodedSym,enb.CyclicPrefix,nGroup);

Check PHICH symbols vs. deprecoded PHICH symbols.

isequal(phichSym,out)

 ltePHICHDeprecode

2-641

ans = logical
 1

Input Arguments
in — Precoded input symbols
complex-valued numeric matrix

Precoded input symbols, specified as a complex-valued numeric matrix of antennas. It has size N-by-
P, where N is the number of symbols per antenna and P is the number of antennas. The number of
input symbols, N, must be a multiple of the number of antennas, P.
Data Types: double
Complex Number Support: Yes

cp — Cyclic prefix length
'Normal' | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

ngroup — PHICH group number
positive scalar integer (≥1)

PHICH group number, specified as a positive scalar integer of 1 or more.
Data Types: double

enb — Cell-wide settings
scalar structure

Cell-wide settings, specified as a scalar structure. enb contains the following fields.

Parameter Field Require
d or
Optiona
l

Values Description

CyclicPrefix Optional 'Normal' (default),
'Extended'

Cyclic prefix length

Data Types: struct

Output Arguments
out — Deprecoded output symbols
numeric matrix

Deprecoded output symbols, returned as a numeric matrix. It has size M-by-NU, where M is the
number of symbols per layer and NU is the number of transmission layers.
Data Types: double
Complex Number Support: Yes

2 Functions

2-642

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePHICHPrecode | ltePHICHIndices | ltePHICHInfo | ltePHICHPRBS |
ltePHICHTransmitDiversityDecode | lteLayerDemap | ltePHICHDecode

 ltePHICHDeprecode

2-643

https://www.3gpp.org

ltePHICHIndices
PHICH resource element indices

Syntax
ind = ltePHICHIndices(enb)
ind = ltePHICHIndices(enb,opts)

Description
ind = ltePHICHIndices(enb) returns the subframe resource element (RE) indices, ind, for the
Physical Hybrid-ARQ Indicator Channels (PHICH), given the parameter fields of cell-wide settings
structure, enb. By default, the number of rows of ind is the number of resource elements (NRE), and
ind is an NRE-by-CellRefP matrix of indices in a one-based linear indexing style. These indices can
directly index elements of an N-by-M-by-CellRefP array that represents the subframe resource grid
across CellRefP antenna ports. Each column of ind identifies the same set of NRE resource
elements, but with indices offset to select them in a different antenna “page” of the 3-D resource
array.

The indices returned are for all PHICH groups in a subframe, where the number of groups depends
on the bandwidth and PHICH Ng parameter. See ltePHICHInfo for details. The indices are ordered
as the modulation symbols should be mapped for the set of consecutive PHICH groups. The PHICH
resources are normally all assigned in the first OFDM symbol of a subframe, unless the PHICH
duration is of the extended type.

ind = ltePHICHIndices(enb,opts) formats the returned indices using options specified by
opts.

Examples

Generate PHICH Indices

Generate PHICH resource element (RE) indices in linear form and resource element group (REG)
indices in subscript form.

Get one-based PHICH resource element (RE) indices in linear form.

enb = lteRMCDL('R.14');
enb.NDLRB = 6;
indOneBased = ltePHICHIndices(enb,{'ind','re'})

indOneBased = 12x4 uint32 matrix

 8 1016 2024 3032
 9 1017 2025 3033
 11 1019 2027 3035
 12 1020 2028 3036
 26 1034 2042 3050
 27 1035 2043 3051
 29 1037 2045 3053

2 Functions

2-644

 30 1038 2046 3054
 50 1058 2066 3074
 51 1059 2067 3075
 ⋮

Get zero-based PHICH resource element group (REG) indices in subscript form, where each column
of ind corresponds to a dimension of the 3-D resource grid array: subcarrier, OFDM symbol, and
antenna port.

indZeroBased = ltePHICHIndices(enb,{'0based','sub','reg'})

indZeroBased = 12x3 uint32 matrix

 6 0 0
 24 0 0
 48 0 0
 6 0 1
 24 0 1
 48 0 1
 6 0 2
 24 0 2
 48 0 2
 6 0 3
 ⋮

Input Arguments
enb — Cell-wide settings
scalar structure

Cell-wide settings, specified as a scalar structure. enb can contain the following fields. The
TDDConfig and NSubframe parameter fields are only required if DuplexMode is set to 'TDD'.

NDLRB — Number of downlink resource blocks
positive integer

Number of downlink resource blocks, specified as a positive integer.
Data Types: double

NCellID — Physical layer cell identity
nonnegative integer

Physical layer cell identity, specified as a nonnegative integer.
Data Types: double

CyclicPrefix — Cyclic prefix length
'Normal' (default) | optional | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

 ltePHICHIndices

2-645

CellRefP — Number of cell-specific reference signal antenna ports
1 | 2 | 4

Number of cell-specific reference signal antenna ports, specified as 1, 2, or 4.
Data Types: double

Ng — HICH group multiplier
'Sixth' | 'Half' | 'One' | 'Two'

HICH group multiplier, specified as 'Sixth', 'Half', 'One', or 'Two'.
Data Types: char | string

PHICHDuration — PHICH duration
'Normal' (default) | optional | 'Extended'

PHICH duration, specified as 'Normal' or 'Extended'.
Data Types: char | string

DuplexMode — Duplex mode
'FDD' (default) | optional | 'TDD'

Duplex mode, specified as 'FDD' or 'TDD'.
Data Types: char | string

TDDConfig — Uplink or downlink configuration
0 (default) | optional | 1 | 2 | 3 | 4 | 5 | 6

Uplink or downlink configuration, specified as a nonnegative scalar integer from 0 through 6. Only
required if DuplexMode is set to 'TDD'.
Data Types: double

NSubframe — Subframe number
nonnegative integer

Subframe number, specified as a nonnegative integer. Only required if DuplexMode is set to 'TDD'.
Data Types: double

Data Types: struct

opts — Output format, base, and unit of generated indices
character vector | string scalar | cell array of character vectors | string array

Output format, base, and unit of generated indices, specified as one of these forms.

• 'format base unit'
• "format base unit"
• {'format','base','unit'}
• ["format","base","unit"]

Where format, base, and unit are defined in this table.

2 Functions

2-646

Option Values Description
format 'ind' (default), 'sub' Output format of generated indices

To return the indices as a column
vector, specify this option as 'ind'.

To return the indices as an NRE-by-3
matrix, where NRE is the number of
REs, specify this option as 'sub'.
Each row of the matrix contains the
subcarrier, symbol, and antenna
port as its first, second, and third
element, respectively.

base '1based' (default), '0based' Index base

To generate indices whose first
value is 1, specify this option as
'1based'. To generate indices
whose first value is 0, specify this
option as '0based'.

unit 're' (default), 'reg' Unit of returned indices

To indicate that the returned values
correspond to individual resource
elements (REs), specify this option
as 're'. To indicate that the
returned values correspond to
resource element groups (REGs),
specify this option as 'reg'.

Example: 'ind 0based reg', "ind 0based reg", {'ind','0based','reg'}, and
["ind","0based","reg"] specify the same output options.
Data Types: char | string | cell

Output Arguments
ind — PHICH resource element indices
numeric matrix

PHICH resource element indices, returned as a numeric matrix. The size of the matrix is NRE-by-
CellRefP. By default, it contains one-based linear indexing RE indices.
Data Types: uint32

Version History
Introduced in R2014a

 ltePHICHIndices

2-647

See Also
ltePHICH | ltePHICHDecode | ltePHICHPrecode | ltePHICHDeprecode | ltePHICHInfo |
ltePHICHPRBS

2 Functions

2-648

ltePHICHInfo
PHICH resource information

Syntax
info = ltePHICHInfo(enb)

Description
info = ltePHICHInfo(enb) returns a structure, info, containing information about the physical
hybrid ARQ indicator channel (PHICH) subframe resources.

Examples

Get PHICH Resource Information

Get PHIH resource information for normal cyclic prefix system subframe with 50 DL resource blocks
and HICH group multiplier set to 'Sixth'. See that there are 16 PHICH available, split between two
PHICH groups of 8 sequences.

Initialize the cell-wide configuration structure, enb

enb.NDLRB = 50;
enb.Ng = 'Sixth';

Display the PHICH information

info = ltePHICHInfo(enb)

info = struct with fields:
 NREG: 6
 NRE: 24
 NPHICH: 16
 NGroups: 2
 NMappingUnits: 2
 NSequences: 8
 PHICHDuration: 1

Get PHICH Resource Information from RMC

This example shows that for RMC R.14, there are 16 PHICH available, split between two PHICH
groups of 8 sequences.

Initialize the cell-wide configuration structure, enb, using RMC R.14

rc = 'R.14';
enb = lteRMCDL(rc);

 ltePHICHInfo

2-649

Display the PHICH information

info = ltePHICHInfo(enb)

info = struct with fields:
 NREG: 6
 NRE: 24
 NPHICH: 16
 NGroups: 2
 NMappingUnits: 2
 NSequences: 8
 PHICHDuration: 1

Input Arguments
enb — eNodeB cell-wide settings
scalar structure

eNodeB cell-wide settings, specified as a structure containing these parameter fields.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource
blocks (NRB

DL)
CyclicPrefix Optional 'Normal' (default),

'Extended'
Cyclic prefix length

Ng Required 'Sixth', 'Half', 'One',
'Two'

HICH group multiplier

PHICHDuration Optional Nonnegative scalar integer PHICH duration
DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as

either:

• 'FDD' for Frequency
Division Duplex

• 'TDD' for Time Division
Duplex

The following parameters are dependent upon the condition that DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

Output Arguments
info — PHICH subframe resource information
scalar structure

PHICH subframe resource information, returned as a scalar structure. info contains the following
fields.

2 Functions

2-650

Parameter Field Description Values Data Type
NRE Number of resource

elements (REs) assigned to
all PHICH

Nonnegative scalar integer uint64

NREG Number of resource
element groups assigned
to all PHICH

Nonnegative scalar integer uint64

NPHICH Number of individual
PHICH available

Nonnegative scalar integer uint64

NGroups Number of PHICH groups Nonnegative scalar integer int8
NMappingUnits Number of PHICH

mapping units
Nonnegative scalar integer int8

NSequences Number of orthogonal
sequences in each PHICH
group

Nonnegative scalar integer int8

PHICHDuration PHICH duration Nonnegative scalar integer int8

The control region of a subframe can contain up to NPHICH separate PHICHs with each carrying a
single hybrid ARQ ACK or NACK. Multiple PHICHs can be mapped to the same set of resource
elements through PHICH groups. Each PHICH in a group is carried on one of NSequences
orthogonal sequences. For mapping to resources, the groups are combined into mapping units where
each unit spans three resource element groups. Thus, NREG is 3×NMappingUnits and NRE is
4×3×NMappingUnits. The Ng parameter controls the number of groups available for a given
bandwidth.

Version History
Introduced in R2014a

See Also
ltePHICH | ltePHICHDecode | ltePHICHPrecode | ltePHICHDeprecode | ltePHICHIndices |
ltePHICHPRBS | ltePHICHTransmitDiversityDecode

 ltePHICHInfo

2-651

ltePHICHPRBS
PHICH pseudorandom scrambling sequence

Syntax
[seq,cinit] = ltePHICHPRBS(enb,n)
[seq,cinit] = ltePHICHPRBS(enb,n,mapping)

[subseq,cinit] = ltePHICHPRBS(enb,pn)
[subseq,cinit] = ltePHICHPRBS(enb,pn,mapping)

Description
[seq,cinit] = ltePHICHPRBS(enb,n) returns the first n outputs of the Physical Hybrid ARQ
Indicator Channel (PHICH) scrambling sequence when initialized according to cell-wide settings
structure, enb. It also returns an initialization value cinit for the pseudorandom binary sequence
(PRBS) generator.

[seq,cinit] = ltePHICHPRBS(enb,n,mapping) allows control over the format of the returned
sequence, seq, with the input mapping.

[subseq,cinit] = ltePHICHPRBS(enb,pn) returns a subsequence of a full PRBS sequence,
specified by pn.

[subseq,cinit] = ltePHICHPRBS(enb,pn,mapping) allows additional control over the format
of the returned subsequence, subseq, with the input mapping.

Examples

Generate PHICH Pseudorandom Scrambling Sequence

Create a cell-wide configuration structure initialing for RMC R.0. Generate the pseudorandom
scrambling sequence for the PHICH.

enb = lteRMCDL('R.0');
phichInfo = ltePHICHInfo(enb);
phichPrbsSeq = ltePHICHPRBS(enb,phichInfo.NRE);
numRE = phichInfo.NRE

numRE = uint64
 12

size(phichPrbsSeq)

ans = 1×2

 12 1

Using RMC R.0 results in 12 BPSK modulated symbols, where one bit per symbol is mapped onto a
single resource element (RE).

2 Functions

2-652

Input Arguments
enb — Cell-wide settings
scalar structure

Cell-wide settings, specified as a scalar structure. enb contains the following fields.

NCellID — Physical layer cell identity
nonnegative integer

Physical layer cell identity, specified as a nonnegative integer.
Data Types: double

NSubframe — Subframe number
nonnegative integer

Subframe number, specified as a nonnegative integer.
Data Types: double

Data Types: struct

n — Length of PHICH scrambling sequence
positive integer

Length of PHICH scrambling sequence, specified as a positive integer.
Data Types: double

pn — Range of PHICH scrambling subsequence
row vector

Range of PHICH scrambling subsequence, subseq, specified as a row vector of [p n]. The
subsequence returns n values of the PRBS generator, starting at position p (0-based).
Data Types: double

mapping — Output sequence formatting
'binary' (default) | 'signed'

Output sequence formatting, specified as 'binary' or 'signed'. mapping controls the format of
the returned sequence.

• 'binary' maps true to 1 and false to 0.
• 'signed' maps true to –1 and false to 1.

Data Types: char | string

Output Arguments
seq — PHICH pseudorandom scrambling sequence
logical column vector | numeric column vector

PHICH pseudorandom scrambling sequence, returned as a logical column vector or a numeric
column vector. This argument contains the first n outputs of the PHICH scrambling sequence. If

 ltePHICHPRBS

2-653

mapping is set to 'signed', seq is a vector of data type double. Otherwise, it is a vector of data
type logical.
Data Types: logical | double

subseq — PHICH pseudorandom scrambling subsequence
logical column vector | numeric column vector

PHICH pseudorandom scrambling subsequence, returned as a logical column vector or a numeric
column vector. subseq contains the values of the PRBS generator specified by pn. If you set mapping
to 'signed', the output data type is double. Otherwise, the output data type is logical.
Data Types: logical | double

cinit — Initialization value for PRBS generator
numeric scalar

Initialization value for PRBS generator, returned as a numeric scalar.
Data Types: uint32

Version History
Introduced in R2014a

See Also
ltePHICH | ltePHICHDecode | ltePHICHPrecode | ltePHICHDeprecode | ltePHICHIndices |
ltePHICHInfo | ltePHICHTransmitDiversityDecode

2 Functions

2-654

ltePHICHPrecode
PHICH precoding

Syntax
out = ltePHICHPrecode(in,cp,ngroup)
out = ltePHICHPrecode(enb,ngroup,in)

Description
out = ltePHICHPrecode(in,cp,ngroup) precodes the N-by-NU matrix of layers, in, onto P=NU
antennas, given cyclic prefix length, cp, and PHICH group, ngroup. It performs PHICH precoding
according to TS 36.211, Section 6.9.2 [1]. This function returns an M-by-P matrix, where P is the
number of transmission antennas and M is the number of symbols per antenna.

out = ltePHICHPrecode(enb,ngroup,in) precodes the N-by-NU matrix of layers, in, onto
P=NU antennas for PHICH group, ngroup, using the cell-wide settings structure, enb.

Examples

Precode PHICH symbols

This example shows precoding of an arbitrary set of PHICH symbols for reference measurement
channel (RMC) R.11, PHICH group 1.

Initialize a cell-wide parameter configuration structure, enb, for RMC R.11.

rc = 'R.11';
enb = lteRMCDL(rc);
nLayers = enb.PDSCH.NLayers;

Generate an arbitrary set of input symbols as the PHICH symbols.

phichSym = reshape(lteSymbolModulate(randi([0,1],40*nLayers*2,1), ...
 'QPSK'),40,nLayers);

Precode the PHICH symbols using normal cyclic prefix (set in enb.CyclicPrefix as per R.11), and
PHICH group 1.

nGroup = 1;
precodedSym = ltePHICHPrecode(phichSym ,enb.CyclicPrefix, nGroup);

Have a peek at the first 5 precoded symbols of the output, columns represent the number of transmit
antennas, for this example there are two transmit antennas.

precodedSym(1:5, :)

ans = 5×2 complex

 -0.5000 - 0.5000i -0.5000 - 0.5000i
 0.5000 - 0.5000i -0.5000 + 0.5000i

 ltePHICHPrecode

2-655

 0.5000 - 0.5000i 0.5000 - 0.5000i
 -0.5000 - 0.5000i 0.5000 + 0.5000i
 -0.5000 + 0.5000i 0.5000 + 0.5000i

Input Arguments
in — PHICH input symbols
complex-valued numeric matrix

PHICH input symbols, specified as a complex-valued numeric matrix. in is a matrix of N-by-NU
layers.
Data Types: double
Complex Number Support: Yes

cp — Cyclic prefix length
'Normal' | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

ngroup — PHICH group
positive scalar integer

PHICH group number, specified as a positive scalar integer of 1 or more.
Data Types: double

enb — Cell-wide settings
scalar structure

Cell-wide settings, specified as a scalar structure. enb can contain the following field.

Parameter Field Require
d or
Optiona
l

Values Description

CyclicPrefix Optional 'Normal' (default),
'Extended'

Cyclic prefix length

Data Types: struct

Output Arguments
out — Precoded output
numeric matrix

Precoded output, returned as a numeric matrix of size M-by-P. M is the number of symbols per
antenna and P is the number of transmission antennas.
Data Types: double
Complex Number Support: Yes

2 Functions

2-656

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePHICHDeprecode | ltePHICHIndices | ltePHICHInfo | ltePHICHPRBS | lteLayerMap |
ltePHICH

 ltePHICHPrecode

2-657

https://www.3gpp.org

ltePHICHTransmitDiversityDecode
PHICH OSFBC decoding

Syntax
[out,CSI]=ltePHICHTransmitDiversityDecode(in,cp,ngroup,hest)

Description
[out,CSI]=ltePHICHTransmitDiversityDecode(in,cp,ngroup,hest) returns Orthogonal
Space Frequency Block Code (OSFBC) decoded symbols, out, and channel state information, CSI,
given received PHICH symbols, in, along with cyclic prefix length, cp, PHICH resource group
number, ngroup, and, channel estimate, hest.

Examples

Deprecode PHICH Symbols

Generate the PHICH symbols for multiple antennas using RMC R.11.

Initialize cell-wide settings for RMC R.11.

enb = lteRMCDL('R.11');
phichInfo = ltePHICHInfo(enb);
hiset = [1,1,1;1,2,0];
phichSym = ltePHICH(enb,hiset);

Create an ideal, or identity, channel estimate.

hest = permute(repmat(eye(enb.CellRefP),[1,1,phichInfo.NRE]),[3,1,2]);

Deprecode the received symbols, using the channel estimates.

ng = phichInfo.NGroups;
out = ltePHICHTransmitDiversityDecode(phichSym,enb.CyclicPrefix,ng,hest)

out = 24×1 complex

 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 0.0000 + 0.0000i
 ⋮

2 Functions

2-658

Input Arguments
in — Received PHICH symbols
numeric matrix

Received PHICH symbols, specified as a numeric matrix of size M-by-NRxAnts, where M is the
number of received symbols for each of NRxAnts receive antennas.
Data Types: double
Complex Number Support: Yes

cp — Cyclic prefix length
'Normal' | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

ngroup — PHICH group number
positive scalar integer (≥1)

PHICH group number, specified as a positive scalar integer of 1 or more.
Data Types: double
Complex Number Support: Yes

hest — Channel estimate
3-D numeric array

Channel estimate, specified as an M-by-NRxAnts-by-NTxAnts numeric array. M is the number of
received symbols in in, NRxAnts is the number of receive antennas, and NTxAnts is the number of
transmit antennas.
Data Types: double
Complex Number Support: Yes

Output Arguments
out — OSFBC decoded symbols
numeric matrix

OSFBC decoded symbols, returned as a numeric matrix of size M-by-1, where M is the number of
received symbols for each receive antenna.
Data Types: double
Complex Number Support: Yes

CSI — Soft channel state information
numeric matrix

Soft channel state information, returned as a numeric matrix of size M-by-1. It provides an estimate
of the received RE gain for each received RE.
Data Types: double
Complex Number Support: Yes

 ltePHICHTransmitDiversityDecode

2-659

Version History
Introduced in R2014a

See Also
ltePHICH | ltePHICHIndices | ltePHICHInfo | ltePHICHPRBS | ltePHICHDecode |
ltePHICHDeprecode

2 Functions

2-660

ltePMIInfo
Precoder matrix indication reporting information

Syntax
info = ltePMIInfo(enb,chs)

Description
info = ltePMIInfo(enb,chs) returns a precoder matrix indication (PMI) reporting information
structure, given structures containing cell-wide settings, and the channel transmission configuration
settings. For more information, see TS 35.213 [1].

Examples

PMI Reporting Information

Get the PMI reporting information for RMC R.13.

enb = lteRMCDL('R.13');
pmiInfo = ltePMIInfo(enb, enb.PDSCH)

pmiInfo = struct with fields:
 k: 50
 NSubbands: 1
 MaxPMI: 15
 CodebookSubsetSize: 16

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a scalar structure. The structure contains the following fields:

Parameter
Field

Require
d or
Optiona
l

Values Description

NDLRB Required Scalar integer from 6 to
110

Number of downlink resource blocks (NRB
DL)

CellRefP Optional 1 (default), 2, 4 Number of cell-specific reference signal (CRS)
antenna ports

The following parameter applies when chs.TxScheme is set to Port7-14.
  CSIRefP Optional 1 (default), 2, 4, 8 Array of number of CSI-RS antenna ports

 ltePMIInfo

2-661

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing the following fields.

Parameter
Field

Require
d or
Optiona
l

Values Description

PMIMode Optional 'Wideband' (default),
'Subband'

PMI reporting mode. PMIMode='Wideband'
corresponds to PUSCH reporting Mode 1-2 or
PUCCH reporting Mode 1-1 (PUCCH Report
Type 2) and PMIMode='Subband' corresponds
to PUSCH reporting Mode 3-1.

NLayers Optional Integer from 1 to 8

Default number of layers
is 1.

Number of transmission layers.

TxScheme Optional 'Port0',
'TxDiversity', 'CDD',
'SpatialMux' (default),
'MultiUser', 'Port5',
'Port7-8', 'Port8',
'Port7-14'.

PDSCH transmission scheme, specified as one
of the following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay

diversity scheme
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7,

when NLayers = 1. Dual
layer transmission, ports 7
and 8, when NLayers = 2.

'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer

transmission, ports 7–14

The following parameter applies when 'Port7-14' transmission scheme with CSIRefP equal to 4,
or for 'Port7-8' or 'Port8' transmission scheme with CellRefP equal to 4.
  
AltCodebook
4Tx

Optional 'Off' (default), 'On' If set to 'On', enables the alternative codebook
for CSI reporting with four antennas defined in
TS 36.213, Tables 7.2.4-0A to 7.2.4-0D. The
default is 'Off'.
(alternativeCodeBookEnabledFor4TX-r12)

2 Functions

2-662

Data Types: struct

Output Arguments
info — Information related to PMI reporting
structure

Information related to PMI reporting, returned as a structure containing these fields:

Parameter
Field

Description Values

k Subband size, in resource blocks (equal to NRB for
wideband PMI reporting or transmission schemes without
PMI reporting).

numeric scalar

NSubbands Number of subbands for PMI reporting (equal to 1 for
wideband PMI reporting) or transmission schemes without
PMI reporting.

numeric scalar

MaxPMI Maximum permitted PMI value for the given configuration.
Valid PMI values range from 0 to MaxPMI. For CSI
reporting, when CSIRefP = 8, or for CSI reporting with
the alternative codebook for four antennas,MaxPMI is a 2–
element vector, indicating the maximum permissible values
of i1 and i2, the first and second codebook indices. For
transmission schemes without PMI reporting, MaxPMI = 0.

nonnegative numeric
scalar

CodeBookSubs
etSize

Size of the codebook subset restriction bitmap. For
transmission schemes without PMI reporting,
CodebookSubsetSize=0.

scalar

info.NSubbands can be used to determine the correct size of the vector PMISet required for
closed-loop spatial multiplexing operation; PMISet should be a column vector with info.NSubbands
rows. For CSI reporting with CSIRefP = 8, or for CSI reporting with the alternative codebook for
four antennas, info.NSubbands indicates the number of second codebook indices, i2, in the report.
The first codebook index, i1, is always chosen in a wideband fashion, and is therefore a scalar. The
PMI reporting mode is set with chs.PMIMode.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer

procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePMISelect | ltePDSCH | ltePDSCHDecode | lteDLPrecode | lteCSICodebook

 ltePMIInfo

2-663

https://www.3gpp.org

ltePMISelect
PDSCH precoder matrix indicator calculation

Syntax
[pmiset,info,sinrs,subbandsinrs] = ltePMISelect(enb,chs,hest,noiseest)

Description
[pmiset,info,sinrs,subbandsinrs] = ltePMISelect(enb,chs,hest,noiseest) performs
PDSCH precoder matrix indication (PMI) set calculation for the given cell-wide settings, enb, channel
configuration structure, chs, channel estimate resource array, hest, and receiver noise variance,
noiseest. For more information, see “PMI Selection” on page 2-670.

Examples

PMI Selection

This example shows PMI selection and configuration of a downlink transmission with the selected
PMI set.

Populate an empty resource grid for RMC R.13 with cell specific reference signal symbols. OFDM
modulate the grid to create txWaveform. Initialize channel configuration structure. Pass
txWaveform through channel and demodulate rxWaveform to recover rxSubframe

enb = lteRMCDL('R.13');
enb.PDSCH.PMIMode = 'Subband';
reGrid = lteResourceGrid(enb);
reGrid(lteCellRSIndices(enb)) = lteCellRS(enb);

[txWaveform,info] = lteOFDMModulate(enb,reGrid);

chcfg.SamplingRate = info.SamplingRate;
chcfg.DelayProfile = 'EPA';
chcfg.NRxAnts = 4;
chcfg.DopplerFreq = 5;
chcfg.MIMOCorrelation = 'Low';
chcfg.InitTime = 0;
chcfg.Seed = 1;

rxWaveform = lteFadingChannel(chcfg,txWaveform);
rxSubframe = lteOFDMDemodulate(enb,rxWaveform);

Initialize channel estimation structure. Perform channel estimation. Use estimates of the channel and
noise power spectral density for PMI selection. This PMI set is then used to configure a downlink
transmission.

cec.FreqWindow = 1;
cec.TimeWindow = 31;
cec.InterpType = 'cubic';

2 Functions

2-664

cec.PilotAverage = 'UserDefined';
cec.InterpWinSize = 1;
cec.InterpWindow = 'Centered';

[hest, noiseEst] = lteDLChannelEstimate(enb,cec,rxSubframe);

pmi = ltePMISelect(enb,enb.PDSCH,hest,noiseEst)

pmi = 9×1

 1
 1
 6
 2
 12
 12
 12
 12
 12

enb.PDSCH.PMISet = pmi;
txWaveform = lteRMCDLTool(enb,[1;0;0;1]);

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure containing the following fields:

Parameter
Field

Required
or
Optional

Values Description

NDLRB Required Scalar integer from 6 to
110

Number of downlink resource blocks (NRB
DL)

NCellID Required Integer from 0 to 503 Physical layer cell identity
CellRefP Optional 1 (default), 2, 4 Number of cell-specific reference signal (CRS)

antenna ports
CyclicPrefix Optional 'Normal' (default),

'Extended'
Cyclic prefix length

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

The following parameters apply when DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration
  SSC Optional 0 (default), 1, 2, 3, 4, 5, 6,

7, 8, 9
Special subframe configuration (SSC)

The following parameters apply when DuplexMode is set to 'TDD' or chs.TxScheme is set to 'Port7-14'

 ltePMISelect

2-665

Parameter
Field

Required
or
Optional

Values Description

  NSubframe Required 0 (default), nonnegative
scalar integer

Subframe number

The following parameters apply when chs.TxScheme is set to 'Port7-14' transmission scheme.
  CSIRefP Required 1, 2, 4 Array of number of CSI-RS antenna ports
  
CSIRSConfig

Required Scalar integer Array CSI-RS configuration indices. See TS 36.211,
Table 6.10.5.2-1.

  
CSIRSPeriod

Optional 'On' (default), 'Off',
Icsi-rs (0,...,154),
[Tcsi-rs Dcsi-rs]. You
can also specify values in a
cell array of configurations
for each resource.

CSI-RS subframe configurations for one or more
CSI-RS resources. Multiple CSI-RS resources can be
configured from a single common subframe
configuration or from a cell array of configurations
for each resource.

  Nframe Optional 0 (default), nonnegative
scalar integer

Frame number

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing the following fields:

Parameter
Field

Required
or
Optional

Values Description

NLayers Required Integer from 1 to 8 Number of transmission layers.
PMIMode Optional 'Wideband' (default),

'Subband'
PMI reporting mode. PMIMode='Wideband'
corresponds to PUSCH reporting Mode 1-2 or
PUCCH reporting Mode 1-1 (PUCCH Report Type 2)
and PMIMode='Subband' corresponds to PUSCH
reporting Mode 3-1.

2 Functions

2-666

Parameter
Field

Required
or
Optional

Values Description

TxScheme Optional 'Port0', 'TxDiversity',
'CDD', 'SpatialMux'
(default), 'MultiUser',
'Port5', 'Port7-8',
'Port8', 'Port7-14'.

PDSCH transmission scheme, specified as one of the
following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay

diversity scheme
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7,

when NLayers = 1. Dual
layer transmission, ports 7
and 8, when NLayers = 2.

'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer

transmission, ports 7–14

CodebookSubs
et

Optional Character vector, string
scalar, or integer vector, all
ones (default)

Codebook subset restriction, specified as a character
vector or string scalar bitmap. The default values
are all ones, permitting all PMI values. This
parameter is configured by higher layers and
indicates the values of PMI that can be reported.
The bitmap, defined in TS 36.213, Section 7.2, is
arranged a_A-1,a_A-2,...a_0. For example, the
element CodebookSubset(1) corresponds to a_A-1
and the element CodebookSubset(end) corresponds
to a_0. The length of the bitmap is given by the
info.CodebookSubsetSize field returned by
ltePMIInfo. You can also specify the bitmap in a
hexadecimal form by adding the prefix '0x'.
Alternatively, you can specify a numeric array
identical to the pmiset output, indicating to restrict
the selection to only those pmiset values.
Specifying the parameter in this way enables you to
obtain SINR estimates against an existing reported
PMI for RI and CQI selection. If this parameter field
is defined but is empty, no codebook subset
restriction is applied.
(codebookSubsetRestriction)

The following parameter applies for 'Port7-14' transmission scheme with CSIRefP equal to 4, or for
'Port7-8' or 'Port8' transmission scheme with CellRefP equal to 4.

 ltePMISelect

2-667

Parameter
Field

Required
or
Optional

Values Description

  
AltCodebook4
Tx

Optional 'Off' (default), 'On' If set to 'On', enables the alternative codebook for
CSI reporting with four antennas defined in TS
36.213, Tables 7.2.4-0A to 7.2.4-0D. The default is
'Off'. (alternativeCodeBookEnabledFor4TX-r12)

Data Types: struct

hest — Channel estimate
multidimensional array

Channel estimate, specified as a multidimensional array of size K-by-L-by-NRxAnts-by-P where:

• K is the number of subcarriers.
• L is the number of OFDM symbols.
• NRxAnts is the number of received antennas.
• P is the number of planes.

Data Types: double

noiseest — Receiver noise variance
numeric scalar

Receiver noise variance, specified as a numeric scalar. This input argument specifies an estimate of
the received noise power spectral density.
Data Types: double

Output Arguments
pmiset — PMI set selected
column vector | integer

Precoder matrix indications (PMI) set selected, returned as a column vector or an integer.

• For the 'Port7-14' transmission scheme with eight CSI-RS ports, or for CSI reporting with the
alternative codebook for four antennas, pmiset has info.NSubbands + 1 rows. The first row
indicates wideband codebook index i1. The subsequent info.NSubbands rows indicate the
subband codebook indices i2 or if info.NSubbands = 1, the wideband codebook index i2.

• For other numbers of CSI-RS ports in the 'Port7-14' transmission scheme, and for other
transmission schemes, pmiset has info.NSubbands rows. Each row gives the subband
codebook index for that subband.

• For wideband reporting (info.NSubbands = 1), pmiset is a scalar specifying the selected
wideband codebook index.

Note pmiset is empty if the noise estimate, noiseest, is zero or NaN, or if the channel estimate,
hest, contains any NaNs in the locations of the reference signal REs used for PMI estimation.

2 Functions

2-668

info — Information related to PMI reporting
structure

Information related to PMI reporting, returned as a scalar structure. info contains the following
fields:

Parameter Field Description Values
k Subband size, in resource blocks (equal to NRB for wideband PMI

reporting or transmission schemes without PMI reporting).
numeric scalar

NSubbands Number of subbands for PMI reporting (equal to 1 for wideband
PMI reporting) or transmission schemes without PMI reporting.

numeric scalar

MaxPMI Maximum permitted PMI value for the given configuration. Valid
PMI values range from 0 to MaxPMI. For CSI reporting, when
CSIRefP = 8, or for CSI reporting with the alternative codebook
for four antennas,MaxPMI is a 2–element vector, indicating the
maximum permissible values of i1 and i2, the first and second
codebook indices. For transmission schemes without PMI
reporting, MaxPMI = 0.

nonnegative numeric
scalar

CodeBookSubse
tSize

Size of the codebook subset restriction bitmap. For transmission
schemes without PMI reporting, CodebookSubsetSize=0.

scalar

sinrs — Signal-to-interference plus noise ratios
multidimensional array

Signal to interference plus noise ratios, returned as a multidimensional array of size K-by-L-by-N1-by-
N2, where:

• K is the number of subcarriers
• L is the number of OFDM symbols
• Definition of N1 and N2 depends on the CSI-RS ports:

• For the 'Port7-14' transmission scheme with eight CSI-RS ports, or for CSI reporting with
the alternative codebook for four antennas, N1 and N2 are the number of possible first and
second codebook indices:

• N1 is info.MaxPMI(1) + 1
• N2 is info.MaxPMI(2) + 1

• For other numbers of CSI-RS ports in the 'Port7-14' transmission scheme, and for other
transmission schemes:

• N1 is 1
• N2 is info.MaxPMI + 1

The array contains non-NaN values in the time and frequency locations (first two dimensions) of the
reference signal REs. This array is used for PMI estimation for all possible codebook indices (last two
dimensions). These values are the calculated sinrs in the reference signal RE locations for each
codebook index combination. You can obtain the values using a linear MMSE SINR metric. All
locations not corresponding to a reference signal RE are set to NaN.

subbandsinrs — Subband signal-to-interference plus noise ratios
multidimensional array

 ltePMISelect

2-669

Subband signal-to-interference plus noise ratios (sinrs), returned as an info.NSubbands-by-N1-by-
N2-by-chs.NLayers array. This array indicates the average linear SINR in the subband specified for
each possible PMI value (N1 and N2 dimensions) and each layer. The sinrs output is formed by
summing a 5–dimensional K-by-L-by-N1-by-N2-by-chs.NLayers estimate of the sinrs across all the
layers. subbandsinrs is formed by averaging that same five-dimensional estimate across each
subband that is in the appropriate region of the K dimension and across the L dimension.
Dimensionality described in sinrs applies here.

More About
PMI Selection

PDSCH precoder matrix indication (PMI) selection calculates a PMI set, pmiset. Functions, such as
lteRMCDLTool or ltePDSCH, can use the returned pmiset to configure the PMI for downlink
transmissions they generate. PMI selection is performed using the PMI definitions specified in TS
36.213, Section 7.2.4.

• The CSI reporting codebook is used for:

• 'Port7-14' transmission scheme with eight CSI-RS ports
• CSI reporting with the alternative codebook for four antennas

(alternativeCodeBookEnabledFor4TX -r12 = true).
• The codebook for closed-loop spatial multiplexing, defined in TS 36.211 Tables 6.3.4.2.3-1 and

6.3.4.2.3-2, is used for other cases.

The PMI feedback type associated with the PMI selection process can be wideband or subband:

• PMIMode = 'Wideband' corresponds to PUSCH reporting Mode 1-2 or PUCCH reporting Mode
1-1 (PUCCH Report Type 2).

• PMIMode = 'Subband' corresponds to PUSCH reporting Mode 3-1.

PMI selection is based on the rank indicated by chs.NLayers, except for 'TxDiversity'
transmission scheme, where the rank is 1. In PUCCH reporting Mode 1-1, you can achieve codebook
subsampling for submode 2, as specified in TS 36.213, Table 7.2.2-1D, with an appropriate
chs.CodebookSubset.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

2 Functions

2-670

https://www.3gpp.org
https://www.3gpp.org

See Also
ltePDSCH | ltePDSCHDecode | lteDLPrecode | ltePMIInfo | lteCSICodebook | lteCQISelect
| lteRISelect

 ltePMISelect

2-671

ltePRACH
Physical random access channel

Syntax
[waveform,info]=ltePRACH(ue,chs)

Description
[waveform,info]=ltePRACH(ue,chs) returns a column vector, waveform, containing complex
symbols of the Physical Random Access Channel given UE-specific settings structure, ue, and
channel transmission configuration structure, chs. PRACH information is returned in a structure,
info, as described in ltePRACHInfo. waveform contains the time-domain PRACH signal spanning
info.TotSubframes, as described in TS 211, Section 5.7 [2]. The waveform consists of a period of
zeros (for the case of a time offset or Preamble Format 4), a cyclic prefix, the “useful” part of the
PRACH signal, and a period of zeros to extend the waveform to span info.TotSubframes. The
duration of the PRACH is a function of the Preamble Format as described in TS 36.211, Table 5.7.1-1
[2]. Depending on the configuration given in ue and chs, it is possible that no PRACH are generated;
in this case info.PRBSet is empty to signal this condition, and waveform consists of all zeros. The
conditions under which no PRACH are generated are described in the help for ltePRACHInfo.

chs.PreambleIdx can be a vector in the functions ltePRACHInfo and ltePRACHDetect. This
assists with modelling of an eNodeB receiver searching for multiple preambles. However, this
function, ltePRACH only generates a single PRACH and therefore chs.PreambleIdx should be a
scalar. If chs.PreambleIdx is a vector, the first element is used.

By default, for the given ue.NULRB, the waveform output, is sampled at the same sampling rate as
other uplink channels (PUCCH, PUSCH, and SRS) using the lteSCFDMAModulate modulator.

If the value of chs.PreambleIdx is such that an insufficient quantity of cyclic shifts are available at
the configured logical root index, chs.SeqIdx, the logical root index number needs to be
incremented. As such, the physical root used, info.RootSeq, differs from the physical root
configured by chs.SeqIdx. The cyclic shift corresponding to chs.PreambleIdx can be found in
info.CyclicShift. For High Speed mode, when info.CyclicShift = –1, the PRACH waveform
is generated with no cyclic shift.

Examples

Generate PRACH Symbols

This example generates PRACH symbols of format 0 in an ue.NULRB=6 bandwidth, leaving all other
parameters at their default values.

Initialize ue-specific settings and channel transmission configuration.

ue.DuplexMode = 'FDD';
ue.NULRB = 6;
chs.Format = 0;
chs.HighSpeed = 0;

2 Functions

2-672

chs.CyclicShiftIdx = 0;
chs.FreqOffset = 0;
chs.SeqIdx = 0;
chs.PreambleIdx = [0];

Generate PRACH symbols and PRACH info.

[prachSym,prachInfo] = ltePRACH(ue,chs);
prachInfo

prachInfo = struct with fields:
 NZC: 839
 SubcarrierSpacing: 1250
 Phi: 7
 K: 12
 TotSubframes: 1
 Fields: [0 3168 24576 2976]
 PRBSet: [6x1 double]
 NCS: 0
 CyclicShift: 0
 RootSeq: 129
 SamplingRate: 1920000
 BaseOffset: 0

Analyze PRACH Root Sequence Indices

Analyze physical root Zadoff-Chu sequence indices by generating 64 orthogonal PRACH preambles
for two different PRACH configurations.

Root Sequence Indices with Single Value

Initialize ue-specific settings and channel transmission configuration. Use PRACH symbols of format 0
in an ue.NULRB=6 bandwidth, leaving all other parameters at their default values.

ue.NULRB = 6;
chs.Format = 0;

Set the PRACH logical root sequence index to 0. For this value, the value of the physical root
sequence index is 129, as defined in TS 36.211 Table 5.7.2-4.

chs.SeqIdx = 0;

Set the PRACH cyclic shift configuration index to 1. For this value, each PRACH preamble has a
different cyclic shift value, based on NCS from TS 36.211 Table 5.7.2-2.

chs.CyclicShiftIdx = 1;

Generate 64 PRACH preambles to store the physical root sequence indices and cyclic shift values.

rootSequence1 = NaN(1,64);
cyclicShift1 = NaN(1,64);
for preambleIndex = 0:63
 chs.PreambleIdx = preambleIndex;
 [~,info] = ltePRACH(ue,chs);

 ltePRACH

2-673

 rootSequence1(preambleIndex+1) = info.RootSeq;
 cyclicShift1(preambleIndex+1) = info.CyclicShift;
end

Verify that in each preamble, the physical root sequence index is 129, which is the expected value
from configuring the logical root sequence index to 0.

disp(rootSequence1)

 Columns 1 through 13

 129 129 129 129 129 129 129 129 129 129 129 129 129

 Columns 14 through 26

 129 129 129 129 129 129 129 129 129 129 129 129 129

 Columns 27 through 39

 129 129 129 129 129 129 129 129 129 129 129 129 129

 Columns 40 through 52

 129 129 129 129 129 129 129 129 129 129 129 129 129

 Columns 53 through 64

 129 129 129 129 129 129 129 129 129 129 129 129

Verify that each preamble has a different cyclic shift value.

disp(cyclicShift1)

 Columns 1 through 13

 0 13 26 39 52 65 78 91 104 117 130 143 156

 Columns 14 through 26

 169 182 195 208 221 234 247 260 273 286 299 312 325

 Columns 27 through 39

 338 351 364 377 390 403 416 429 442 455 468 481 494

 Columns 40 through 52

 507 520 533 546 559 572 585 598 611 624 637 650 663

 Columns 53 through 64

 676 689 702 715 728 741 754 767 780 793 806 819

Root Sequence Indices with Different Values

Initialize the same ue-specific settings and channel transmission configuration.

ue.NULRB = 6;
chs.Format = 0;

2 Functions

2-674

Set the PRACH logical root sequence index to 0. For this value, the value of the physical root
sequence index is 129, as defined in TS 36.211 Table 5.7.2-4.

chs.SeqIdx = 0;

Set the PRACH cyclic shift configuration index to 0. For this value, each PRACH premable has the
same cyclic shift value, equal to 0, based on TS 36.211 Table 5.7.2-2.

chs.CyclicShiftIdx = 0;

Generate 64 PRACH preambles to store the physical root sequence indices and cyclic shift values.

rootSequence2 = NaN(1,64);
cyclicShift2 = NaN(1,64);
for preambleIndex = 0:63
 chs.PreambleIdx = preambleIndex;
 [~,info] = ltePRACH(ue,chs);
 rootSequence2(preambleIndex+1) = info.RootSeq;
 cyclicShift2(preambleIndex+1) = info.CyclicShift;
end

Check the physical root sequence indices and cyclic shift values. Even though the logical root
sequence index, chs.SeqIdx, is 0, not every physical root sequence index value is the expected
value of 129. Because the cyclic shift value is zero in each preamble, the function ltePRACH obtains
the physical root sequence indices by taking consecutive logical index values. The returned physical
root sequence indices correspond to logical indices 0 to 63 from TS 36.211 Table 5.7.2-4.

disp(rootSequence2)

 Columns 1 through 13

 129 710 140 699 120 719 210 629 168 671 84 755 105

 Columns 14 through 26

 734 93 746 70 769 60 779 2 837 1 838 56 783

 Columns 27 through 39

 112 727 148 691 80 759 42 797 40 799 35 804 73

 Columns 40 through 52

 766 146 693 31 808 28 811 30 809 27 812 29 810

 Columns 53 through 64

 24 815 48 791 68 771 74 765 178 661 136 703

disp(cyclicShift2)

 Columns 1 through 13

 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 14 through 26

 0 0 0 0 0 0 0 0 0 0 0 0 0

 ltePRACH

2-675

 Columns 27 through 39

 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 40 through 52

 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 53 through 64

 0 0 0 0 0 0 0 0 0 0 0 0

Input Arguments
ue — UE-specific settings
scalar structure

UE-specific settings, specified as a scalar structure. ue can contain the following fields.

Parameter Field Required
or Optional

Values Description

NULRB Required 6, 9, 11, 15, 25, 27, 45,
50, 64, 75, 91, 100

Number of uplink resource blocks. (NRB
UL)

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

The following parameters are applicable when DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5,

6
Uplink–downlink configuration

  SSC Optional 0 (default), 1, 2, 3, 4, 5,
6, 7, 8, 9

Special subframe configuration (SSC)

The following parameter fields is applicable when DuplexMode is set to 'TDD' or when chs.ConfigIdx is
present.
  NSubframe Optional 0 (default), Nonnegative

scalar integer
Subframe number

  NFrame Optional 0 (default), nonnegative
scalar integer

Frame number

The following parameter fields are dependent upon the condition that the Preamble Format (chs.Format) is set
to '4'.
  CyclicPrefix Optional 'Normal' (default),

'Extended'
Cyclic prefix length

Data Types: struct

chs — Channel transmission configuration
scalar structure

2 Functions

2-676

Channel transmission configuration, specified as a scalar structure. chs can contain the following
fields.

Parameter Field Required
or Optional

Values Description

Format Optional 0, 1, 2, 3, 4 (default is
determined by
ConfigIdx field if
present). However, the
Format field must be
specified if the
ConfigIdx field is not
specified.

Preamble format

See Note 1.

SeqIdx Optional Scalar integer from 0
to 837. The default
value is 0.

Logical root sequence index
(RACH_ROOT_SEQUENCE)

ConfigIdx Optional Scalar integer from 0
to 63. The default value
is determined by
Format field, if
present. However, the
ConfigIdx field must
be specified if the
Format field is not
specified.

PRACH Configuration Index (prach-
ConfigurationIndex)

See Note 1.

PreambleIdx Optional Scalar integer or
vector of integers from
0 to 63. The default
value is 0.

Preamble index within cell (ra-
PreambleIndex)

CyclicShiftIdx Optional Scalar integer from 0
to 15. The default value
is 0.

Cyclic shift configuration index
(zeroCorrelationZoneConfig, yields NCS)

HighSpeed Optional 0 (default) or 1 High Speed flag (highSpeedFlag). A value of
1 signifies a restricted set. A value of 0
signifies an unrestricted set.

TimingOffset Optional 0.0 (default), Numeric
scalar

PRACH timing offset, in microseconds

See Note 2.
The following parameters are applicable when ue.DuplexMode is set to 'TDD'.
  FreqIdx Optional 0 (default), 0, 1, 2, 3, 4,

5
Frequency resource index (fRA). Only
required for 'TDD' duplexing mode.

The following parameter fields are dependent upon the condition that the Preamble Format (chs.Format) is
set to 0, 1, 2, or 3.
  FreqOffset Optional Scalar integer from 0

to 94. The default value
is 0.

PRACH frequency offset (nPRBoffset). Only
required for Preamble format 0–3.

 ltePRACH

2-677

Parameter Field Required
or Optional

Values Description

Note

1 Although the parameters chs.Format and chs.ConfigIdx are both described as ‘Optional’, at least one
of these parameters must be specified. If both parameters are present then chs.Format is used and
chs.ConfigIdx is ignored.

2 The parameter chs.TimingOffset is not a genuine parameter of the PRACH generation as defined in the
standard. It is provided to allow easy generation of a delayed PRACH output for use in testing, to simulate
the effect of the distance between UE and eNodeB. The maximum value of chs.TimingOffset that yields
a complete PRACH transmission in the output waveform is a timing offset equal to the duration of the last
field of info.Fields; this timing offset corresponds to the maximum cell size and hence maximum
distance between UE and eNodeB. If this maximum timing offset is exceeded, part of the PRACH signal is
lost. The end of the useful part of the PRACH signal is out with the span of waveform.

Data Types: struct

Output Arguments
waveform — PRACH waveform symbols
complex-valued numeric column vector

PRACH waveform symbols, returned as a complex-valued numeric column vector. It contains the
time-domain PRACH signal spanning info.TotSubframes. It has size N-by-1, where
N = info.TotSubframes × 30720 / 2048 × Nfft, where Nfft is a function of the Number of Resource
Blocks (NRB) given by ue.NULRB.

NRB Nfft

6 128
15 256
25 512
50 1024
75 2048
100 2048

In general, Nfft is the smallest power of 2 greater than or equal to 12×NRB/0.85. It is the smallest
FFT that spans all subcarriers and results in a bandwidth occupancy (12×NRB/Nfft) of no more than
85%.
Data Types: double

info — PRACH information
scalar structure

PRACH information, returned as a scalar structure. It contains the following fields.

NZC — Zadoff-Chu sequence length
positive integer

Zadoff-Chu sequence length, returned as a positive integer. (NZC)

2 Functions

2-678

Data Types: double

SubcarrierSpacing — Subcarrier spacing of PRACH preamble
positive integer

Subcarrier spacing of PRACH preamble, in Hz, returned as a positive integer. (deltaf_RA)
Data Types: double

Phi — Frequency-domain location offset
positive integer

Frequency-domain location offset, returned as a positive integer. (phi)
Data Types: double

K — Ratio of uplink data to PRACH subcarrier spacing
numeric scalar

Ratio of uplink data to PRACH subcarrier spacing, returned as a numeric scalar. (K)
Data Types: double

TotSubframes — Number of subframes duration of PRACH
numeric scalar

Number of subframes duration of the PRACH, returned as a numeric scalar. Each subframe lasts
30720 fundamental periods, therefore TotSubframes is ceil(sum(Fields)/30720), the number
of subframes required to hold the entire PRACH waveform. The duration of the PRACH is a function
of the Preamble Format as described in TS 36.211, Table 5.7.1-1 [2].
Data Types: double

Fields — PRACH field lengths
1-by-4 numeric vector

PRACH field lengths, returned as a 1-by-4 numeric vector. The elements are [OFFSET T_CP T_SEQ
GUARD]. T_CP and T_SEQ are the lengths in fundamental time periods (T_s), of cyclic prefix and
PRACH sequence, respectively. OFFSET is the number of fundamental time periods from the start of
configured subframe to the start of the cyclic prefix, and is nonzero only for TDD special subframes.
GUARD is the number of fundamental time periods from the end of the PRACH sequence to the end of
the number of subframes spanned by the PRACH.
Data Types: double

PRBSet — PRBs occupied by PRACH preamble
nonnegative integer column vector

PRBs occupied by PRACH preamble, returned as a nonnegative integer column vector. (starts at
NPRB, 0-based).

• An empty info.PRBSet indicates that the PRACH is not present and the waveform generated by
ltePRACH consists of all zeros.

• An info.PRBSet that contains six consecutive Physical Resource Block numbers indicates the
frequency domain location of the PRACH.

 ltePRACH

2-679

Note The PRACH uses a different SC-FDMA symbol construction from the other channels (PUCCH,
PUSCH and SRS) and therefore the PRBSet indicates the frequency range (180kHz per RB) that the
PRACH occupies, it does not occupy the set of 12 subcarriers in each RB in the same fashion as other
channels. The PRACH occupies a bandwidth approximately equal to 1.08MHz = 6RBs.

Data Types: uint32

NCS — Length of zero correlation zone plus 1
positive integer

Length of zero correlation zone plus 1, specified as a positive integer (N_CS). NCS corresponds to the
complete extent of autocorrelation lags (0 and N_CS–1 nonzero) that exhibit perfect correlation
properties (1 at 0 lag, 0 at nonzero lags). NCS is expressed directly, as in the standard, related to the
fundamental Zadoff-Chu sequence construction. The actual sample span of the zero correlation zone
in the waveform generated by ltePRACH is a function of the sampling rate.
Data Types: double

CyclicShift — Cyclic shift or shifts of Zadoff-Chu sequence
numeric row vector

Cyclic shift or shifts of Zadoff-Chu sequence, returned as a numeric row vector. (C_v). For High Speed
mode, any element of CyclicShift equal to –1 indicates that there are no cyclic shifts in the
restricted set for the corresponding preamble index.
Data Types: double

RootSeq — Physical root Zadoff-Chu sequence index or indices
numeric row vector

Physical root Zadoff-Chu sequence index or indices, returned as a numeric row vector. (u)
Data Types: double

CyclicOffset — Cyclic shift or shifts corresponding to Doppler Shift
vector

Cyclic shift or shifts corresponding to Doppler Shift of (1/T_SEQ), returned as a vector. This
parameter is present for High Speed mode. (d_u)
Data Types: double

SamplingRate — Sampling rate of PRACH modulator
numeric scalar

Sampling rate of the PRACH modulator, returned as a numeric scalar.
Data Types: double

BaseOffset — Base timing offset
numeric scalar

Base timing offset, in microseconds, returned as a numeric scalar. This parameter field is used for the
detection test in TS 36.104 [1]. (duration of N_CS/2)
Data Types: double

2 Functions

2-680

Data Types: struct

Note Logical root sequence index chs.SeqIdx determines the returned physical root Zadoff-Chu
sequence index RootSeq, based on TS 36.211 Table 5.7.2-4 and Table 5.7.2-5. However, if the
preamble index within the cell, specified by chs.PreambleIdx, results in insufficient amount of
cyclic shifts available at index chs.SeqIdx, the function ltePRACH obtains the physical root
sequence index by taking consecutive logical root sequence indices, following the process described
in TS 36.211 Section 5.7.2. In this case, the value of RootSeq differs from the expected index,
specified by chs.SeqIdx. For an example, see “Analyze PRACH Root Sequence Indices” on page 2-
673.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.104. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio

Transmission and Reception.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and
Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePRACHInfo | ltePRACHDetect

 ltePRACH

2-681

https://www.3gpp.org
https://www.3gpp.org

ltePRACHDetect
Physical random access channel detection

Syntax
[indout,offset] = ltePRACHDetect(ue,chs,waveform,indin)

Description
[indout,offset] = ltePRACHDetect(ue,chs,waveform,indin) performs PRACH detection
given UE-specific settings structure, ue, channel configuration structure, chs, received signal
potentially containing a PRACH transmission, waveform, and range of preamble indices for which to
search, specified in indin. The detector performs each distinct correlation required to cover all
preamble indices, specified in indin, and searches the output of the correlations for peaks which
exceed a detection threshold. The position of the peak in the correlator output is used to determine
the preamble index detected and its associated timing offset. The preamble index and timing offset
are returned in indout and offset respectively. For more information, see “PRACH Detector” on
page 2-685.

Examples

Detect PRACH Preamble

Detect a PRACH preamble which has been delayed by 7 samples.

Initialize configuration structures for ue-specific (ue) and channel (chs) parameters.

ue.NULRB = 6;
ue.DuplexMode = 'FDD';
chs.Format = 0;
chs.CyclicShiftIdx = 1;
chs.PreambleIdx = 44;
chs.HighSpeed = 0;
chs.FreqOffset = 0;
chs.SeqIdx = 0;

Generate transmit waveform containing PRACH. Insert a seven sample delay. Detect the PRACH.

tx = ltePRACH(ue,chs);
rx = [zeros(7,1); tx];
[index,offset] = ltePRACHDetect(ue,chs,rx,(0:63).')

index = 44

offset = 7.1895

The timing offset fractional part is an estimate of the fractional delay present in the correlation peak.
This is due to the cyclic shift present in the PRACH preamble. A cyclic shift in the frequency domain
is a delay in the time domain.

2 Functions

2-682

Input Arguments
ue — UE-specific settings
structure array

UE-specific settings, specified as a structure array. ue contains the following fields.

Parameter Field Required
or
Optional

Values Description

NULRB Required 6, 9, 11, 15, 25, 27, 45,
50, 64, 75, 91, 100

Number of uplink resource blocks. (NRB
UL)

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

The following parameters are dependent upon the condition that DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5,

6
Uplink–downlink configuration

  SSC Optional 0 (default), 1, 2, 3, 4, 5,
6, 7, 8, 9

Special subframe configuration (SSC)

The following parameter fields are dependent upon the condition that DuplexMode is set to 'TDD' or when
chs.ConfigIdx is present.
  NSubframe Optional 0 (default), Nonnegative

scalar integer
Subframe number

  NFrame Optional 0 (default), nonnegative
scalar integer

Frame number

The following parameter fields are dependent upon the condition that the Preamble Format (chs.Format) is
set to '4'.
  CyclicPrefix Optional 'Normal' (default),

'Extended'
Cyclic prefix length

Data Types: struct

chs — Channel transmission configuration
structure array

Channel transmission configuration, specified as a structure array. chs contains the following fields.

 ltePRACHDetect

2-683

Parameter Field Required
or Optional

Values Description

Format Optional 0, 1, 2, 3, 4 (default is
determined by
ConfigIdx field if
present). However, the
Format field must be
specified if the
ConfigIdx field is not
specified.

Preamble format

See Note.

SeqIdx Optional Scalar integer from 0
to 837. The default
value is 0.

Logical root sequence index
(RACH_ROOT_SEQUENCE)

ConfigIdx Optional Scalar integer from 0
to 63. The default value
is determined by
Format field, if
present. However, the
ConfigIdx field must
be specified if the
Format field is not
specified.

PRACH Configuration Index (prach-
ConfigurationIndex)

See Note.

CyclicShiftIdx Optional Scalar integer from 0
to 15. The default value
is 0.

Cyclic shift configuration index
(zeroCorrelationZoneConfig, yields NCS)

HighSpeed Optional 0 (default) or 1 High Speed flag (highSpeedFlag). A value of
1 signifies a restricted set. A value of 0
signifies an unrestricted set.

The following parameters are dependent upon the condition that ue.DuplexMode is set to 'TDD'.
  FreqIdx Optional 0 (default), 0, 1, 2, 3, 4,

5
Frequency resource index (fRA). Only
required for 'TDD' duplexing mode.

The following parameter fields are dependent upon the condition that the Preamble Format (chs.Format) is
set to 0, 1, 2, or 3.
  FreqOffset Optional Scalar integer from 0

to 94. The default value
is 0.

PRACH frequency offset (nPRBoffset). Only
required for Preamble format 0–3.

Note Although the parameters chs.Format and chs.ConfigIdx are both described as ‘Optional’, at least
one of these parameters must be specified. If both parameters are present, then chs.Format is used and
chs.ConfigIdx is ignored.

Data Types: struct

waveform — Received signal potentially containing PRACH transmission
numeric matrix

Received signal potentially containing PRACH transmission, specified as an N-by-P numeric matrix.
This matrix contains the received time-domain signal in which to search for PRACH transmissions. N
is the number of time-domain samples. P is the number of receive antennas.

2 Functions

2-684

Data Types: double
Complex Number Support: Yes

indin — Range of preamble indices within the cell for which to search
column vector

Range of preamble indices within the cell for which to search, specified as a column vector. It can be
from 1 through 64 in length, containing values from 0 through 63.
Data Types: double

Output Arguments
indout — Preamble index
scalar | [], empty

Preamble index, returned as:

• a scalar, if an index from indin results in the maximum correlation above detection threshold.
• an empty,[], if no index from indin results in the maximum correlation above the detection

threshold or the maximum correlation was obtained for an index not included in indin.

Data Types: double

offset — Timing offset
scalar | [], empty

Timing offset expressed in samples at the input sampling rate, returned as:

• a scalar, if an index from indin results in the maximum correlation above detection threshold.
• an empty,[], if no index from indin results in the maximum correlation above the detection

threshold or the maximum correlation was obtained for an index not included in indin.

The timing offset estimate has an integer part corresponding to the correlation peak sample position
and a fractional part estimating the fractional delay present in the correlation peak. The cyclic shift in
the frequency domain present in the PRACH preamble can contribute to this fractional delay.
Data Types: double

More About
PRACH Detector

The detector performs each distinct correlation required to cover all preamble indices, specified in
indin, and searches the output of the correlations for peaks which exceed a detection threshold. The
position of the peak in the correlator output is used to determine the preamble index detected and its
associated timing offset. The preamble index and timing offset are returned in indout and offset
respectively. Generate the input waveform for one transmit antenna with the ltePRACH function.
Generate input waveform with multiple transmit antenna (for example 2 or 4) using one of the
channel model functions, lteFadingChannel, lteHSTChannel, or lteMovingChannel. Any other
waveform provided must be sampled at the same sampling rate that ltePRACH would produce for the
same configuration, specifically the same value of ue.NULRB as configured for the PRACH detector
(ltePRACHDetect). The appropriate sampling rate can be found in the SamplingRate field of the
output of ltePRACHInfo. Except for the case of the appropriate delay to position the transmission of

 ltePRACHDetect

2-685

Preamble Format 4 in the UpPTS for TDD special subframes, it is assumed that any PRACH signal in
waveform is synchronized such that the first sample of waveform corresponds to the start of an
uplink subframe. Therefore, the detector interprets any delay from the start of waveform to the first
sample of the PRACH therein as a timing offset.

The detector first calls info=ltePRACHInfo to establish the set of root sequences info.RootSeq
required to cover all preamble indices in indin. A correlation is then performed for each distinct
value in info.RootSeq, with the inputs to the correlation being the input waveform and a locally
generated PRACH waveform. The correlation is performed in the frequency domain. Multiplication of
the FFT of the useful part of the locally generated PRACH waveform by a portion of the input
waveform extracted with the same timing as the useful part of the locally generated PRACH
waveform, followed by an IFFT to give the correlation. Further fields from info are then used to
establish the length of the window of the correlator output that corresponds to each preamble index,
the zero correlation zone. The detector establishes the preamble index by testing of the position of
the peak in the correlator output to determine if it lies in the window of the correlator output given
by the cyclic shift for each preamble index in turn. The offset within the current window is used to
compute the timing offset.

Version History
Introduced in R2014a

See Also
ltePRACH | ltePRACHInfo

2 Functions

2-686

ltePRACHInfo
PRACH resource information

Syntax
info = ltePRACHInfo(ue,chs)

Description
info = ltePRACHInfo(ue,chs) returns info, a structure containing PRACH resource
information given UE-specific settings, ue, and channel transmission configuration, chs. For more
information, see “PRACH Information” on page 2-692.

Examples

Find Root Zadoff-Chu Sequences from PRACH Information

Find the set of root Zadoff-Chu sequences required for all preamble indices (0,...,63) in a cell.

ue.NULRB = 6;
config.Format = 0;
config.CyclicShiftIdx = 8;
config.PreambleIdx = (0:63);
prachInfo = ltePRACHInfo(ue,config);
unique(prachInfo.RootSeq)

ans = 1×4

 129 140 699 710

Input Arguments
ue — UE-specific settings
structure array

UE-specific settings, specified as a structure array that can contain these parameter fields.

Parameter Field Required
or Optional

Values Description

NULRB Required 6, 9, 11, 15, 25, 27, 45,
50, 64, 75, 91, 100

Number of uplink resource blocks. (NRB
UL)

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

 ltePRACHInfo

2-687

Parameter Field Required
or Optional

Values Description

The following parameters are dependent upon the condition that DuplexMode is set to 'TDD'.
  TDDConfig Optional 0, 1 (default), 2, 3, 4, 5,

6
Uplink–downlink configuration

  SSC Optional 0 (default), 1, 2, 3, 4, 5,
6, 7, 8, 9

Special subframe configuration (SSC)

The following parameter fields are dependent upon the condition that DuplexMode is set to 'TDD' or when
chs.ConfigIdx is present.
  NSubframe Optional 0 (default), Nonnegative

scalar integer
Subframe number

  NFrame Optional 0 (default), nonnegative
scalar integer

Frame number

The following parameter fields are dependent upon the condition that the Preamble Format, chs.Format, is set
to '4'.
  CyclicPrefix Optional 'Normal' (default),

'Extended'
Cyclic prefix length

Data Types: struct

chs — Channel transmission configuration
scalar structure

Channel transmission configuration, specified as a scalar structure that can contain these parameter
fields.

Parameter Field Required
or Optional

Values Description

Format Optional 0, 1, 2, 3, 4 (default is
determined by
ConfigIdx field if
present). However, the
Format field must be
specified if the
ConfigIdx field is not
specified.

Preamble format

See Note.

SeqIdx Optional Scalar integer from 0
to 837. The default
value is 0.

Logical root sequence index
(RACH_ROOT_SEQUENCE)

ConfigIdx Optional Scalar integer from 0
to 63. The default value
is determined by
Format field, if
present. However, the
ConfigIdx field must
be specified if the
Format field is not
specified.

PRACH Configuration Index (prach-
ConfigurationIndex)

See Note.

2 Functions

2-688

Parameter Field Required
or Optional

Values Description

PreambleIdx Optional Scalar integer or
vector of integers from
0 to 63. The default
value is 0.

Preamble index within cell (ra-
PreambleIndex)

CyclicShiftIdx Optional Scalar integer from 0
to 15. The default value
is 0.

Cyclic shift configuration index
(zeroCorrelationZoneConfig, yields NCS)

HighSpeed Optional 0 (default) or 1 High Speed flag (highSpeedFlag). A value of
1 signifies a restricted set. A value of 0
signifies an unrestricted set.

The following parameters are dependent upon the condition that ue.DuplexMode is set to 'TDD'.
  FreqIdx Optional 0 (default), 0, 1, 2, 3, 4,

5
Frequency resource index (fRA). Only
required for 'TDD' duplexing mode.

The following parameter fields are dependent upon the condition that the Preamble Format, chs.Format, is
set to 0, 1, 2, or 3.
  FreqOffset Optional Scalar integer from 0

to 94. The default value
is 0.

PRACH frequency offset (nPRBoffset). Only
required for Preamble format 0–3.

Note Although the parameters chs.Format and chs.ConfigIdx are both described as 'Optional', at
least one of these parameters must be specified. If both parameters are present, then chs.Format is used and
chs.ConfigIdx is ignored.

Data Types: struct

Output Arguments
info — PRACH resource information
scalar structure

PRACH resource information, returned as a scalar structure. info contains the following fields.

NZC — Zadoff-Chu sequence length
positive integer

Zadoff-Chu sequence length, returned as a positive integer. (N_ZC)
Data Types: double

SubcarrierSpacing — Subcarrier spacing of PRACH preamble
positive integer

Subcarrier spacing of PRACH preamble, in Hz, returned as a positive integer. (deltaf_RA)
Data Types: double

Phi — Frequency-domain location offset
positive integer

Frequency-domain location offset, returned as a positive integer. (phi)

 ltePRACHInfo

2-689

Data Types: double

K — Ratio of uplink data to PRACH subcarrier spacing
numeric scalar

Ratio of uplink data to PRACH subcarrier spacing, returned as a numeric scalar. (K)
Data Types: double

TotSubframes — Number of subframes duration of PRACH
numeric scalar

Number of subframes duration of the PRACH, returned as a numeric scalar. Each subframe lasts
30720 fundamental periods, therefore TotSubframes is ceil(sum(Fields)/30720), the number
of subframes required to hold the entire PRACH waveform. The duration of the PRACH is a function
of the Preamble Format as described in TS 36.211, Table 5.7.1-1 [2].
Data Types: double

Fields — PRACH field lengths
1-by-4 numeric vector

PRACH field lengths, returned as a 1-by-4 numeric vector. The elements are [OFFSET T_CP T_SEQ
GUARD]. T_CP and T_SEQ are the lengths in fundamental time periods (T_s), of cyclic prefix and
PRACH sequence, respectively. OFFSET is the number of fundamental time periods from the start of
configured subframe to the start of the cyclic prefix, and is non-zero only for TDD special subframes.
GUARD is the number of fundamental time periods from the end of the PRACH sequence to the end of
the number of subframes spanned by the PRACH.
Data Types: double

PRBSet — PRBs occupied by PRACH preamble
nonnegative integer column vector

PRBs occupied by PRACH preamble, returned as a nonnegative integer column vector. (starts at
n_PRB, zero-based).

• If no PRACH is present, the info.PRBSet field is empty.
• If PRACH is present, the info.PRBSet field contains six consecutive Physical Resource Block

(PRB) indices, indicating the frequency-domain location of the PRACH.

Note The PRACH uses a different SC-FDMA symbol construction from the other channels, PUCCH,
PUSCH, and SRS. Specifically, the PRACH does not occupy the set of 12 subcarriers in each RB in the
same fashion as other channels. Therefore, the PRBSet indicates the frequency range, 180 kHz per
RB, occupied by the PRACH. The PRACH occupies a bandwidth approximately equal to 1.08 MHz, or
6RBs.

Data Types: uint32

NCS — Length of zero correlation zone plus 1
positive integer

Length of zero correlation zone plus 1, specified as a positive integer (NCS). NCS corresponds to the
complete extent of autocorrelation lags (0 and NCS–1 non-zero) that exhibit perfect correlation

2 Functions

2-690

properties (1 at 0 lag, 0 at non-zero lags). NCS is expressed directly, as in the standard, related to the
fundamental Zadoff-Chu sequence construction. The actual sample span of the zero correlation zone
in the waveform generated by ltePRACH is a function of the sampling rate.
Data Types: double

CyclicShift — Cyclic shift or shifts of Zadoff-Chu sequence
numeric row vector

Cyclic shift or shifts of Zadoff-Chu sequence, returned as a numeric row vector. (C_v).

For High Speed mode, any element of CyclicShift equal to –1 indicates that there are no cyclic
shifts in the restricted set for the corresponding preamble index.
Data Types: double

RootSeq — Physical root Zadoff-Chu sequence index or indices
numeric row vector

Physical root Zadoff-Chu sequence index or indices, required to generate the PRACH for each of the
configured set of preamble indices returned as a numeric row vector. (u) RootSeq is either a vector
or a scalar aligned with the configuration of chs.PreambleIdx
Data Types: double

CyclicOffset — Cyclic shift or shifts corresponding to Doppler Shift
vector

CyclicOffset values are cyclic shifts corresponding to a Doppler Shift of 1/T_SEQ (d_u).

For High Speed mode, the field CyclicOffset is present. It contains cyclic offset values for each of
the configured set of preamble indices. CyclicOffset is either a vector or a scalar aligned with the
configuration of chs.PreambleIdx.
Data Types: double

SamplingRate — Sampling rate of PRACH modulator
numeric scalar

Sampling rate of the PRACH modulator, returned as a numeric scalar. The function computes the
sampling rate using the following equation: SamplingRate = 30720000 / 2048 ×Nfft where Nfft is
a function of the Number of Resource Blocks given by ue.NULRB.

NRB Nfft

6 128
15 256
25 512
50 1024
75 2048
100 2048

In general, Nfft is the smallest power of 2 greater than or equal to 12×NRB/0.85. It is the smallest
FFT that spans all subcarriers and results in a bandwidth occupancy (12×NRB/Nfft) of no more than
85%.

 ltePRACHInfo

2-691

Data Types: double

BaseOffset — Base timing offset
numeric scalar

Base timing offset, in microseconds. This field is used for the detection test in TS 36.104 [1].
(duration of NCS/2)
Data Types: double

Data Types: struct

More About
PRACH Information

The parameters “PRACH Mask Index” and “PRACH Resource Index,” described in TS 36.321 [3], are
not explicit in the configuration, but are implicit in the choice of ue.NSubframe and ue.NFrame.

The PRACH is always be generated provided it fits with the overall duplexing arrangement. For FDD,
the PRACH is generated in any subframe. For TDD, the PRACH is generated only in special subframes
for Preamble Format 4, and in uplink subframes for Preamble Format 0-3, provided there are
info.TotSubframes consecutive uplink subframes for the chosen TDD configuration starting from
the current subframe.

If chs.ConfigIdx is present, further validation is used to comply with TS 36.211 [2], Table 5.7.1-2
for FDD and Table 5.7.1-4 for TDD. Specifically, chs.Format, if present, is validated against
chs.ConfigIdx and a preamble is only generated in appropriate frames and subframes. If
chs.Format is absent, the format is inferred, if possible, from chs.ConfigIdx. If the entry in TS
36.211 [2], Table 5.7.1-2 for FDD or Table 5.7.1-4 for TDD indicates “N/A” for the preamble format, an
error is issued.

For TDD, chs.FreqIdx corresponds to the first entry in the quadruples in TS 36.211 [2], Table
5.7.1-4. The other three entries (tRA

(0), tRA
(1), tRA

(2)) in the quadruple are specified by ue.NSubframe and
ue.NFrame.

The PRACH is generated if a combination of chs.ConfigIdx, ue.TDDConfig, tRA
(0), tRA

(1), and tRA
(2)

given by ue.NSubframe, ue.NFrame, and chs.FreqIdx appears in TS 36.211 [2], Table 5.7.1-4.

Note In accordance with this logic,

• if chs.ConfigIdx is absent, ue.NSubframe and ue.NFrame are not required at all for FDD.
• In the case that a preamble is not generated under these rules, info.PRBSet is empty and the

waveform generated by ltePRACH consists of all zeros.

Version History
Introduced in R2014a

2 Functions

2-692

References
[1] 3GPP TS 36.104. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio

Transmission and Reception.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and
Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[3] 3GPP TS 36.214. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer;
Measurements.” 3rd Generation Partnership Project; Technical Specification Group Radio
Access Network. URL: https://www.3gpp.org.

See Also
ltePRACH | ltePRACHDetect

 ltePRACHInfo

2-693

https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org

ltePRBS
Pseudorandom binary sequence

Syntax
[seq,cinit] = ltePRBS(cinit,n)
[seq,cinit] = ltePRBS(cinit,n,mapping)

[subseq,cinit] = ltePRBS(cinit,pn)
[subseq,cinit] = ltePRBS(cinit,pn,mapping)

Description
[seq,cinit] = ltePRBS(cinit,n) returns the first n elements of the pseudorandom binary
sequence (PRBS) generator when initialized with cinit. For uniformity with the channel specific
PRBS functions, ltePRBS also returns the initialization value cinit.

[seq,cinit] = ltePRBS(cinit,n,mapping) allows control over the format of the returned
sequence seq with the input mapping.

[subseq,cinit] = ltePRBS(cinit,pn) returns a subsequence of a full PRBS sequence,
specified by pn.

[subseq,cinit] = ltePRBS(cinit,pn,mapping) allows additional control over the format of
the returned subsequence, subseq, with the input mapping.

Examples

Generate PRBS from Physical Layer Cell Identity

Generate a pseudorandom binary sequence based on physical layer cell identity for RMC R.0.

Create cell-wide configuration structure for RMC R.0. Use the physical layer cell identity, NCellID,
as an initial value to generate the pseudorandom binary sequence.

enb = lteRMCDL('R.0');
prbsSeq = ltePRBS(enb.NCellID,5)

prbsSeq = 5x1 logical array

 0
 0
 0
 0
 0

2 Functions

2-694

Generate Pseudorandom Binary Sequence

Generate an unsigned pseudorandom binary sequence.

seq = ltePRBS(162,4);
seq(1:4)

ans = 4x1 logical array

 1
 0
 1
 1

Generate Signed Pseudorandom Binary Sequence

Generate a signed pseudorandom binary sequence.

seq = ltePRBS(162,4,'signed');
seq(1:4)

ans = 4×1

 -1
 1
 -1
 -1

Input Arguments
cinit — Initialization value
32-bit integer

Initialization value, specified as a 32-bit integer.
Data Types: int32 | uint32 | double

n — Number of elements in returned sequence
numeric scalar

Number of elements in returned sequence, seq, specified as a numeric scalar.
Data Types: double

pn — Range of elements in returned subsequence
row vector

Range of elements in returned subsequence, subseq, specified as a row vector of [p n]. The
subsequence returns n values of the PRBS generator, starting at position p (0-based).
Data Types: double

 ltePRBS

2-695

mapping — Output sequence formatting
'binary' (default) | 'signed'

Output sequence formatting, specified as 'binary' or 'signed'. mapping controls the format of
the returned sequence.

• 'binary' maps true to 1 and false to 0.
• 'signed' maps true to –1 and false to 1.

Data Types: char | string

Output Arguments
seq — Pseudorandom binary sequence
logical column vector | numeric column vector

Pseudorandom binary sequence, returned as a logical column vector, or a numeric column vector. seq
contains the first n values of the PRBS generator. If mapping is set to 'signed', seq is a vector of
data type double. Otherwise, it is a vector of data type logical.
Data Types: logical | double

subseq — Pseudorandom binary subsequence
logical column vector | numeric column vector

Pseudorandom binary subsequence, returned as a logical column vector, or a numeric column vector.
subseq contains the values of the PRBS generator specified by pn. If you set mapping to 'signed',
the output data type is double. Otherwise, the output data type is logical.
Data Types: logical | double

Version History
Introduced in R2014a

See Also
ltePDSCHPRBS | lteEPDCCHPRBS | ltePDCCHPRBS | ltePBCHPRBS | ltePCFICHPRBS |
ltePHICHPRBS | ltePUCCH2PRBS | ltePUCCH3PRBS | ltePSBCHPRBS | ltePSCCHPRBS |
ltePSSCHPRBS

2 Functions

2-696

ltePRS
Positioning reference signal

Syntax
sym = ltePRS(enb)

Description
sym = ltePRS(enb) returns a column vector containing the positioning reference signal (PRS)
symbols for transmission in a single subframe on antenna port 6. These symbols are ordered as they
should be mapped into the resource elements along with ltePRSIndices. As determined by the PRS
subframe configuration and duplex mode, the output vector is empty if no PRS is scheduled in the
subframe.

The optional PRSPeriod parameter controls the downlink subframes in which PRS is present. See
the ltePRSIndices function reference page for details.

Examples

Generate Positioning Reference Signal Symbols

Generate the PRS symbols for subframe 0 of a 10MHz downlink.

Create a cell-wide configuration structure initialized for RMC R.2. Configure for full band PRS
(NPRSRB = NDLRB). Configure Iprs = 0, which sets [Tprs Dprs] = [160 0].

rmc = lteRMCDL('R.2');
rmc.NPRSRB = rmc.NDLRB;
rmc.PRSPeriod = 0;
prsSymbols = ltePRS(rmc);

Generate PRS symbols.

prsSymbols(1:4)

ans = 4×1 complex

 0.7071 + 0.7071i
 0.7071 + 0.7071i
 0.7071 + 0.7071i
 0.7071 + 0.7071i

Input Arguments
enb — Cell-wide settings
structure

 ltePRS

2-697

Cell-wide settings, specified as a structure. enb contains the following parameter fields.

The parameters TDDConfig and SSC are only required if DuplexMode is set to 'TDD'.

NDLRB — Number of downlink resource blocks
positive scalar integer (6,...,110)

Number of downlink resource blocks, specified as a positive scalar integer from 6 through 110.
Example: 45
Data Types: double

CellRefP — Number of cell-specific reference signal antenna ports
1 | 2 | 4

Number of cell-specific reference signal antenna ports, specified as a 1, 2, or 4.
Example: 1
Data Types: double

NCellID — Physical layer cell identity number
nonnegative scalar integer

Physical layer cell identity number, specified as a nonnegative scalar integer.
Example: 4
Data Types: double

NSubframe — Subframe number
nonnegative scalar integer

Subframe number, specified as nonnegative scalar integer.
Example: 5
Data Types: double

NFrame — Frame number
0 (default) | optional | nonnegative scalar integer

Frame number, specified as nonnegative scalar integer.
Example: 6
Data Types: double

CyclicPrefix — Cyclic prefix length
'Normal' (default) | optional | 'Extended'

Cyclic prefix length, specified as a 'Normal' or 'Extended'.
Data Types: char | string

DuplexMode — Duplex mode type
'FDD' (default) | optional | 'TDD'

Duplex mode type, specified as 'FDD' or 'TDD'. Used for separating the transmission signals.

2 Functions

2-698

Data Types: char | string

TDDConfig — Uplink or downlink configuration for TDD
0 (default) | optional | nonnegative scalar integer (0,...,6)

Uplink or downlink configuration for TDD, specified as a nonnegative scalar integer from 0 through 6.
Required only for 'TDD' duplex mode.
Example: 4
Data Types: double

SSC — Special subframe configuration
0 (default) | optional | nonnegative scalar integer (0,...,9)

Special subframe configuration, specified as nonnegative scalar integer from 0 through 9. Required
only for 'TDD' duplex mode.
Example: 6
Data Types: double

NPRSRB — Number of PRS physical resource blocks
0,...,NDLRB

Number of PRS physical resource blocks, specified as nonnegative scalar integer from 0 through
NDLRB.
Example: 8
Data Types: double

PRSPeriod — Positioning reference signal (PRS) period
'On' (default) | optional | 'Off' | [Iprs] | [Tprs Dprs]

Positioning reference signal (PRS) period, specified as 'On', 'Off', a numeric scalar, or a 1-by-2
vector. This parameter controls the downlink subframes in which PRS will be present. For details, see
ltePRSIndices.
Example: 0
Example: [160 0]
Data Types: char | string | double

Output Arguments
sym — Positioning Reference Signal (PRS) symbols
complex numeric column vector

Positioning Reference Signal (PRS) symbols, returned as complex numeric column vector, for
transmission in a single subframe on antenna port 6.
Example: 0.7071 + 0.7071i
Data Types: double

 ltePRS

2-699

Version History
Introduced in R2014a

See Also
ltePRSIndices | lteCellRS | lteDMRS | lteEPDCCHDMRS | lteCSIRS | ltePRBS

2 Functions

2-700

ltePRSIndices
PRS resource element indices

Syntax
ind = ltePRSIndices(enb)
ind = ltePRSIndices(enb,opts)

Description
ind = ltePRSIndices(enb) returns a column vector of one-based linear indices for the PRS
elements in the subframe, given the cell-wide settings parameter structure, enb. The length of ind is
the number of resource elements (NRE). It returns the indices for the Positioning Reference Signal
(PRS) resource element (RE) locations transmitted on antenna port 6. By default, these indices are in
one-based linear indexing form that can directly index elements in a matrix representing a single
subframe of the port 6 resource grid. Other index representations can also be created. These indices
are ordered as the complex PRS symbols should be mapped and will not include any elements
allocated to PBCH, PSS, and SSS. A PRS subframe configuration schedule can be defined as required.
If the subframe contains no PRS, ind is an empty vector.

The optional enb.PRSPeriod parameter controls the downlink subframes in which PRS will be
present, either always 'On' or 'Off', or defined by the scalar subframe configuration index, Iprs
(0,...,2399), or the explicit subframe periodicity and offset pair, [Tprs Dprs], as listed in TS 36.211
[1], Section 6.10.4.3. The PRS containing subframes are located in conjunction with the parameters
enb.NSubframe and optional enb.NFrame. NSubframe can be greater than 10; thus, setting
NSubframe to 11 is equivalent to setting NSubframe to 1 and NFrame to 1.

ind = ltePRSIndices(enb,opts) formats the returned indices using options defined in opts.

Examples

Generate PRS Resource Element Indices

Generate the PRS resource element (RE) indices for subframe 0 of a 10 MHz downlink.

Create a cell-wide configuration structure initialized for RMC R.2. Configure for full band PRS
(NPRSRB = NDLRB). Configure Iprs = 0, which sets [Tprs Dprs] = [160 0].

rmc = lteRMCDL('R.2');
rmc.NPRSRB = rmc.NDLRB;
rmc.PRSPeriod = 0;

Generate PRS indices.

prsIndices = ltePRSIndices(rmc,'ind');
prsIndices(1:4)

ans = 4x1 uint32 column vector

 1804

 ltePRSIndices

2-701

 1810
 1816
 1822

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure. enb contains the following fields.

The parameters TDDConfig and SSC are only required if DuplexMode is set to 'TDD'.

NDLRB — Number of downlink resource blocks
6,…,110

Number of downlink resource blocks, specified as a nonnegative scalar integer from 6 through 110.
Example: 50
Data Types: double

CellRefP — Number of cell-specific reference signal antenna ports
1 (default) | 2 | 4

Number of cell-specific reference signal antenna ports, specified as 1, 2, or 4.
Example: 1
Data Types: double

NCellID — Physical layer cell identity
nonnegative scalar integer

Physical layer cell identity, specified as a nonnegative scalar integer.
Example: 3
Data Types: double

NSubframe — Subframe number
nonnegative scalar integer

Subframe number, specified as a nonnegative scalar integer.
Example: 3
Data Types: double

NFrame — Frame number
0 (default) | optional | nonnegative scalar integer

Frame number, specified as a nonnegative scalar integer.
Example: 3
Data Types: double

2 Functions

2-702

CyclicPrefix — Cyclic prefix length
'Normal' (default) | optional | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

DuplexMode — Duplex mode type
'FDD' (default) | optional | 'TDD'

Duplex mode type, specified as 'FDD' or 'TDD'.
Data Types: char | string

TDDConfig — Uplink or downlink configuration for TDD
0 (default) | optional | 0,...,6

Uplink or downlink configuration for TDD, specified as a nonnegative scalar integer from 0 through 6.
Optional. Required only for 'TDD' duplex mode.
Example: 4
Data Types: double

SSC — Special subframe configuration for TDD
0 (default) | optional | 0,...,9
Example: 5

Special subframe configuration for TDD, specified as a nonnegative scalar integer from 0 through 9.
Required only for 'TDD' duplex mode.
Data Types: double

NPRSRB — Number of PRS physical resource blocks
0,...,NDLRB

Number of PRS physical resource blocks, specified as a nonnegative scalar integer from 0 through
NDLRB.
Example: 32
Data Types: double

PRSPeriod — Positioning reference signal (PRS) period
'On' (default) | optional | 'Off' | [Iprs] | [Tprs Dprs]

Positioning reference signal (PRS) period, specified as 'On', 'Off', a numeric scalar, or a 1-by-2
vector. This parameter controls the downlink subframes in which PRS will be present. For details, see
ltePRSIndices.
Example: 0
Example: [160 0]
Data Types: string | char | double

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

 ltePRSIndices

2-703

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — PRS resource element indices
integer column vector | integer matrix

PRS resource element indices, returned as an integer column vector of length NRE or an integer
matrix of size NRE-by-3. These indices are for the PRS resource element (RE) locations transmitted
on antenna port 6.
Example: 1804
Data Types: uint32

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePRS | lteCellRSIndices | lteCSIRSIndices | lteDMRSIndices

2 Functions

2-704

https://www.3gpp.org

ltePSBCH
Physical sidelink broadcast channel

Syntax
sym = ltePSBCH(ue,cw)

Description
sym = ltePSBCH(ue,cw) returns a column vector containing the physical sidelink broadcast
channel (PSBCH) symbols for the specified UE settings structure and PSBCH codeword bits. The
function performs PSBCH-specific scrambling, QPSK modulation, and SC-FDMA transform precoding,
as defined in TS 36.211 [1], Section 9.6. For more information, see “Physical Sidelink Broadcast
Channel Processing” on page 2-707.

Examples

Encode PSBCH Codeword

Create a codeword using the SL-BCH transport channel and encode the bits on the PSBCH.

ue.NSLID = 1;
ue.CyclicPrefixSL = 'Normal';
codeword = lteSLBCH(ue,zeros(40,1));
symbols = ltePSBCH(ue,codeword);

The plot shows the effects of the SC-FDMA precoding on the QPSK modulation symbols.

plot(symbols,'o')

 ltePSBCH

2-705

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing this field:

NSLID — Physical layer sidelink synchronization identity
integer from 0 to 355

Physical layer sidelink synchronization identity, specified as an integer from 0 to 355. (NID
SL)

Data Types: double

Data Types: struct

cw — PSBCH codeword
vector

PSBCH codeword, specified as a vector that must be a multiple of 144 bits in length. Since the
PSBCH is QPSK modulated, there are 2 bits per symbol. Nominally, the length of cw is 2*NRE bits,
specifically 1152 bits for normal cyclic prefix or 864 for extended cyclic prefix. For V2X sidelink
mode, the nominal length will be 1008 bits corresponding to 504 resource elements (it is defined for
normal cyclic prefix only).

2 Functions

2-706

NRE is the number of resource elements in a subframe, including the SC-FDMA guard symbol, and is a
multiple of 72. Nominally, NRE is 576 for normal cyclic prefix or 432 for extended cyclic prefix. For
V2X sidelink mode, the nominal length will be 504 resource elements (it is defined for normal cyclic
prefix only).
Data Types: double

Output Arguments
sym — Modulated PSBCH symbols
column vector

Modulated PSBCH symbols, returned as an NRE-by-1 column vector.

NRE is the number of resource elements in a subframe, including the SC-FDMA guard symbol, and is a
multiple of 72. Nominally, NRE is 576 for normal cyclic prefix or 432 for extended cyclic prefix. For
V2X sidelink mode, the nominal length will be 504 resource elements (it is defined for normal cyclic
prefix only).
Data Types: double

More About
Physical Sidelink Broadcast Channel Processing

The physical sidelink broadcast channel (PSBCH) is transmitted in the central 72 resource elements
in the available SC-FDMA symbols of synchronization subframes. For D2D sidelink mode, the
available symbols exclude the three symbols per slot assigned to the PSBCH DRS and sidelink
synchronization signals. For V2X sidelink, a total of seven symbols will be excluded in a subframe
(three symbols for PSBCH DRS and 4 for the PSSS/SSSS). The resource elements in the last SC-
FDMA symbol within a subframe are counted in the mapping process. Before transmission, the
PSBCH resource elements are removed from the last SC-FDMA symbol by lteSCFDMAModulate
during the sidelink-specific SC-FDMA modulation and guard symbol creation.

If a terminal is transmitting a synchronization subframe, then it should be sent every 40 ms for D2D
sidelink mode or every 160 ms for V2X, with the exact subframe dependent on the RRC-signaled
subframe number offset (syncOffsetIndicator-r12). The subframe also contains values for the
ltePSBCHDRSIndices on port 1010 and ltePSSSIndices and lteSSSSIndices on port 1020. No
PSCCH or PSSCH transmission will occur in a sidelink subframe configured for synchronization
purposes.

Physical Sidelink Broadcast Channel Indexing

Use the ltePSBCHIndices indexing function and the corresponding ltePSBCH sequence function to
populate the resource grid for the desired synchronization subframe number. The indices are ordered
as the PSBCH QPSK modulation symbols should be mapped, applying frequency-first mapping, and
include indices for the last SC-FDMA guard symbol. The PSBCH values returned by ltePSBCH are
ordered as they should be mapped into the resource elements of the adjacent symbols using
ltePSBCHIndices. For more information on mapping symbols to the resource element grid, see
“Resource Grid Indexing”.

 ltePSBCH

2-707

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePSBCHDecode | ltePSBCHIndices | ltePSBCHDRS

2 Functions

2-708

https://www.3gpp.org

ltePSBCHDecode
PSBCH decoding

Syntax
[softbits,symbols] = ltePSBCHDecode(ue,sym)

Description
[softbits,symbols] = ltePSBCHDecode(ue,sym) returns a vector of log-likelihood ratio (LLR)
soft bits and the intermediate QPSK modulation symbols for the specified UE settings structure (ue)
and modulated PSBCH symbols (sym).

The PSBCH decoder performs the inverse of the ltePSBCH function processing, as defined in TS
36.211 [1], Section 9.6, which includes SC-FDMA transform deprecoding, QPSK demodulation, and
PSBCH-specific descrambling.

Examples

Decode PSBCH

Demodulate PSBCH symbols for a SL-BCH codeword containing a modulated MIB-SL message with
noise added. Plot the noisy RE symbols, the symbols prior to QPSK demodulation. and the resulting
LLR soft bits.

Create a UE settings structure.

ue.NSLRB = 25;
ue.InCoverage = 1;
ue.DuplexMode = 'FDD';
ue.NFrame = 0;
ue.NSubframe = 0;
ue.CyclicPrefixSL = 'Normal';
ue.NSLID = 0;

Encode the MIB-SL message and add noise.

cw = lteSLBCH(ue,lteSLMIB(ue));
sym = ltePSBCH(ue,cw);
rxsym = awgn(sym,13,'measured');

Decode the received symbols. The recovered codeword contains LLR soft bits. Hard decisions map
positive soft bits to 1 and negative soft bits to 0. Compare the hard decisions on the recovered soft
bits to verify that the recovered message matches the transmitted message.

[rxcw,rxmodsym] = ltePSBCHDecode(ue,rxsym);
isequal(cw,rxcw>0)

ans = logical
 1

 ltePSBCHDecode

2-709

Plot the noisy RE symbols, the symbols prior to QPSK demodulation, and the resulting LLR soft bits.

subplot(2,2,[1,1])
plot(rxsym,'o')
title('PSBCH Encoded Symbols + Noise')

subplot(2,2,[2,2])
plot(rxmodsym,'o')
title('Decoded PSBCH Symbols')

subplot(2,2,[3,4])
plot(rxcw)
title('Decoded Soft Bits')

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing this field:

NSLID — Physical layer sidelink synchronization identity
integer from 0 to 355

Physical layer sidelink synchronization identity, specified as an integer from 0 to 355.

2 Functions

2-710

Data Types: double

Data Types: struct

sym — Modulated PSBCH symbols
column vector

Modulated PSBCH symbols, specified as a NRE-by-1 column vector.

NRE is the number of resource elements in a subframe, including the SC-FDMA guard symbol, and is a
multiple of 72. Nominally, NRE is 576 for normal cyclic prefix or 432 for extended cyclic prefix. For
V2X sidelink mode, the nominal length will be 504 resource elements (it is defined for normal cyclic
prefix only).
Data Types: double
Complex Number Support: Yes

Output Arguments
softbits — Log-likelihood ratio soft bits
vector

Log-likelihood ratio (LLR) soft bits, returned as a vector with 2*NRE elements.

NRE is the number of resource elements in a subframe, including the SC-FDMA guard symbol, and is a
multiple of 72. Nominally, NRE is 576 for normal cyclic prefix or 432 for extended cyclic prefix. For
V2X sidelink mode, the nominal length will be 504 resource elements (it is defined for normal cyclic
prefix only).
Data Types: double

symbols — Modulated PSBCH symbols
column vector

Modulated PSBCH symbols, returned as a column vector with NRE elements.

NRE is the number of resource elements in a subframe, including the SC-FDMA guard symbol, and is a
multiple of 72. Nominally, NRE is 576 for normal cyclic prefix or 432 for extended cyclic prefix. For
V2X sidelink mode, the nominal length will be 504 resource elements (it is defined for normal cyclic
prefix only).
Data Types: double

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

 ltePSBCHDecode

2-711

https://www.3gpp.org

See Also
ltePSBCH | ltePSBCHIndices | ltePSBCHDRS | ltePSBCHDRSIndices

2 Functions

2-712

ltePSBCHDRS
PSBCH demodulation reference signal

Syntax
[seq,info] = ltePSBCHDRS(ue)

Description
[seq,info] = ltePSBCHDRS(ue) returns a 144-by-1 complex column vector sequence containing
PSBCH demodulation reference signal (DM-RS) values and an associated information structure for
the specified UE settings structure. For more information, see “PSBCH Demodulation Reference
Signal” on page 2-716.

Examples

Generate PSBCH DM-RS Sequence

Generate a PSBCH DM-RS sequence associated with both DM-RS SC-FDMA symbols in a subframe.

ue.NSLID = 170;
[psbchdrs_seq,info] = ltePSBCHDRS(ue);

Plot the DM-RS sequence (real vs. imaginary).

plot(psbchdrs_seq,'o')

 ltePSBCHDRS

2-713

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing this field:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

NSLID — Physical layer sidelink synchronization identity
integer from 0 to 355

Physical layer sidelink synchronization identity, specified as an integer from 0 to 355. (NID
SL)

Data Types: double

Data Types: struct

2 Functions

2-714

Output Arguments
seq — PSBCH DM-RS values
column vector

PSBCH DM-RS values, returned as a column vector. For the D2D sidelink mode, seq is a 144-length
column containing the values for each DM-RS symbol in each slot in a subframe. For V2X, it is a 216-
by-1 complex column containing the concatenated values for the three DM- RS symbols in a
subframe.
Data Types: double

info — PSBCH DM-RS information
structure

PSBCH DM-RS information about the intermediate variables used to create the DM-RS, returned as a
parameter structure containing these fields:

Alpha — Reference signal cyclic shift for each slot
two-column vector

Reference signal cyclic shift for each slot, returned as a two-column vector. (α)

Alpha is proportional to NCS, where α =
2πncs, λ

12 .

SeqGroup — Base sequence group number for each slot
two-column vector

Base sequence group number for each slot, returned as a two-column vector. (u)

SeqIdx — Base sequence number for each slot
two-column vector

Base sequence number for each slot, returned as a two-column vector. (v)

RootSeq — Root Zadoff-Chu sequence index for each slot
two-column vector

Root Zadoff-Chu sequence index for each slot, returned as a two-column vector. (q)

NCS — Cyclic shift values for each slot
two-column vector

Cyclic shift values for each slot, returned as a two-column vector. (ncs,λ)

NZC — Zadoff-Chu sequence length
integer

Zadoff-Chu sequence length, returned as an integer. (NZC
RS)

OrthSeq — Orthogonal cover value for each slot
matrix

Orthogonal cover value for each slot, returned as a matrix. (w)

 ltePSBCHDRS

2-715

Data Types: struct

More About
PSBCH Demodulation Reference Signal

The PSBCH demodulation reference signal (DM-RS) is transmitted alongside the ltePSBCH values in
the central 72 resource elements and in two SC-FDMA symbols in a synchronization subframe for
D2D sidelink mode and three SC-FDMA symbols for V2X.. For zero-based indexing, the SC-FDMA
symbol indices are {3,10} for normal cyclic prefix and {2,8} for extended cyclic prefix. These are the
same symbols used by the PUSCH DM-RS, see ltePUSCHDRSIndices. For the V2X sidelink mode,
the symbol indices are {4,6,9}.

Note The indicated symbol indices are based on TS 36.211, Section 9.8, but expanded from symbol
index per slot to symbol index per subframe to align with the LTE Toolbox subframe orientation. For
more information on mapping symbols to the resource element grid, see “Resource Grid Indexing”.

PSBCH Demodulation Reference Signal Indexing

Use the indexing function, ltePSBCHDRSIndices, and the corresponding sequence function,
ltePSBCHDRS, to index the resource grid for any synchronization subframe number. The indices are
ordered as the PSBCH DM-RS symbols should be, applying frequency-first mapping, into the two DM-
RS SC-FDMA symbols. For more information on mapping symbols to the resource element grid, see
“Resource Grid Indexing”.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePSBCHDRSIndices | ltePSBCH | ltePSBCHDecode | ltePSBCHIndices

2 Functions

2-716

https://www.3gpp.org

ltePSBCHDRSIndices
PSBCH DM-RS resource element indices

Syntax
ind = ltePSBCHDRSIndices(ue)
ind = ltePSBCHDRSIndices(ue,opts)

Description
ind = ltePSBCHDRSIndices(ue) returns the subframe resource element (RE) indices for the
demodulation reference signal (DM-RS) associated with a PSBCH transmission for the specified UE
settings structure. By default, the indices are returned in one-based linear indexing form. You can use
this form to directly index elements of a matrix representing the subframe resource grid for antenna
port 1010. For more information, see “PSBCH Demodulation Reference Signal Indexing” on page 2-
719.

ind = ltePSBCHDRSIndices(ue,opts) formats the returned indices using options specified by
opts.

Examples

Create PSBCH DM-RS Values

Write the complex PSBCH DM-RS values into the PSBCH DM-RS resource elements in a
synchronization subframe for both D2D and V2X sidelink modes and display an image of their
locations.

Create a user equipment settings structure and an empty resource grid subframe for 10 MHz
bandwidth and D2D sidelink mode.

ue = struct();
ue.NSLRB = 50;
ue.CyclicPrefixSL = 'Normal';
ue.NSLID = 1;
subframe_D2D = lteSLResourceGrid(ue);

Generate PSBCH DM-RS indices and load PSBCH DM-RS values into subframe.

psbchdrs_indices = ltePSBCHDRSIndices(ue);
subframe_D2D(psbchdrs_indices) = ltePSBCHDRS(ue);

Change user equipment settings to V2X sidelink mode.

ue.SidelinkMode = 'V2X';

Generate the grid subframe, the PSBCH DM-RS indices and load PSBCH DM-RS values into
subframe_V2X.

 ltePSBCHDRSIndices

2-717

subframe_V2X = lteSLResourceGrid(ue);
psbchdrs_indices = ltePSBCHDRSIndices(ue);
subframe_V2X(psbchdrs_indices) = ltePSBCHDRS(ue);

Display the PSBCH DM-RS locations for both sidelink modes.

subplot(2,1,1);
imagesc(100*abs(subframe_D2D));
axis xy; title('D2D');
subplot(2,1,2);
imagesc(100*abs(subframe_V2X));
axis xy; title(ue.SidelinkMode);

Input Arguments
ue — User equipment settings
structure

UE equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

2 Functions

2-718

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — Resource element indices
integer column vector | three-column integer matrix

Resource element indices, returned as an integer column vector or a three-column integer matrix. By
default, the indices are returned in a 144-by-1 column vector in one-based linear indexing form. You
can use this form to directly access elements of a matrix representing the subframe resource grid for
antenna port 1010. For V2X sidelink, the output is a 216-by-1 complex column for the three DM-RS
symbols in a subframe. To specify alternative indexing formats, use the opts input argument.

More About
PSBCH Demodulation Reference Signal Indexing

Use the indexing function, ltePSBCHDRSIndices, and the corresponding sequence function,
ltePSBCHDRS, to index the resource grid for any synchronization subframe number. The indices are

 ltePSBCHDRSIndices

2-719

ordered as the PSBCH DM-RS symbols should be, applying frequency-first mapping, into the two DM-
RS SC-FDMA symbols. For more information on mapping symbols to the resource element grid, see
“Resource Grid Indexing”.

PSBCH Demodulation Reference Signal

The PSBCH demodulation reference signal (DM-RS) is transmitted alongside the ltePSBCH values in
the central 72 resource elements and in two SC-FDMA symbols in a synchronization subframe for
D2D sidelink mode and three SC-FDMA symbols for V2X.. For zero-based indexing, the SC-FDMA
symbol indices are {3,10} for normal cyclic prefix and {2,8} for extended cyclic prefix. These are the
same symbols used by the PUSCH DM-RS, see ltePUSCHDRSIndices. For the V2X sidelink mode,
the symbol indices are {4,6,9}.

Note The indicated symbol indices are based on TS 36.211, Section 9.8, but expanded from symbol
index per slot to symbol index per subframe to align with the LTE Toolbox subframe orientation. For
more information on mapping symbols to the resource element grid, see “Resource Grid Indexing”.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePSBCHDRS | ltePSBCH | ltePSBCHDecode | ltePUSCHDRSIndices

2 Functions

2-720

https://www.3gpp.org

ltePSBCHIndices
PSBCH resource element indices

Syntax
ind = ltePSBCHIndices(ue)
ind = ltePSBCHIndices(ue,opts)

Description
ind = ltePSBCHIndices(ue) returns a column vector of physical sidelink broadcast channel
(PSBCH) resource element (RE) indices for the specified UE settings structure. By default, the indices
are returned in one-based linear indexing form. You can use this form to directly index elements of a
matrix representing the subframe resource grid for antenna port 1010. For more information, see
“Physical Sidelink Broadcast Channel Indexing” on page 2-724.

ind = ltePSBCHIndices(ue,opts) formats the returned indices using options specified by opts.

Examples

Generate PSBCH Indices

Generate PSBCH values and indices. Write the values into the PSBCH resource elements in a
synchronization subframe for both D2D and V2X sidelink modes, and display an image of their
locations. This mapping also writes the PSBCH values into the last SC-FDMA guard symbol within a
subframe. The sidelink SC-FDMA modulator removes PSBCH values from the last SC-FDMA guard
symbol in a separate processing step.

Create a user equipment settings structure and a resource grid that has 10 MHz bandwidth and
normal cyclic prefix for D2D sidelink mode.

ue.NSLRB = 50;
ue.CyclicPrefixSL = 'Normal';
ue.NSLID = 1;

Generate an empty resource grid and PSBCH indices. Load the PSBCH indices into the resource grid.

grid_D2D = lteSLResourceGrid(ue);
psbch_indices = ltePSBCHIndices(ue);
grid_D2D(psbch_indices) = ltePSBCH(ue,zeros(2*576,1));

Change user equipment settings to V2X sidelink mode.

ue.SidelinkMode = 'V2X';

Generate an empty resource grid and PSBCH indices. Load the PSBCH indices into the resource grid.

grid_V2X = lteSLResourceGrid(ue);
psbch_indices = ltePSBCHIndices(ue);
grid_V2X(psbch_indices) = ltePSBCH(ue,zeros(2*504,1));

 ltePSBCHIndices

2-721

Display the locations of the PSBCH indices for both sidelink modes.

subplot(2,1,1);
image(400*abs(grid_D2D));
axis xy; title('D2D');
subplot(2,1,2);
image(400*abs(grid_V2X));
axis xy; title(ue.SidelinkMode);

Generate Zero-Based PSBCH Indices

Generate PSBCH indices using zero-based indexing style. Compare these indices to one-based
indices.

Create a user equipment settings structure with 10 MHz bandwidth and normal cyclic prefix.

ue.NSLRB = 50;
ue.CyclicPrefixSL = 'Normal';
ue.NSLID = 1;

Generate PSBCH zero-based indices. View the first five indices.

psbch_indices = ltePSBCHIndices(ue,'0based');
psbch_indices_size = size(psbch_indices)

2 Functions

2-722

psbch_indices_size = 1×2

 576 1

psbch_indices(1:5)

ans = 5x1 uint32 column vector

 264
 265
 266
 267
 268

Generate PSBCH one-based indices and view the first five indices.

psbch_indices = ltePSBCHIndices(ue,'1based');
psbch_indices_size = size(psbch_indices)

psbch_indices_size = 1×2

 576 1

psbch_indices(1:5)

ans = 5x1 uint32 column vector

 265
 266
 267
 268
 269

For zero-based indexing, the first assigned index is one lower than the one-based indexing style.

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.

 ltePSBCHIndices

2-723

Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — PSBCH resource element indices
integer column vector | three-column integer matrix

PSBCH resource element indices, returned as an integer column vector or a three-column integer
matrix. By default, the returned vector or matrix has 576 PSBCH resource element indices for normal
cyclic prefix or 432 PSBCH resource element indices for extended cyclic prefix. For the V2X sidelink
mode, there are 504 PSBCH resource element indices. For more information, see “Physical Sidelink
Broadcast Channel Indexing” on page 2-724.
Data Types: uint32

More About
Physical Sidelink Broadcast Channel Indexing

Use the ltePSBCHIndices indexing function and the corresponding ltePSBCH sequence function to
populate the resource grid for the desired synchronization subframe number. The indices are ordered
as the PSBCH QPSK modulation symbols should be mapped, applying frequency-first mapping, and

2 Functions

2-724

include indices for the last SC-FDMA guard symbol. The PSBCH values returned by ltePSBCH are
ordered as they should be mapped into the resource elements of the adjacent symbols using
ltePSBCHIndices. For more information on mapping symbols to the resource element grid, see
“Resource Grid Indexing”.

Physical Sidelink Broadcast Channel

The physical sidelink broadcast channel (PSBCH) is transmitted in the central 72 resource elements
in the available SC-FDMA symbols of synchronization subframes. For D2D sidelink mode, the
available symbols exclude the three symbols per slot assigned to the PSBCH DRS and sidelink
synchronization signals. For V2X sidelink, a total of seven symbols will be excluded in a subframe
(three symbols for PSBCH DRS and 4 for the PSSS/SSSS). The resource elements in the last SC-
FDMA symbol within a subframe are counted in the mapping process. Before transmission, the
PSBCH resource elements are removed from the last SC-FDMA symbol by lteSCFDMAModulate
during the sidelink-specific SC-FDMA modulation and guard symbol creation.

If a terminal is transmitting a synchronization subframe, then it should be sent every 40 ms for D2D
sidelink mode or every 160 ms for V2X, with the exact subframe dependent on the RRC-signaled
subframe number offset (syncOffsetIndicator-r12). The subframe also contains values for the
ltePSBCHDRSIndices on port 1010 and ltePSSSIndices and lteSSSSIndices on port 1020. No
PSCCH or PSSCH transmission will occur in a sidelink subframe configured for synchronization
purposes.

Version History
Introduced in R2016b

See Also
ltePSBCH | ltePSBCHDecode | ltePSBCHDRSIndices | lteSLBCHDecode

 ltePSBCHIndices

2-725

ltePSBCHPRBS
PSBCH pseudorandom binary scrambling sequence

Syntax
[seq,cinit] = ltePSBCHPRBS(ue,n)
[seq,cinit] = ltePSBCHPRBS(ue,n,mapping)

[subseq,cinit] = ltePSBCHPRBS(ue,pn)
[subseq,cinit] = ltePSBCHPRBS(ue,pn,mapping)

Description
[seq,cinit] = ltePSBCHPRBS(ue,n) returns a column vector containing the first n outputs of
the PSBCH pseudorandom binary scrambling sequence (PRBS) for the specified UE settings
structure. It also returns an initialization value cinit for the PRBS generator.

The scrambling sequence generated should be applied to the coded PSBCH data carried by the
associated subframe. The PRBS generator is initialized with cinit = ue.NSLID.

[seq,cinit] = ltePSBCHPRBS(ue,n,mapping) specifies the format of the returned sequence,
seq, through the mapping input.

[subseq,cinit] = ltePSBCHPRBS(ue,pn) returns a subsequence of a full PRBS sequence,
specified by pn.

[subseq,cinit] = ltePSBCHPRBS(ue,pn,mapping) specifies the format of the returned
subsequence, subseq, through the mapping input.

Examples

Scramble PSBCH Codeword

Scramble a PSBCH codeword by generating the PSBCH pseudorandom binary sequence (PRBS) and
applying an exclusive OR operation on the two sequences.

Create a UE configuration structure and SL-BCH codeword. Generate the required length of the
PRBS and scramble the PSBCH codeword with the PRBS sequence using xor.

ue = struct('NSLID',2);
codeword = lteSLBCH(ue,ones(40,1));
psbchPrbs = ltePSBCHPRBS(ue,length(codeword));
scrambled = xor(psbchPrbs,codeword);

Descramble PSBCH Codeword

Descramble a received PSBCH codeword.

2 Functions

2-726

Scramble PSBCH Codeword

• Create a UE configuration structure and SL-BCH codeword.
• Generate the required length of the PRBS and scramble the PSBCH codeword with the PRBS

sequence using xor.
• Modulate the logical scrambled data.

ue = struct('NSLID',2);
codeword = lteSLBCH(ue,ones(40,1));

psbchPrbs = ltePSBCHPRBS(ue,length(codeword));
scrambled = xor(psbchPrbs,codeword);

txsym = lteSymbolModulate(scrambled,'QPSK');

Descramble Recovered Codeword

• Add noise to transmitted symbols and demodulate received soft data.
• Generate the PSBCH PRBS in signed form.
• Descramble a vector of noisy demodulated symbols representing a sequence of soft bits. To do so,

perform a pointwise multiplication between the PRBS sequence and the recovered data.
• Compare the transmitted codeword to the recovered codeword.

rxsym = awgn(double(txsym),30,'measured');
softdata = lteSymbolDemodulate(rxsym,'QPSK');

scramblingSeq = ltePSBCHPRBS(ue,length(softdata),'signed');

descrambled = softdata.*scramblingSeq;

isequal(codeword,descrambled > 0)

ans = logical
 1

The transmitted codeword matches the hard decision on the descrambled data.

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing this field:

NSLID — Physical layer sidelink synchronization identity
integer from 0 to 355

Physical layer sidelink synchronization identity, specified as an integer from 0 to 355. (NID
SL)

Data Types: double

Data Types: struct

 ltePSBCHPRBS

2-727

n — Number of elements in returned sequence
nonnegative integer

Number of elements in returned sequence, seq, specified as a nonnegative integer.
Data Types: double

pn — Range of elements in returned subsequence
row vector

Range of elements in returned subsequence, subseq, specified as a row vector of [p n]. The
subsequence returns n values of the PRBS generator, starting at position p (0-based).
Data Types: double

mapping — Output sequence formatting
'binary' (default) | 'signed'

Output sequence formatting, specified as 'binary' or 'signed'.

• 'binary' maps true to 1 and false to 0.
• 'signed' maps true to –1 and false to 1.

Data Types: char | string

Output Arguments
seq — PSBCH pseudorandom scrambling sequence
logical column vector | numeric column vector

PSBCH pseudorandom scrambling sequence, returned as a logical column vector or a numeric
column vector. seq contains the first n outputs of the physical sidelink broadcast channel (PSBCH)
scrambling sequence. If you set mapping to 'signed', the output data type is double. Otherwise,
the output data type is logical.
Data Types: logical | double

subseq — PSBCH pseudorandom scrambling subsequence
logical column vector | numeric column vector

PSBCH pseudorandom scrambling subsequence, returned as a logical column vector or a numeric
column vector. subseq contains the values of the PRBS generator specified by pn. If you set mapping
to 'signed', the output data type is double. Otherwise, the output data type is logical.
Data Types: logical | double

cinit — Initialization value for PRBS generator
numeric scalar

Initialization value for PRBS generator, returned as a numeric scalar.
Data Types: uint32

Version History
Introduced in R2016b

2 Functions

2-728

See Also
ltePSBCH | ltePSBCHIndices | ltePSBCHDecode | ltePRBS | ltePBCHPRBS

 ltePSBCHPRBS

2-729

ltePSCCH
Physical sidelink control channel

Syntax
sym = ltePSCCH(cw)

Description
sym = ltePSCCH(cw) returns a column vector containing the physical sidelink control channel
(PSCCH) complex symbols for the input codeword bits. Channel processing performed by the function
includes PSCCH-specific scrambling, QPSK modulation, and SC-FDMA transform precoding, as
defined in TS 36.211 [1], Section 9.4.

For more information, see “Physical Sidelink Control Channel Processing” on page 2-732.

Examples

Generate SCI Message on PSCCH

Create a codeword using an encoded SCI message payload and process the bits on the PSCCH.

Create a UE settings structure and use it to generate SCI message bits. Produce an encoded SCI
message codeword.

ue = struct('NSLRB',50,'CyclicPrefixSL','Normal');
[~,scibits] = lteSCI(ue);

cw = lteSCIEncode(ue,scibits);

Generate PSCCH symbols. View the length of the symbol column vector. Plot the constellation to
show the effect of the SC-FDMA precoding on the modulation symbols.

symbols = ltePSCCH(cw);
numSymbols = size(symbols)

numSymbols = 1×2

 144 1

plot(symbols,'o')

2 Functions

2-730

Input Arguments
cw — PSCCH codeword
vector

PSCCH codeword, specified as an Mbit-by-1 integer vector. Mbit is the number of bits transmitted on
the physical sidelink control channel in one subframe and must be a multiple of 12. For more
information, see “Physical Sidelink Control Channel Processing” on page 2-732.
Data Types: double | int8

Output Arguments
sym — Modulated PSCCH symbols
column vector

Modulated PSCCH symbols, returned as an NRE-by-1 column vector. NRE is number of PSCCH
resource elements in a subframe. For more information, see “Physical Sidelink Control Channel
Processing” on page 2-732.

 ltePSCCH

2-731

More About
Physical Sidelink Control Channel Processing

Physical sidelink control channel (PSCCH) processing includes PSCCH-specific scrambling, QPSK
modulation, and SC-FDMA transform precoding. PSCCH processing follows the processing steps used
for PUSCH, with variations defined in TS 36.211, Section 9.4.

For PSCCH, the input codeword length is Mbits = NRE × Nbps, where NRE is the number of PSCCH
resource elements in a subframe and Nbps is the number of bits per symbol. Because the PSCCH is
QPSK modulated, there are 2 bits per symbol. Nominally, the codeword length for PSCCH is 288 bits
for D2D normal cyclic prefix, 240 bits for D2D extended cyclic prefix and 480 for V2X. Nominally, NRE
is 144 for D2D normal cyclic prefix or 120 for D2D extended cyclic prefix. For V2X, it is 240 defined
for normal cyclic prefix only. Specifically, NRE = NPRB × NREperPRB × NSYM and includes symbols
associated with the sidelink SC-FDMA guard symbol.

• NPRB is the number of physical resource blocks (PRB) used for transmission. PSCCH is transmitted
on a single PRB.

• NREperPRB is the number of resource elements in a PRB. Each PRB has 12 resource elements.
• NSYM is the number of SC-FDMA symbols in a PSCCH subframe, including symbols associated with

the sidelink SC-FDMA guard symbol. The number of SC-FDMA symbols is a PSCCH subframe is 12
for D2D normal cyclic prefix or 10 for D2D extended cyclic prefix and V2X.

For D2D sidelink, when an SCI message is sent as a sidelink shared grant, it is transmitted twice on
two separate PSCCH instances within the associated PSCCH resource pool. For V2X, only a single
instance of PSCCH is transmitted for each scheduling grant.

Physical Sidelink Control Channel Indexing

Use the ltePSCCHIndices indexing function and the corresponding ltePSCCH sequence function to
populate the PSCCH subframe resource grid. The PSCCH is transmitted in the available SC-FDMA
symbols in a PSCCH subframe, using a single layer representing antenna port 1000. It excludes each
symbol per slot assigned to PSCCH DM-RS. For more information on PSCCH DM-RS, see the
ltePSCCHDRSIndices function.

The indices are ordered as the PSCCH QPSK modulation symbols should be mapped, applying
frequency-first mapping. The resource elements in the last SC-FDMA symbol within a subframe are
counted in the mapping process but should not be transmitted. The sidelink-specific SC-FDMA
modulation creates this guard symbol.

For more information on mapping symbols to the resource element grid, see “Resource Grid
Indexing”.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

2 Functions

2-732

https://www.3gpp.org

See Also
ltePSCCHDecode | ltePSCCHIndices | ltePSCCHDRS | ltePSCCHDRSIndices | ltePSCCHPRBS |
lteULPrecode | lteSCI

 ltePSCCH

2-733

ltePSCCHDecode
PSCCH decoding

Syntax
softbits = ltePSCCHDecode(sym)
[softbits,symbols] = ltePSCCHDecode(sym)

Description
softbits = ltePSCCHDecode(sym) returns a vector of log-likelihood ratio (LLR) soft bits for the
input modulated PSCCH symbols.

The PSCCH decoder performs SC-FDMA transform deprecoding, QPSK demodulation, and PSCCH-
specific descrambling. These operations are the inverse of the ltePSCCH function processing, as
defined in TS 36.211 [1], Section 9.4. For more information, see “Physical Sidelink Control Channel
Processing” on page 2-737.

[softbits,symbols] = ltePSCCHDecode(sym) also returns the intermediate QPSK modulation
symbols.

Examples

Decode PSCCH Symbols

Decode PSCCH symbols that contain a fully encoded SCI format 0 message with noise added. After
PSCCH demodulation, decode and recover the SCI message structure.

Create UE settings and SCI message configuration structures. Generate a PSCCH transmission. Add
noise to the symbols.

ue = struct('NSLRB',50,'CyclicPrefixSL','Normal');
sci0 = struct('FreqHopping',1,'ModCoding',3);

[sci0,scibits] = lteSCI(ue,sci0);
cw = lteSCIEncode(ue,scibits);
sym = ltePSCCH(cw);

rxsym = sym + 0.1*randn(size(sym));

Decode the PSCCH symbols and SCI message. View the SCI message structure settings. Confirm that
the transmitted and recovered SCI messages match.

[rxsoftbits,sym] = ltePSCCHDecode(rxsym);
[rxinfo,rxerr] = lteSCIDecode(ue,rxsoftbits);

[recsci0,recscibits] = lteSCI(ue,rxinfo);
recsci0

recsci0 = struct with fields:
 SCIFormat: 'Format0'

2 Functions

2-734

 FreqHopping: 1
 Allocation: [1x1 struct]
 TimeResourcePattern: 0
 ModCoding: 3
 TimeAdvance: 0
 NSAID: 0

isequal(scibits,recscibits)

ans = logical
 1

Plot Decoded PSCCH Symbols

Decode PSCCH symbols that contain a fully encoded SCI format 0 message with noise added. After
PSCCH demodulation, plot the intermediate QPSK modulated symbols.

Create UE settings and SCI message configuration structures. Generate a PSCCH transmission. Add
noise to the symbols.

ue = struct('NSLRB',50,'CyclicPrefixSL','Normal');
sci0 = struct('FreqHopping',1,'ModCoding',3);

[sci0,scibits] = lteSCI(ue,sci0);
cw = lteSCIEncode(ue,scibits);
sym = ltePSCCH(cw);

rxsym = sym + 0.1*randn(size(sym));

Decode the PSCCH symbols and plot the output intermediate QPSK modulated symbols.

[rxsoftbits,symbols] = ltePSCCHDecode(rxsym);
plot(symbols,'o')

 ltePSCCHDecode

2-735

Input Arguments
sym — Modulated PSCCH symbols
column vector

Modulated PSCCH symbols, specified as an NRE-by-1 column vector. NRE is the number of resource
elements in a PSCCH subframe, including the SC-FDMA guard symbol. For D2D sidelink, nominally
NRE is 144 or 120 for normal and extended cyclic prefix respectively. For V2X sidelink, nominally NRE
is 240 bits, defined for normal cyclic prefix only. For more information, see “Physical Sidelink Control
Channel Processing” on page 2-737.
Data Types: double
Complex Number Support: Yes

Output Arguments
softbits — Log-likelihood ratio soft bits
vector

Log-likelihood ratio (LLR) soft bits, returned as a (2 × NRE)-by-1 vector. NRE is the number of resource
elements in a PSCCH subframe, including the SC-FDMA guard symbol. The LLR of the punctured soft
bits associated with the last SC-FDMA symbol in the subframe are set to 0. For more information, see
“Physical Sidelink Control Channel Processing” on page 2-737.

2 Functions

2-736

symbols — Modulated PSCCH symbols
column vector of complex numbers

Modulated PSCCH symbols, returned as an NRE-by-1 column vector. NRE is the number of resource
elements in a PSCCH subframe, including the SC-FDMA guard symbol. For more information, see
“Physical Sidelink Control Channel Processing” on page 2-737.

More About
Physical Sidelink Control Channel Processing

Physical sidelink control channel (PSCCH) processing includes PSCCH-specific scrambling, QPSK
modulation, and SC-FDMA transform precoding. PSCCH processing follows the processing steps used
for PUSCH, with variations defined in TS 36.211, Section 9.4.

For PSCCH, the input codeword length is Mbits = NRE × Nbps, where NRE is the number of PSCCH
resource elements in a subframe and Nbps is the number of bits per symbol. Because the PSCCH is
QPSK modulated, there are 2 bits per symbol. Nominally, the codeword length for PSCCH is 288 bits
for D2D normal cyclic prefix, 240 bits for D2D extended cyclic prefix and 480 for V2X. Nominally, NRE
is 144 for D2D normal cyclic prefix or 120 for D2D extended cyclic prefix. For V2X, it is 240 defined
for normal cyclic prefix only. Specifically, NRE = NPRB × NREperPRB × NSYM and includes symbols
associated with the sidelink SC-FDMA guard symbol.

• NPRB is the number of physical resource blocks (PRB) used for transmission. PSCCH is transmitted
on a single PRB.

• NREperPRB is the number of resource elements in a PRB. Each PRB has 12 resource elements.
• NSYM is the number of SC-FDMA symbols in a PSCCH subframe, including symbols associated with

the sidelink SC-FDMA guard symbol. The number of SC-FDMA symbols is a PSCCH subframe is 12
for D2D normal cyclic prefix or 10 for D2D extended cyclic prefix and V2X.

For D2D sidelink, when an SCI message is sent as a sidelink shared grant, it is transmitted twice on
two separate PSCCH instances within the associated PSCCH resource pool. For V2X, only a single
instance of PSCCH is transmitted for each scheduling grant.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePSCCH | ltePSCCHIndices | ltePSCCHDRS | ltePSCCHDRSIndices | ltePSCCHPRBS

 ltePSCCHDecode

2-737

https://www.3gpp.org

ltePSCCHDRS
PSCCH demodulation reference signal

Syntax
[seq,info] = ltePSCCHDRS
[seq,info] = ltePSCCHDRS(ue)

Description
[seq,info] = ltePSCCHDRS returns a 24-by-1 complex column vector sequence containing
PSCCH demodulation reference signal (DM-RS) values and an associated information structure. For
more information, see “PSCCH Demodulation Reference Signal Processing” on page 2-741.

[seq,info] = ltePSCCHDRS(ue) returns a vector of DM-RS values for either D2D or V2X sidelink
given the specified UE settings structure. For more information, see “PSCCH Demodulation
Reference Signal Processing” on page 2-741.

Examples

Generate PSCCH DM-RS Sequence

Generate a PSCCH DM-RS sequence associated with both DM-RS SC-FDMA symbols in a subframe.
Plot the constellation of the sequence, which is QPSK modulated.

[pscchDrsSeq,info] = ltePSCCHDRS;
plot(pscchDrsSeq,'o')

2 Functions

2-738

Generate PSCCH DM-RS sequence for V2X sidelink

Generate the PSCCH DM-RS sequence associated with the four DM-RS SC-FDMA symbols of a PRB
pair for a PSCCH transmission and V2X sidelink.

Create a user equipment settings structure for the V2X sidelink mode with PRB set indices of 0 and 1
and a zero cyclic shift.

ue = struct('SidelinkMode','V2X');
ue.PRBSet = [0 1]';
ue.CyclicShift = 0;

Generate a PSCCH DM-RS sequence associated with both DM-RS SC-FDMA symbols in a subframe.
The output sequence is a 96-length vector to be mapped onto the 24 subcarriers in each of the pair of
DM-RS SC-FDMA symbols per slot for two consecutive resource blocks.

[pscchDrsSeq,info] = ltePSCCHDRS(ue);
size(pscchDrsSeq)

ans = 1×2

 96 1

 ltePSCCHDRS

2-739

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

PRBSet — Zero-based physical resource block index
integer | integer column vector | two-column integer matrix

Zero-based physical resource block (PRB) index, specified as an integer, an integer column vector, or
a two-column integer matrix.

For D2D sidelink, the PSCCH is intended to be transmitted in a single PRB in a subframe and
therefore, specifying PRBSet as a scalar PRB index is recommended. For V2X sidelink, the PSCCH is
intended to be transmitted in a pair of consecutive PRB in a subframe, therefore PRBSet must be a
column vector containing two consecutive indices. However, for a more general nonstandard multi-
PRB allocation, PRBSet can be a set of indices specified as an integer column vector or as a two-
column integer matrix corresponding to slot-wise resource allocations for PSCCH.
Data Types: double

CyclicShift — Cyclic shift for DM-RS
0 (default) | 3 | 6 | 9

Cyclic shift for DM-RS, specified as 0, 3, 6 or 9. The function uses this input only for V2X sidelink.
Data Types: double

Data Types: struct

Output Arguments
seq — PSCCH DM-RS values
column vector

PSCCH DM-RS values, returned as a complex column vector. For more information, see “PSCCH
Demodulation Reference Signal Processing” on page 2-741.
Data Types: double

info — PSCCH DM-RS information
structure

PSCCH DM-RS information about the intermediate variables used to create the DM-RS, returned as a
parameter structure containing these fields:

Alpha — Reference signal cyclic shift for each slot
two-column vector

2 Functions

2-740

Reference signal cyclic shift for each slot, returned as a two-column vector. (α)

Alpha is proportional to NCS, where α =
2πncs, λ

12 .

SeqGroup — Base sequence group number for each slot
two-column vector

Base sequence group number for each slot, returned as a two-column vector. (u)

SeqIdx — Base sequence number for each slot
two-column vector

Base sequence number for each slot, returned as a two-column vector. (v)

RootSeq — Root Zadoff-Chu sequence index for each slot
two-column vector

Root Zadoff-Chu sequence index for each slot, returned as a two-column vector. (q)

NCS — Cyclic shift values for each slot
two-column vector

Cyclic shift values for each slot, returned as a two-column vector. (ncs,λ)

NZC — Zadoff-Chu sequence length
integer

Zadoff-Chu sequence length, returned as an integer. (NZC
RS)

OrthSeq — Orthogonal cover value for each slot
matrix

Orthogonal cover value for each slot, returned as a matrix. (w)

Data Types: struct

More About
PSCCH Demodulation Reference Signal Processing

The PSCCH demodulation reference signal (DM-RS) sequence is transmitted alongside the ltePSCCH
values using the two SC-FDMA symbols allocated to DM-RS in a PSCCH subframe. By default, the
output vector is the repetition of a 12-element sequence and specified in TS 36.211, Section 9.8. The
output vector is mapped onto the 12 subcarriers of the DM-RS SC-FDMA symbol in each slot of the
single PSCCH physical resource block (PRB) transmission on antenna port 1000. For a V2X
configured PSCCH, the output will be a 96-by-1 vector to be mapped onto the 24 subcarriers in each
of the pair of DRS SC-FDMA symbols per slot for two consecutive resource blocks.

The single-PRB PSCCH DM-RS is transmitted using a short base QPSK reference sequence instead of
the Zadoff-Chu sequence that is normally used for reference signals. Because the Zadoff-Chu
sequence is not used, the RootSeq and NZC fields are set to –1 in the info structure returned by
ltePSCCHDRS.

 ltePSCCHDRS

2-741

PSCCH Demodulation Reference Signal Indexing

Use the indexing function, ltePSCCHDRSIndices, and the corresponding sequence function,
ltePSCCHDRS, to populate the resource grid for any PSCCH subframe. The PSCCH DM-RS is
transmitted in the available SC-FDMA symbols in a PSCCH subframe, using a single layer on antenna
port 1000.

The indices are ordered as the PSCCH DM-RS QPSK modulation symbols should be, applying
frequency-first mapping. One-based linear indexing is the default return format but you can also
generate alternative indexing formats by using the opts input.

The resource elements in the last SC-FDMA symbol within a subframe are counted in the mapping
process but should not be transmitted. The sidelink-specific SC-FDMA modulation creates the last
symbol, which serves as a guard symbol.

For D2D sidelink, in zero-based indexing, the SC-FDMA symbol indices used are {3,10} for normal
cyclic prefix and {2,8} for extended cyclic prefix. The same symbols are used by the
ltePUSCHDRSIndices function. For V2X sidelink, there are four DM-RS SC-FDMA symbols with
indices {2,5,8,11}, defined for normal cyclic prefix only.

Note The indicated symbol indices are based on TS 36.211, Section 9.8. However to align with the
LTE Toolbox subframe orientation, these indices are expanded from symbol index per slot to symbol
index per subframe.

For more information on mapping symbols to the resource element grid, see “Resource Grid
Indexing”.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePSCCHDRSIndices | ltePSCCH | ltePSCCHDecode | ltePSCCHIndices

2 Functions

2-742

https://www.3gpp.org

ltePSCCHDRSIndices
PSCCH DM-RS resource element indices

Syntax
ind = ltePSCCHDRSIndices(ue)
ind = ltePSCCHDRSIndices(ue,opts)

Description
ind = ltePSCCHDRSIndices(ue) returns a column vector of PSCCH demodulation reference
signal (DM-RS) resource element indices for the specified UE settings structure. For more
information, see “PSCCH Demodulation Reference Signal Indexing” on page 2-747.

ind = ltePSCCHDRSIndices(ue,opts) formats the returned indices using options specified by
opts.

Examples

Create PSCCH DM-RS Values

Write the complex PSCCH DM-RS values into the PSCCH DM-RS resource elements in a PSCCH
subframe for both D2D normal cyclic prefix and V2X. Display an image of their locations to compare
both sidelink modes.

Create a user equipment settings structure and an empty resource grid subframe for 10 MHz
bandwidth and D2D normal cyclic prefix. Assign a PRB set index of 5.

ue.NSLRB = 50;
ue.CyclicPrefixSL = 'Normal';
ue.NSLID = 1;
subframe_D2D = lteSLResourceGrid(ue);
ue.PRBSet = 5;

Generate PSCCH DM-RS indices and write PSCCH DM-RS values into subframe.

pscchdrs_indices = ltePSCCHDRSIndices(ue);
subframe_D2D(pscchdrs_indices) = ltePSCCHDRS();

Change user equipment settings to V2X sidelink mode. Assign a PRB set indices of 5 and 6.

ue.SidelinkMode = 'V2X';
subframe_V2X = lteSLResourceGrid(ue);
ue.PRBSet = [5 6]';

Generate PSCCH DM-RS indices and write PSCCH DM-RS values into subframe.

pscchdrs_indices = ltePSCCHDRSIndices(ue);
subframe_V2X(pscchdrs_indices) = ltePSCCHDRS(ue);

Display the PSCCH DM-RS locations for both sidelink modes.

 ltePSCCHDRSIndices

2-743

subplot(2,1,1);
imagesc(100*abs(subframe_D2D))
axis xy
title('D2D');
subplot(2,1,2);
imagesc(100*abs(subframe_V2X));
axis xy;
title(ue.SidelinkMode)

Compare PSCCH DM-RS Resource Element Indexing

Compare PSCCH DM-RS resource element indexing formats.

Create a UE settings structure.

ue = struct('NSLRB',15,'CyclicPrefixSL','Normal','PRBSet',5);

One-based linear indexing, this is the default output style

Generate PSCCH DM-RS indices, using the default one-based linear indexing style.

ind1 = ltePSCCHDRSIndices(ue);
ind1(1)

ans = uint32
 601

2 Functions

2-744

Zero-based linear indexing

Generate PSCCH DM-RS indices, using zero-based linear indexing style.

opts = '0based';
ind0 = ltePSCCHDRSIndices(ue,opts);
ind0(1)

ans = uint32
 600

For zero-based indexing, the first assigned index is one lower than the one-based indexing.

One-based indexing in [subcarrier,symbol,port] subscript row style

Generate PSCCH DM-RS indices, one-based subscript row style.

opts = {'sub','1based'};
ind1sub = ltePSCCHDRSIndices(ue,opts);
size(ind1sub)

ans = 1×2

 24 3

ind1sub(1,:)

ans = 1x3 uint32 row vector

 61 4 1

The subscript row style outputs a 24-by-3 matrix. Viewing the first row you can see symbol number 4
is occupied.

Two PSCCH subframe symbols are reserved for transmission of the PSCCH DM-RS. Inspecting the
output matrix for unique symbol values, shows that the PSCCH DM-RS occupy symbols 4 and 11 for
one-based indexing.

unique(ind1sub(:,2,:))

ans = 2x1 uint32 column vector

 4
 11

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

 ltePSCCHDRSIndices

2-745

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

PRBSet — Zero-based physical resource block index
integer | integer column vector | two-column integer matrix

Zero-based physical resource block (PRB) index, specified as an integer, an integer column vector, or
a two-column integer matrix.

For D2D sidelink, the PSCCH is intended to be transmitted in a single PRB in a subframe and
therefore, specifying PRBSet as a scalar PRB index is recommended. For V2X sidelink, the PSCCH is
intended to be transmitted in a pair of consecutive PRB in a subframe, therefore PRBSet must be a
column vector containing two consecutive indices. However, for a more general nonstandard multi-
PRB allocation, PRBSet can be a set of indices specified as an integer column vector or as a two-
column integer matrix corresponding to slot-wise resource allocations for PSCCH.
Data Types: double

Data Types: struct

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.

2 Functions

2-746

Data Types: char | string | cell

Output Arguments
ind — PSCCH DM-RS resource element indices
integer column vector | three-column integer matrix

PSCCH DM-RS resource element indices, returned as an integer column vector or a three-column
integer matrix. For D2D sidelink, the returned vector or matrix has 24 PSCCH DM-RS resource
element indices. For a V2X configured PSCCH, ind is a 96-by-1 vector with indices of the resource
elements in the four DRS symbols in a subframe. For more information, see “PSCCH Demodulation
Reference Signal Indexing” on page 2-747.
Data Types: uint32

More About
PSCCH Demodulation Reference Signal Indexing

Use the indexing function, ltePSCCHDRSIndices, and the corresponding sequence function,
ltePSCCHDRS, to populate the resource grid for any PSCCH subframe. The PSCCH DM-RS is
transmitted in the available SC-FDMA symbols in a PSCCH subframe, using a single layer on antenna
port 1000.

The indices are ordered as the PSCCH DM-RS QPSK modulation symbols should be, applying
frequency-first mapping. One-based linear indexing is the default return format but you can also
generate alternative indexing formats by using the opts input.

The resource elements in the last SC-FDMA symbol within a subframe are counted in the mapping
process but should not be transmitted. The sidelink-specific SC-FDMA modulation creates the last
symbol, which serves as a guard symbol.

For D2D sidelink, in zero-based indexing, the SC-FDMA symbol indices used are {3,10} for normal
cyclic prefix and {2,8} for extended cyclic prefix. The same symbols are used by the
ltePUSCHDRSIndices function. For V2X sidelink, there are four DM-RS SC-FDMA symbols with
indices {2,5,8,11}, defined for normal cyclic prefix only.

Note The indicated symbol indices are based on TS 36.211, Section 9.8. However to align with the
LTE Toolbox subframe orientation, these indices are expanded from symbol index per slot to symbol
index per subframe.

For more information on mapping symbols to the resource element grid, see “Resource Grid
Indexing”.

PSCCH Demodulation Reference Signal

The PSCCH demodulation reference signal (DM-RS) sequence is transmitted alongside the ltePSCCH
values using the two SC-FDMA symbols allocated to DM-RS in a PSCCH subframe. By default, the
output vector is the repetition of a 12-element sequence and specified in TS 36.211, Section 9.8. The
output vector is mapped onto the 12 subcarriers of the DM-RS SC-FDMA symbol in each slot of the
single PSCCH physical resource block (PRB) transmission on antenna port 1000. For a V2X

 ltePSCCHDRSIndices

2-747

configured PSCCH, the output will be a 96-by-1 vector to be mapped onto the 24 subcarriers in each
of the pair of DRS SC-FDMA symbols per slot for two consecutive resource blocks.

The single-PRB PSCCH DM-RS is transmitted using a short base QPSK reference sequence instead of
the Zadoff-Chu sequence that is normally used for reference signals. Because the Zadoff-Chu
sequence is not used, the RootSeq and NZC fields are set to –1 in the info structure returned by
ltePSCCHDRS.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePSCCHDRS | ltePSCCH | ltePSCCHDecode

2 Functions

2-748

https://www.3gpp.org

ltePSCCHIndices
PSCCH resource element indices

Syntax
[ind] = ltePSCCHIndices(ue)
[ind,info] = ltePSCCHIndices(ue)
[___] = ltePSCCHIndices(ue,opts)

Description
[ind] = ltePSCCHIndices(ue) returns a column vector of physical sidelink control channel
(PSCCH) resource element (RE) indices for the specified UE settings structure for either D2D or V2X
sidelink. By default, the indices are returned in one-based linear indexing form. You can use this form
to directly index elements of a matrix representing the subframe resource grid for antenna port 1000.
For more information, see “Physical Sidelink Control Channel Indexing” on page 2-754.

[ind,info] = ltePSCCHIndices(ue) also returns a structure containing PSCCH-related
information for the specified UE settings structure.

[___] = ltePSCCHIndices(ue,opts) formats the returned indices using options specified by
opts. This syntax supports output options from prior syntaxes.

Examples

Map PSCCH Resource Elements

Write the complex PSCCH values into the PSCCH resource elements in a PSCCH subframe for D2D
sidelink and with normal cyclic prefix. Do the same for V2X. Display an image of their locations and
compare both sidelink modes. This mapping writes PSCCH values into the last SC-FDMA guard
symbol within a subframe. The sidelink SC-FDMA modulator removes these values before
transmission of the waveform.

Create a UE settings structure for D2D sidelink and an empty sidelink resource grid. Assign a PRB
set index of 5.

ue = struct('NSLRB',15,'CyclicPrefixSL','Normal');
subframe_D2D = lteSLResourceGrid(ue);
ue.PRBSet = 5;

Generate PSCCH indices. Populate the PSCCH resource elements in the subframe. For D2D normal
cyclic prefix, a PSCCH subframe contains 144 REs.

[pscch_indices, pscch_info] = ltePSCCHIndices(ue);
subframe_D2D(pscch_indices) = ltePSCCH(zeros(pscch_info.G,1));

Change user equipment settings to V2X sidelink mode. Assign a PRB set indices of 5 and 6.

 ltePSCCHIndices

2-749

ue.SidelinkMode = 'V2X';
subframe_V2X = lteSLResourceGrid(ue);
ue.PRBSet = [5;6];

Generate PSCCH indices. Populate the PSCCH resource elements in the subframe using a codeword
filled with zeros. For V2X, a PSCCH subframe contains 240 REs.

[pscch_indices, pscch_info] = ltePSCCHIndices(ue);
subframe_V2X(pscch_indices) = ltePSCCH(zeros(pscch_info.G,1));

View the resource grid and compare the indices for both sidelink modes.

subplot(2,1,1);
image(400*abs(subframe_D2D));
axis xy; title('D2D');
subplot(2,1,2);
image(400*abs(subframe_V2X));
axis xy; title(ue.SidelinkMode);

View PSCCH Information Structure

View the information structure output by the PSCCH resource element indexing function.

Create a UE settings structure.

2 Functions

2-750

ue = struct('NSLRB',15,'CyclicPrefixSL','Normal','PRBSet',5);

Generate PSCCH indices and the information structure. View the information structure.

[pscch_indices,info] = ltePSCCHIndices(ue);
info

info = struct with fields:
 G: 288
 Gd: 144

Compare PSCCH Resource Element Indexing

Compare PSCCH resource element indexing formats. Options include one-based or zero-based indices
in linear or subscript row indexing style.

Create a UE settings structure.

ue = struct('NSLRB',15,'CyclicPrefixSL','Normal','PRBSet',5);

One-based linear indexing, this is the default output style

Generate PSCCH indices using the default one-based linear indexing.

pscch1ind = ltePSCCHIndices(ue);
pscch1ind(1)

ans = uint32
 61

Zero-based linear indexing

Generate PSCCH indices using zero-based linear indexing.

opts = '0based';
pscch0ind = ltePSCCHIndices(ue,opts);
pscch0ind(1)

ans = uint32
 60

For zero-based indexing, the first assigned index is one lower than the one-based indexing.

One-based indices in [subcarrier,symbol,port] subscript row style

Generate PSCCH indices using one-based subscript row style.

opts = {'sub','1based'};
pscch1sub = ltePSCCHIndices(ue,opts);
pscch1sub(1,:)

ans = 1x3 uint32 row vector

 61 1 1

 ltePSCCHIndices

2-751

The subscript row style outputs a 24-by-3 matrix. Viewing the first row you see from the second
column value that symbol number 1 is occupied.

Inspecting the output matrix for unique symbol values, shows the symbols 4 and 11 are not occupied
by PSCCH. Two PSCCH subframe symbols are reserved for transmission of PSCCH DM-RS. When
one-based indexing is specified, symbols 4 and 11 transmit the PSCCH DM-RS.

unique(pscch1sub(:,2,:))

ans = 12x1 uint32 column vector

 1
 2
 3
 5
 6
 7
 8
 9
 10
 12
 ⋮

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

PRBSet — Zero-based physical resource block index
integer | integer column vector | two-column integer matrix

2 Functions

2-752

Zero-based physical resource block (PRB) index, specified as an integer, an integer column vector, or
a two-column integer matrix.

For D2D sidelink, the PSCCH is intended to be transmitted in a single PRB in a subframe and
therefore, specifying PRBSet as a scalar PRB index is recommended. For V2X sidelink, the PSCCH is
intended to be transmitted in a pair of consecutive PRB in a subframe, therefore PRBSet must be a
column vector containing two consecutive indices. However, for a more general nonstandard multi-
PRB allocation, PRBSet can be a set of indices specified as an integer column vector or as a two-
column integer matrix corresponding to slot-wise resource allocations for PSCCH.
Data Types: double

Data Types: struct

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — PSCCH resource element indices
integer column vector | three-column integer matrix

PSCCH resource element indices, returned as an integer column vector or a three-column integer
matrix. For D2D sidelink, the returned vector has 144 PSCCH resource element indices for normal
cyclic prefix or 120 PSCCH resource element indices for extended cyclic prefix. For V2X, the nominal
output is a 240-length column vector and it is defined for normal cyclic prefix only. For more
information, see “Physical Sidelink Control Channel Indexing” on page 2-754.
Data Types: uint32

info — PSCCH subframe resource information
structure

PSCCH subframe resource information, returned as a parameter structure containing these fields:

 ltePSCCHIndices

2-753

G — PSCCH bit capacity
integer

PSCCH bit capacity, returned as an integer. For D2D sidelink, this value is 288 for normal cyclic
prefix or 240 for extended cyclic prefix. For V2X, it is 480.
Data Types: double

Gd — PSCCH QPSK symbol capacity
integer

PSCCH QPSK symbol capacity, returned as an integer. For D2D sidelink, this value is 144 for normal
cyclic prefix or 120 for extended cyclic prefix. For V2X, it is 240.
Data Types: double

Data Types: struct

More About
Physical Sidelink Control Channel Indexing

Use the ltePSCCHIndices indexing function and the corresponding ltePSCCH sequence function to
populate the PSCCH subframe resource grid. The PSCCH is transmitted in the available SC-FDMA
symbols in a PSCCH subframe, using a single layer representing antenna port 1000. It excludes each
symbol per slot assigned to PSCCH DM-RS. For more information on PSCCH DM-RS, see the
ltePSCCHDRSIndices function.

The indices are ordered as the PSCCH QPSK modulation symbols should be mapped, applying
frequency-first mapping. The resource elements in the last SC-FDMA symbol within a subframe are
counted in the mapping process but should not be transmitted. The sidelink-specific SC-FDMA
modulation creates this guard symbol.

For more information on mapping symbols to the resource element grid, see “Resource Grid
Indexing”.

Physical Sidelink Control Channel Processing

Physical sidelink control channel (PSCCH) processing includes PSCCH-specific scrambling, QPSK
modulation, and SC-FDMA transform precoding. PSCCH processing follows the processing steps used
for PUSCH, with variations defined in TS 36.211, Section 9.4.

For PSCCH, the input codeword length is Mbits = NRE × Nbps, where NRE is the number of PSCCH
resource elements in a subframe and Nbps is the number of bits per symbol. Because the PSCCH is
QPSK modulated, there are 2 bits per symbol. Nominally, the codeword length for PSCCH is 288 bits
for D2D normal cyclic prefix, 240 bits for D2D extended cyclic prefix and 480 for V2X. Nominally, NRE
is 144 for D2D normal cyclic prefix or 120 for D2D extended cyclic prefix. For V2X, it is 240 defined
for normal cyclic prefix only. Specifically, NRE = NPRB × NREperPRB × NSYM and includes symbols
associated with the sidelink SC-FDMA guard symbol.

• NPRB is the number of physical resource blocks (PRB) used for transmission. PSCCH is transmitted
on a single PRB.

• NREperPRB is the number of resource elements in a PRB. Each PRB has 12 resource elements.

2 Functions

2-754

• NSYM is the number of SC-FDMA symbols in a PSCCH subframe, including symbols associated with
the sidelink SC-FDMA guard symbol. The number of SC-FDMA symbols is a PSCCH subframe is 12
for D2D normal cyclic prefix or 10 for D2D extended cyclic prefix and V2X.

For D2D sidelink, when an SCI message is sent as a sidelink shared grant, it is transmitted twice on
two separate PSCCH instances within the associated PSCCH resource pool. For V2X, only a single
instance of PSCCH is transmitted for each scheduling grant.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePSCCH | ltePSCCHDecode | ltePSCCHPRBS

 ltePSCCHIndices

2-755

https://www.3gpp.org

ltePSCCHPRBS
PSCCH pseudorandom binary scrambling sequence

Syntax
[seq,cinit] = ltePSCCHPRBS(n)
[seq,cinit] = ltePSCCHPRBS(n,mapping)

[subseq,cinit] = ltePSCCHPRBS(pn)
[subseq,cinit] = ltePSCCHPRBS(pn,mapping)

Description
[seq,cinit] = ltePSCCHPRBS(n) returns a column vector containing the first n outputs of the
PSCCH pseudorandom binary scrambling sequence (PRBS). It also returns an initialization value
cinit for the PRBS generator.

The scrambling sequence generated should be applied to the coded PSCCH data carried by the
associated subframe. The PRBS sequence generator used is initialized with cinit = 510.

[seq,cinit] = ltePSCCHPRBS(n,mapping) specifies the format of the returned sequence, seq,
through the mapping input.

[subseq,cinit] = ltePSCCHPRBS(pn) returns a subsequence of a full PRBS sequence, specified
by pn.

[subseq,cinit] = ltePSCCHPRBS(pn,mapping) specifies the format of the returned
subsequence, subseq, through the mapping input.

Examples

Scramble PSCCH Codeword

Scramble a PSCCH codeword by generating the PSCCH pseudorandom binary sequence (PRBS) and
applying an exclusive OR operation on the two sequences.

Generate the required length of the PRBS and scramble the PSCCH codeword with the PRBS
sequence using xor.

codeword = ones(288,1);
pscchPrbs = ltePSCCHPRBS(length(codeword));
scrambled = xor(pscchPrbs,codeword);

Descramble PSCCH Codeword

Descramble a received PSCCH codeword.

2 Functions

2-756

Scramble PSCCH Codeword

• Generate the required length of the PRBS and scramble the PSCCH codeword with the PRBS
sequence using xor.

• Modulate the logical scrambled data.

codeword = ones(288,1);
pscchPrbs = ltePSCCHPRBS(length(codeword));
scrambled = xor(pscchPrbs,codeword);

txsym = lteSymbolModulate(scrambled,'QPSK');

Descramble Recovered Codeword

• Add noise to transmitted symbols and demodulate received soft data.
• Generate the PSCCH PRBS in signed form.
• Descramble a vector of noisy demodulated symbols representing a sequence of soft bits. To do so,

perform a pointwise multiplication between the PRBS sequence and the recovered data.
• Compare the transmitted codeword to the recovered codeword.

sym = awgn(txsym,30,'measured');
softdata = lteSymbolDemodulate(sym,'QPSK');

scramblingSeq = ltePSCCHPRBS(length(softdata),'signed');
descrambled = softdata.*scramblingSeq;

isequal(codeword,descrambled > 0)

ans = logical
 1

The transmitted codeword matches the hard decision on the descrambled data.

Input Arguments
n — Number of elements in returned sequence
numeric scalar

Number of elements in returned sequence, seq, specified as a numeric scalar.
Data Types: double

pn — Range of elements in returned subsequence
row vector

Range of elements in returned subsequence, subseq, specified as a row vector of [p n]. The
subsequence returns n values of the PRBS generator, starting at position p (0-based).
Data Types: double

mapping — Output sequence formatting
'binary' (default) | 'signed'

Output sequence formatting, specified as 'binary' or 'signed'. mapping controls the format of
the returned sequence.

 ltePSCCHPRBS

2-757

• 'binary' maps true to 1 and false to 0.
• 'signed' maps true to –1 and false to 1.

Data Types: char | string

Output Arguments
seq — PSCCH pseudorandom scrambling sequence
logical column vector | numeric column vector

PSCCH pseudorandom scrambling sequence, returned as a logical column vector or a numeric
column vector. seq contains the first n outputs of the physical control channel (PCCH) scrambling
sequence. If you set mapping to 'signed', the output data type is double. Otherwise, the output
data type is logical.

subseq — PSCCH pseudorandom scrambling subsequence
logical column vector | numeric column vector

PSCCH pseudorandom scrambling sequence, returned as a logical column vector or a numeric
column vector. subseq contains the values of the PRBS generator specified by pn. If you set mapping
to 'signed', the output data type is double. Otherwise, the output data type is logical.

cinit — Initialization value for PRBS generator
numeric scalar

Initialization value for PRBS generator, returned as a numeric scalar.
Data Types: uint32

Version History
Introduced in R2016b

See Also
ltePSCCH | ltePSCCHIndices | ltePSCCHDecode | ltePRBS

2 Functions

2-758

ltePSSCH
Physical sidelink shared channel

Syntax
sym = ltePSSCH(ue,cw)

Description
sym = ltePSSCH(ue,cw) returns a complex symbol column vector containing the physical sidelink
shared channel (PSSCH) for the specified UE settings structure and codeword bits. Channel
processing performed by the function includes PSSCH-specific scrambling, QPSK or 16-QAM
modulation, and SC-FDMA transform precoding, as defined in TS 36.211 [1], Section 9.3.

For more information, see “Physical Sidelink Shared Channel Processing” on page 2-762.

Examples

Create PSSCH Symbols

Create a codeword using the SL-SCH transport channel and encode the bits on the PSSCH.

Initialize a UE settings structure. Specify the codeword length to use for the SL-SCH. Choose a
length that is a multiple of 12 symbols for normal cyclic prefix and has 4 bits per symbol for 16-QAM
modulation. Pick a standard number of resource blocks, such as 10.

ue = struct('CyclicPrefixSL','Normal');
ue.RV = 0;
ue.Modulation = '16QAM';
ue.NSAID = 255;
ue.NSubframePSSCH = 0;
ue.SidelinkMode = 'D2D';

codewordlength = 5760; % (12 symbols)(4 bps)(12 REperRB)(10 PRB)

Create a codeword using the lteSLSCH function and encode the bits on the PSSCH. Plot the
constellation to show the effects of the SC-FDMA precoding on the 16-QAM modulation symbols.

codeword = lteSLSCH(ue,codewordlength,zeros(100,1));
symbols = ltePSSCH(ue,codeword);

plot(symbols,'o')

 ltePSSCH

2-759

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

Modulation — Modulation type
'QPSK' | '16QAM'

Modulation type, specified as 'QPSK' or '16QAM'.

2 Functions

2-760

Data Types: char | string

NSAID — Sidelink group destination identity
integer in the interval [0, 255]

Sidelink group destination identity, specified as an integer in the interval [0, 255].

This field is the lower eight bits of the full 24-bit ProSe Layer-2 group destination ID. This field and
the NSubframePSSCH field control the value of the scrambling sequence at the start of each
subframe. This field is required only for D2D sidelink.
Data Types: double

NXID — V2X scrambling identity
integer scalar

V2X scrambling identity, specified as an integer scalar. NXID is the 16 bit CRC associated with the
PSCCH SCI grant. It is only required for V2X sidelink.
Data Types: double

NSubframePSSCH — PSSCH subframe number
integer scalar

PSSCH subframe number in the PSSCH subframe pool, specified as an integer scalar. (nssf
PSSCH)

NSubframePSSCH and NSAID control the values of the scrambling sequence. It is only required for
D2D sidelink.
Data Types: double

Data Types: struct

cw — PSSCH codeword
integer vector

PSSCH codeword, specified as an Mbit-by-1 integer vector. Mbit is the number of bits transmitted on
the physical sidelink shared channel in one subframe and must be a multiple of 12. For more
information, see “Physical Sidelink Shared Channel Processing” on page 2-762.

Output Arguments
sym — Modulated PSSCH symbols
column vector

Modulated PSSCH symbols, returned as an NRE-by-1 column vector. NRE is number of PSSCH resource
elements in a subframe. For more information, see “Physical Sidelink Shared Channel Processing” on
page 2-762.

 ltePSSCH

2-761

More About
Physical Sidelink Shared Channel Processing

Physical sidelink shared channel (PSSCH) processing includes PSSCH-specific scrambling, QPSK or
16-QAM modulation, and SC-FDMA transform precoding. PSSCH processing follows the processing
steps used for PUSCH, with variations defined in TS 36.211, Section 9.3.

For PSSCH, the input codeword length is Mbits = NRE × Nbps, where Nbps is the number of bits per
symbol. PSSCH modulation is either QPSK (2 bits per symbol) or 16 QAM (4 bits per symbol).

The number of PSSCH resource elements (NRE) in a subframe is NRE = NPRB × NREperPRB × NSYM and
includes symbols associated with the sidelink SC-FDMA guard symbol.

• NPRB is the number of physical resource blocks (PRB) used for transmission.
• NREperPRB is the number of resource elements in a PRB. Each PRB has 12 resource elements.
• NSYM is the number of SC-FDMA symbols in a PSSCH subframe, including symbols associated with

the sidelink SC-FDMA guard symbol. The number of SC-FDMA symbols in a PSSCH subframe is 12
for D2D normal cyclic prefix or 10 for D2D extended cyclic prefix and V2X.

The info structure output by ltePSSCHIndices provides Mbits and NRE as info.G and info.Gd
respectively.

The scrambling sequence generator is initialized with cinit = nID
X × 214 + nssf

PSSCH × 29 + 510 at the
start of every PSSCH subframe. For D2D sidelink, nID

SA is the destination identity (NSAID) obtained
from the sidelink shared channel. For V2X, nID

SA is the V2X scrambling identity (NXID). nssf
PSSCH is the

subframe number in the PSSCH subframe pool (NSubframePSSCH).

ltePSSCH requires CyclicPrefixSL to deduce the number of resource blocks allocated for SC-
FDMA precoding symbols.

Physical Sidelink Shared Channel Indexing

Use the ltePSSCHIndices function and the corresponding ltePSSCH sequence function to populate
the PSSCH subframe resource grid. The PSSCH is transmitted in the available SC-FDMA symbols in a
PSSCH subframe, using a single layer on antenna port 1000. It excludes each symbol per slot
assigned to PSSCH DM-RS. For more information on PSSCH DM-RS, see the ltePSSCHDRSIndices
function. The indices are ordered as the PSSCH modulation symbols should be mapped, applying
frequency-first mapping. The resource elements in the last SC-FDMA symbol within a subframe are
counted in the mapping process but should not be transmitted. The sidelink-specific SC-FDMA
modulation creates this guard symbol. For more information on mapping symbols to the resource
element grid, see “Resource Grid Indexing”.

2 Functions

2-762

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePSSCHDecode | ltePSSCHIndices | ltePSSCHDRS

 ltePSSCH

2-763

https://www.3gpp.org

ltePSSCHDecode
PSSCH decoding

Syntax
[softbits,symbols] = ltePSSCHDecode(ue,sym)

Description
[softbits,symbols] = ltePSSCHDecode(ue,sym) returns a vector of log-likelihood ratio (LLR)
soft bits and the intermediate QPSK or 16QAM modulation symbols for the specified UE settings
structure and modulated PSSCH symbols.

The PSSCH decoder performs the inverse of the ltePSSCH function processing, as defined in TS
36.211 [1], Section 9.3. The ltePSSCHDecode processing includes SC-FDMA transform deprecoding,
symbol demodulation, and PSSCH-specific descrambling. For more information, see “Physical
Sidelink Shared Channel Decoding” on page 2-768.

Examples

Demodulate PSSCH Symbols

Demodulate PSSCH symbols plus noise for an SL-SCH codeword created by encoding a vector of
information bits. Plot the noisy RE symbols, the symbols prior to QPSK demodulation, and the
resulting LLR soft bits.

Create a UE settings structure

Specify normal cyclic prefix and 16-QAM modulation.

ue = struct('CyclicPrefixSL','Normal');
ue.RV = 0;
ue.Modulation = '16QAM';
ue.NSAID = 255;
ue.NSubframePSSCH = 0;

Generate symbols to recover

• Specify the codeword length to use for the SL-SCH. Choose a length that is a multiple of 12
symbols for normal cyclic prefix and has 4 bits per symbol for 16-QAM modulation. Pick a
standard number of resource blocks, such as 10.

• Create the SL-SCH codeword.
• Create the PSSCH symbols and add noise.

codewordlength = 5760; % (12 symbols)(4 bps)(12 REperRB)(10 PRB)
cw = lteSLSCH(ue,codewordlength,ones(100,1));

sym = ltePSSCH(ue,cw);
rxsym = sym + 0.1*randn(size(sym));

2 Functions

2-764

Decode received PSSCH symbols

Recover the soft bits representing the transmitted SL-SCH codeword. Compare the soft bits to the
transmitted codeword.

[rxcw,rxmodsym] = ltePSSCHDecode(ue,rxsym);
isequal(cw,rxcw>0)

ans = logical
 0

Using a random noise seed and the level of noise added sometimes results in decoding errors. If the
comparison returns '1' there were no decoding errors. If the comparison returns '0' there were
decoding errors.

Plot the received and recovered signals.

subplot(2,2,1)
plot(rxsym,'o')
title('PSSCH Encoded Symbols + Noise')

subplot(2,2,2)
plot(rxmodsym,'o')
title('Decoded Symbols')

subplot(2,2,[3,4])
plot(rxcw)
title('Decoded Soft Bits')

 ltePSSCHDecode

2-765

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

Modulation — Modulation type
'QPSK' | '16QAM'

Modulation type, specified as 'QPSK' or '16QAM'.
Data Types: char | string

2 Functions

2-766

NSAID — Sidelink group destination identity
integer in the interval [0, 255]

Sidelink group destination identity, specified as an integer in the interval [0, 255].

This field is the lower eight bits of the full 24-bit ProSe Layer-2 group destination ID. This field and
the NSubframePSSCH field control the value of the scrambling sequence at the start of each
subframe. This field is required only for D2D sidelink.
Data Types: double

NXID — V2X scrambling identity
integer scalar

V2X scrambling identity, specified as an integer scalar. NXID is the 16 bit CRC associated with the
PSCCH SCI grant. It is only required for V2X sidelink.
Data Types: double

NSubframePSSCH — PSSCH subframe number
integer scalar

PSSCH subframe number in the PSSCH subframe pool, specified as an integer scalar. (nssf
PSSCH)

NSubframePSSCH and NSAID control the values of the scrambling sequence. It is only required for
D2D sidelink.
Data Types: double

Data Types: struct

sym — Encoded modulated PSSCH symbols
column vector

Encoded modulated PSSCH symbols, specified as an NRE-by-1 column vector. NRE is the number of RE
in a subframe associated with the PSSCH allocation for normal and extended cyclic prefix (including
the SC-FDMA guard symbol) and NPRB resource blocks.

NRE is NPRB × 144 for D2D normal cyclic prefix or NPRB × 120 for D2D extended cyclic prefix and V2X.
NPRB is the number of physical resource blocks (PRB) used for transmission.

The function requires the contents of all PSSCH resource elements to be input, including those in the
last guard symbol. For more information, see “Physical Sidelink Shared Channel Decoding” on page
2-768.
Data Types: double
Complex Number Support: Yes

Output Arguments
softbits — Log-likelihood ratio soft bits
vector

Log-likelihood ratio (LLR) soft bits, returned as a vector with Nbps × NRE softbits. Nbps is the number
of bits per symbol. PSSCH modulation is either QPSK (2 bits per symbol) or 16 QAM (4 bits per

 ltePSSCHDecode

2-767

symbol). NRE is the number of PSSCH resource elements in the subframe. The LLR of the punctured
soft bits associated with the last SC-FDMA symbol are set to 0.

For more information, see “Physical Sidelink Shared Channel Decoding” on page 2-768.

symbols — Decoded modulated PSSCH symbols
column vector

Decoded modulated PSSCH symbols, returned as a column vector with NRE elements. NRE is the
number of PSSCH resource elements in the subframe. For more information, see “Physical Sidelink
Shared Channel Decoding” on page 2-768.

More About
Physical Sidelink Shared Channel Decoding

The physical sidelink shared channel (PSSCH) decoder performs the inverse of the ltePSSCH
function processing. For more information, see “Physical Sidelink Shared Channel Processing” on
page 2-768. PSSCH decoding includes SC-FDMA transform deprecoding, symbol demodulation, and
PSSCH-specific descrambling.

Physical Sidelink Shared Channel Processing

Physical sidelink shared channel (PSSCH) processing includes PSSCH-specific scrambling, QPSK or
16-QAM modulation, and SC-FDMA transform precoding. PSSCH processing follows the processing
steps used for PUSCH, with variations defined in TS 36.211, Section 9.3.

For PSSCH, the input codeword length is Mbits = NRE × Nbps, where Nbps is the number of bits per
symbol. PSSCH modulation is either QPSK (2 bits per symbol) or 16 QAM (4 bits per symbol).

2 Functions

2-768

The number of PSSCH resource elements (NRE) in a subframe is NRE = NPRB × NREperPRB × NSYM and
includes symbols associated with the sidelink SC-FDMA guard symbol.

• NPRB is the number of physical resource blocks (PRB) used for transmission.
• NREperPRB is the number of resource elements in a PRB. Each PRB has 12 resource elements.
• NSYM is the number of SC-FDMA symbols in a PSSCH subframe, including symbols associated with

the sidelink SC-FDMA guard symbol. The number of SC-FDMA symbols in a PSSCH subframe is 12
for D2D normal cyclic prefix or 10 for D2D extended cyclic prefix and V2X.

The info structure output by ltePSSCHIndices provides Mbits and NRE as info.G and info.Gd
respectively.

The scrambling sequence generator is initialized with cinit = nID
X × 214 + nssf

PSSCH × 29 + 510 at the
start of every PSSCH subframe. For D2D sidelink, nID

SA is the destination identity (NSAID) obtained
from the sidelink shared channel. For V2X, nID

SA is the V2X scrambling identity (NXID). nssf
PSSCH is the

subframe number in the PSSCH subframe pool (NSubframePSSCH).

ltePSSCH requires CyclicPrefixSL to deduce the number of resource blocks allocated for SC-
FDMA precoding symbols.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePSSCH | ltePSSCHIndices | ltePSSCHDRS | ltePSSCHDRSIndices

 ltePSSCHDecode

2-769

https://www.3gpp.org

ltePSSCHDRS
PSSCH demodulation reference signal

Syntax
[seq,info] = ltePSSCHDRS(ue)

Description
[seq,info] = ltePSSCHDRS(ue) returns a complex column vector sequence containing PSSCH
demodulation reference signal (DM-RS) values and an associated information structure for the
specified UE settings structure. For more information, see “PSSCH Demodulation Reference Signal
Processing” on page 2-774.

Examples

Generate PSSCH DM-RS Sequence

Generate a PSSCH DM-RS sequence associated with both DM-RS SC-FDMA symbols in a subframe.
Plot the constellation of the sequence.

Create a user equipment settings structure.

ue = [];
ue.NSAID = 34;
ue.NSubframePSSCH = 5;
ue.PRBSet = (1:10)';

Generate a PSSCH DM-RS sequence. Plot the constellation.

[psschDrsSeq,info] = ltePSSCHDRS(ue);

plot(psschDrsSeq,'o')

2 Functions

2-770

Generate a PSSCH DM-RS Sequence for V2X

Generate a PSSCH DM-RS sequence for V2X using the format 1 SCI PSCCH CRC.

Create a user equipment settings structure.

 ue = [];
 ue.SidelinkMode = 'V2X';
 ue.PRBSet = (1:10)';
 ue.NSLRB = 50;

Generate the format 1 SCI PSCCH CRC and assign it to the UE V2X scrambling identity.

sciinfo = lteSCIInfo(ue);
scibits = ones(1,sciinfo.Format1);
[cw,crc] = lteSCIEncode(ue,scibits);
ue.NXID = crc;

Generate a PSSCH DM-RS sequence. Plot the constellation.

[psschDrsSeq,info] = ltePSSCHDRS(ue);
plot(psschDrsSeq,'or')

 ltePSSCHDRS

2-771

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

NSAID — Sidelink group destination identity
integer in the interval [0, 255]

Sidelink group destination identity, specified as an integer in the interval [0, 255].

This field is the lower eight bits of the full 24-bit ProSe Layer-2 group destination ID. This field and
the NSubframePSSCH field control the value of the scrambling sequence at the start of each
subframe. This field is required only for D2D sidelink.
Data Types: double

2 Functions

2-772

NXID — V2X scrambling identity
integer scalar

V2X scrambling identity, specified as an integer scalar. NXID is the 16 bit CRC associated with the
PSCCH SCI grant. It is only required for V2X sidelink.
Data Types: double

NSubframePSSCH — PSSCH subframe number
integer scalar

PSSCH subframe number in the PSSCH subframe pool, specified as an integer scalar. (nssf
PSSCH)

NSubframePSSCH and NSAID control the values of the scrambling sequence. It is only required for
D2D sidelink.
Data Types: double

PRBSet — Zero-based physical resource block indices
integer column vector | two-column integer matrix

Zero-based physical resource block (PRB) indices, specified as an integer column vector or a two-
column integer matrix.

The PSSCH is intended to be transmitted in the same PRB in each slot of a subframe. Therefore,
specifying PRBSet as a single column of PRB indices is recommended. However, for a nonstandard
slot-hopping PRB allocation, PRBSet can be specified as a two-column matrix of indices
corresponding to slot-wise resource allocations for PSSCH.
Data Types: double

Data Types: struct

Output Arguments
seq — PSSCH DM-RS values
column vector

PSSCH DM-RS values, returned as a N × 12 × NPRB-by-1 column vector. For more information, see
“PSSCH Demodulation Reference Signal Processing” on page 2-774.

info — PSSCH DM-RS information
structure

PSSCH DM-RS information about the intermediate variables used to create the DM-RS, returned as a
parameter structure containing these fields:

Alpha — Reference signal cyclic shift for each slot
two-column vector

Reference signal cyclic shift for each slot, returned as a two-column vector. (α)

Alpha is proportional to NCS, where α =
2πncs, λ

12 .

 ltePSSCHDRS

2-773

SeqGroup — Base sequence group number for each slot
two-column vector

Base sequence group number for each slot, returned as a two-column vector. (u)

SeqIdx — Base sequence number for each slot
two-column vector

Base sequence number for each slot, returned as a two-column vector. (v)

RootSeq — Root Zadoff-Chu sequence index for each slot
two-column vector

Root Zadoff-Chu sequence index for each slot, returned as a two-column vector. (q)

NCS — Cyclic shift values for each slot
two-column vector

Cyclic shift values for each slot, returned as a two-column vector. (ncs,λ)

NZC — Zadoff-Chu sequence length
integer

Zadoff-Chu sequence length, returned as an integer. (NZC
RS)

OrthSeq — Orthogonal cover value for each slot
matrix

Orthogonal cover value for each slot, returned as a matrix. (w)

Data Types: struct

More About
PSSCH Demodulation Reference Signal Processing

The PSSCH demodulation reference signal (DM-RS) sequence is transmitted alongside the ltePSSCH
values using the two SC-FDMA symbols allocated to DM-RS in a PSSCH subframe. The output vector
is the repetition of a 12-element sequence and specified in TS 36.211, Section 9.8. The vector is
mapped onto the 12 DM-RS SC-FDMA symbol subcarriers in each subframe slot for each PSSCH
physical resource block (PRB) transmission on antenna port 1000.

The output PSSCH DM-RS sequence is the concatenation of the two sequences to be mapped onto the
DM-RS SC-FDMA symbol subcarriers in each subframe slot carrying a ltePSSCH transmission. Its
length is N × 12 × NPRB, where NPRB is the number of PRBs associated with the PSSCH. For D2D
sidelink, there is one DM-RS symbol per slot and therefore N=2, and for V2X sidelink, there are two
symbols per slot and N=4.

PSSCH Demodulation Reference Signal Indexing

Use the ltePSSCHDRSIndices indexing function and the corresponding ltePSCCHDRS sequence
function to populate the resource grid for any PSSCH subframe. The PSSCH DM-RS is transmitted in
the available SC-FDMA symbols in a PSSCH subframe, using a single layer on antenna port 1000.

2 Functions

2-774

The indices are ordered as the PSSCH DM-RS QPSK modulation symbols should be, applying
frequency-first mapping. One-based linear indexing is the default return format, but alternative
indexing formats can also be generated.

The resource elements in the last SC-FDMA symbol within a subframe are counted in the mapping
process but should not be transmitted. The sidelink-specific SC-FDMA modulation creates the last
symbol, which serves as a guard symbol.

For D2D sidelink, when indexing is zero-based, the SC-FDMA symbol indices used are {3,10} for
normal cyclic prefix and {2,8} for extended cyclic prefix. The same symbols are used by the
ltePUSCHDRSIndices function. For V2X sidelink, there are four DM-RS SC-FDMA symbols with
indices {2,5,8,11} for normal cyclic prefix only.

Note The indicated symbol indices are based on TS 36.211, Section 9.8. However, to align with the
LTE Toolbox subframe orientation, these indices are expanded from symbol index per slot to symbol
index per subframe.

For more information on mapping symbols to the resource element grid, see “Resource Grid
Indexing”.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePSSCHDRSIndices | ltePSSCH | ltePSSCHDecode | ltePSSCHIndices

 ltePSSCHDRS

2-775

https://www.3gpp.org

ltePSSCHDRSIndices
PSSCH DM-RS resource element indices

Syntax
ind = ltePSSCHDRSIndices(ue)
ind = ltePSSCHDRSIndices(ue,opts)

Description
ind = ltePSSCHDRSIndices(ue) returns a column vector of PSSCH demodulation reference
signal (DM-RS) resource element indices for the specified UE settings structure. For more
information, see “PSSCH Demodulation Reference Signal Indexing” on page 2-780.

ind = ltePSSCHDRSIndices(ue,opts) formats the returned indices using options specified by
opts.

Examples

Create PSSCH DM-RS Values

Write the complex PSSCH DM-RS values into the PSSCH DM-RS resource elements in a PSSCH
subframe both for D2D normal cyclic prefix and V2X. Display an image of their locations to compare
both sidelink modes.

Create a user equipment settings structure and an empty resource grid subframe for 10 MHz
bandwidth and normal cyclic prefix. Define a PRB allocation, ue.PRBSet, with RB values from 30 to
39.

ue = struct('NSLRB',50,'CyclicPrefixSL','Normal');
ue.NSAID = 1;
ue.NSubframePSSCH = 1;
ue.PRBSet = [30:39]';
subframe_D2D = lteSLResourceGrid(ue);

Generate PSSCH DM-RS indices and load PSSCH DM-RS values into the subframe.

psschdrs_indices = ltePSSCHDRSIndices(ue);
subframe_D2D(psschdrs_indices) = ltePSSCHDRS(ue);

Change user equipment settings to V2X sidelink mode. Set the V2X scrambling identity to 5334.

ue.SidelinkMode = 'V2X';
ue.NXID = 5334;
subframe_V2X = lteSLResourceGrid(ue);
psschdrs_indices = ltePSSCHDRSIndices(ue);
subframe_V2X(psschdrs_indices) = ltePSSCHDRS(ue);

Display the PSCCH DM-RS locations for both sidelink modes.

2 Functions

2-776

subplot(2,1,1);
imagesc(100*abs(subframe_D2D))
axis xy; title('D2D');
subplot(2,1,2);
imagesc(100*abs(subframe_V2X));
axis xy; title(ue.SidelinkMode);

Compare PSSCH DM-RS Resource Element Indexing

Compare PSSCH DM-RS resource element indexing formats.

Create a UE settings structure.

ue = struct('NSLRB',15,'CyclicPrefixSL','Normal','PRBSet',5);

Generate PSSCH DM-RS indices using one-based linear indexing (default), zero-based linear
indexing, and one-based subscript row style.

One-based linear indexing

psschdmrs_indices = ltePSSCHDRSIndices(ue);
psschdmrs_indices(1)

ans = uint32
 601

 ltePSSCHDRSIndices

2-777

Zero-based linear indexing

opts = '0based';
psschdmrs_indices_0based = ltePSSCHDRSIndices(ue,opts);
psschdmrs_indices_0based(1)

ans = uint32
 600

For zero-based indexing, the first assigned index is one lower than the one-based indexing.

One-based indexing in [subcarrier,symbol,port] subscript row style

Inspect the unique symbol values to see which symbols are occupied by the PSSCH DM-RS.

opts = {'sub' '1based'};
psschdmrs_indices_sub = ltePSSCHDRSIndices(ue,opts);
unique(psschdmrs_indices_sub(:,2,:))

ans = 2x1 uint32 column vector

 4
 11

Only symbols 4 and 11 are occupied. For one-based indexing, these two PSSCH subframe symbols are
always reserved for transmission of the PSSCH DM-RS.

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

2 Functions

2-778

PRBSet — Zero-based physical resource block indices
integer column vector | two-column integer matrix

Zero-based physical resource block (PRB) indices, specified as an integer column vector or a two-
column integer matrix.

The PSSCH is intended to be transmitted in the same PRB in each slot of a subframe. Therefore,
specifying PRBSet as a single column of PRB indices is recommended. However, for a nonstandard
slot-hopping PRB allocation, PRBSet can be specified as a two-column matrix of indices
corresponding to slot-wise resource allocations for PSSCH.
Data Types: double

Data Types: struct

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — PSSCH DM-RS resource element indices
integer column vector | three-column integer matrix

PSSCH DM-RS resource element indices, returned as an integer column vector or a three-column
integer matrix. The returned vector or matrix has 24 × NPRB PSSCH DM-RS resource element indices.
where NPRB is the number of PRBs associated with the PSSCH. For more information, see “PSSCH
Demodulation Reference Signal Indexing” on page 2-780.

 ltePSSCHDRSIndices

2-779

More About
PSSCH Demodulation Reference Signal Indexing

Use the ltePSSCHDRSIndices indexing function and the corresponding ltePSCCHDRS sequence
function to populate the resource grid for any PSSCH subframe. The PSSCH DM-RS is transmitted in
the available SC-FDMA symbols in a PSSCH subframe, using a single layer on antenna port 1000.

The indices are ordered as the PSSCH DM-RS QPSK modulation symbols should be, applying
frequency-first mapping. One-based linear indexing is the default return format, but alternative
indexing formats can also be generated.

The resource elements in the last SC-FDMA symbol within a subframe are counted in the mapping
process but should not be transmitted. The sidelink-specific SC-FDMA modulation creates the last
symbol, which serves as a guard symbol.

For D2D sidelink, when indexing is zero-based, the SC-FDMA symbol indices used are {3,10} for
normal cyclic prefix and {2,8} for extended cyclic prefix. The same symbols are used by the
ltePUSCHDRSIndices function. For V2X sidelink, there are four DM-RS SC-FDMA symbols with
indices {2,5,8,11} for normal cyclic prefix only.

Note The indicated symbol indices are based on TS 36.211, Section 9.8. However, to align with the
LTE Toolbox subframe orientation, these indices are expanded from symbol index per slot to symbol
index per subframe.

For more information on mapping symbols to the resource element grid, see “Resource Grid
Indexing”.

PSSCH Demodulation Reference Signal

The PSSCH demodulation reference signal (DM-RS) sequence is transmitted alongside the ltePSSCH
values using the two SC-FDMA symbols allocated to DM-RS in a PSSCH subframe. The output vector
is the repetition of a 12-element sequence and specified in TS 36.211, Section 9.8. The vector is
mapped onto the 12 DM-RS SC-FDMA symbol subcarriers in each subframe slot for each PSSCH
physical resource block (PRB) transmission on antenna port 1000.

The output PSSCH DM-RS sequence is the concatenation of the two sequences to be mapped onto the
DM-RS SC-FDMA symbol subcarriers in each subframe slot carrying a ltePSSCH transmission. Its
length is N × 12 × NPRB, where NPRB is the number of PRBs associated with the PSSCH. For D2D
sidelink, there is one DM-RS symbol per slot and therefore N=2, and for V2X sidelink, there are two
symbols per slot and N=4.

Version History
Introduced in R2016b

See Also
ltePSSCHDRS | ltePSSCH | ltePSSCHDecode

2 Functions

2-780

ltePSSCHIndices
PSSCH resource element indices

Syntax
[ind] = ltePSSCHIndices(ue)
[ind,info] = ltePSSCHIndices(ue)
[___] = ltePSSCHIndices(ue,opts)

Description
[ind] = ltePSSCHIndices(ue) returns a column vector of physical sidelink shared channel
(PSSCH) resource element (RE) indices for the specified UE settings structure. By default, the indices
are returned in one-based linear indexing form. You can use this form to directly index elements of a
matrix representing the subframe resource grid for antenna port 1000. For more information, see
“Physical Sidelink Shared Channel Indexing” on page 2-786.

[ind,info] = ltePSSCHIndices(ue) also returns a structure containing PSSCH-related
information for the specified UE settings structure.

[___] = ltePSSCHIndices(ue,opts) formats the returned indices using options specified by
opts. This syntax supports output options from prior syntaxes.

Examples

Map PSSCH Resource Elements

Write the complex PSSCH values into the PSSCH resource elements in a PSSCH subframe both for
D2D normal cyclic prefix and V2X. Display an image of their locations to compare both sidelink
modes. This mapping writes PSSCH values into the last SC-FDMA guard symbol within a subframe.
The sidelink SC-FDMA modulator removes these values before transmission of the waveform.

Create a UE settings structure, an empty sidelink resource grid and D2D normal cyclic prefix. Define
a PRB allocation, ue.PRBSet, with RB values from 30 to 39.

ue = struct('NSLRB',50,'CyclicPrefixSL','Normal');
ue.NSAID = 1;
ue.NSubframePSSCH = 1;
ue.PRBSet = [30:39]';
ue.Modulation = 'QPSK';
subframe_D2D = lteSLResourceGrid(ue);

Generate PSSCH indices. Populate the PSSCH resource elements in the subframe using a vector filled
with zeros. For D2D normal cyclic prefix a PSSCH subframe contains (144 * nprb) REs. The number
of resource blocks is set to 10. Because the PSSCH uses QPSK modulation, there are 2 bits per
symbol.

pssch_indices = ltePSSCHIndices(ue);
subframe_D2D(pssch_indices) = ltePSSCH(ue,zeros(2*10*144,1));

 ltePSSCHIndices

2-781

Change user equipment settings to V2X sidelink mode. Set the V2X scrambling identity to 4567.

ue.SidelinkMode = 'V2X';
ue.NXID = 4567;
subframe_V2X = lteSLResourceGrid(ue);
pssch_indices = ltePSSCHIndices(ue);
subframe_V2X(pssch_indices) = ltePSSCH(ue,zeros(2*10*120,1));

View the resource grid for both sidelink modes.

subplot(2,1,1);
image(400*abs(subframe_D2D));
axis xy; title('D2D');
subplot(2,1,2);
image(400*abs(subframe_V2X));
axis xy; title(ue.SidelinkMode);

View PSSCH Information Structure

View the information structure output by the PSSCH resource element indexing function.

Create a UE settings structure.

ue = struct('NSLRB',25,'CyclicPrefixSL','Normal','PRBSet',[5:22]', ...
 'Modulation','16QAM');

2 Functions

2-782

Generate PSSCH indices and the information structure. View the information structure to see the bit
and symbol capacity of the PSSCH for this configuration.

[pssch_indices,info] = ltePSSCHIndices(ue);
info

info = struct with fields:
 G: 10368
 Gd: 2592

Compare PSSCH Resource Element Indexing

Compare PSSCH resource element indexing formats.

Create a UE settings structure.

ue = struct('NSLRB',15,'CyclicPrefixSL','Normal','PRBSet',12);

Generate PSSCH indices using one-based linear indexing (default), zero-based linear indexing, and
one-based subscript row style.

One-based linear indexing

pssch_indices = ltePSSCHIndices(ue);
pssch_indices(1)

ans = uint32
 145

Zero-based linear indexing

opts = '0based';
pssch_indices_0based = ltePSSCHIndices(ue,opts);
pssch_indices_0based(1)

ans = uint32
 144

For zero-based indexing, the first assigned index is one lower than the one-based indexing.

One-based indexing in [subcarrier,symbol,port] subscript row style

Inspect the unique symbol values to see which symbols are occupied by the PSSCH.

opts = {'sub' '1based'};
pssch_indices_sub = ltePSSCHIndices(ue,opts);
unique(pssch_indices_sub(:,2,:))

ans = 12x1 uint32 column vector

 1
 2
 3
 5
 6

 ltePSSCHIndices

2-783

 7
 8
 9
 10
 12
 ⋮

Only the symbols 4 and 11 are not occupied. For one-based indexing, these two PSSCH subframe
symbols are always reserved for transmission of the PSSCH DM-RS.

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

PRBSet — Zero-based physical resource block indices
integer column vector | two-column integer matrix

Zero-based physical resource block (PRB) indices, specified as an integer column vector or a two-
column integer matrix.

The PSSCH is intended to be transmitted in the same PRB in each slot of a subframe. Therefore,
specifying PRBSet as a single column of PRB indices is recommended. However, for a nonstandard
slot-hopping PRB allocation, PRBSet can be specified as a two-column matrix of indices
corresponding to slot-wise resource allocations for PSSCH.
Data Types: double

Modulation — Modulation type
'QPSK' (default) | '16QAM'

2 Functions

2-784

Modulation type, specified as 'QPSK' or '16QAM'. Only required when the info output is assigned.
Modulation is used to set the info.G output field.
Data Types: char | string

Data Types: struct

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — PSSCH resource element indices
integer column vector | three-column integer matrix

PSSCH resource element indices, returned as an integer column vector or a three-column integer
matrix. The returned vector or matrix has NPRB × 144 PSSCH resource element indices for D2D
normal cyclic prefix or NPRB × 120 PSSCH resource element indices for D2D extended cyclic prefix
and V2X. NPRB is the number of physical resource blocks (PRB) used for transmission. For more
information, see “Physical Sidelink Shared Channel Indexing” on page 2-786 and “Physical Sidelink
Shared Channel Processing” on page 2-786.

info — PSSCH subframe resource information
structure

PSSCH subframe resource information, returned as a structure containing these fields:

G — PSSCH bit capacity
integer

PSSCH bit capacity, returned as an integer. For more information, see “Physical Sidelink Shared
Channel Processing” on page 2-786.

 ltePSSCHIndices

2-785

Gd — PSSCH symbol capacity
integer

PSSCH symbol capacity, returned as an integer. The number of PSSCH resource elements (NRE) in a
subframe. For more information, see “Physical Sidelink Shared Channel Processing” on page 2-786.

Data Types: struct

More About
Physical Sidelink Shared Channel Indexing

Use the ltePSSCHIndices function and the corresponding ltePSSCH sequence function to populate
the PSSCH subframe resource grid. The PSSCH is transmitted in the available SC-FDMA symbols in a
PSSCH subframe, using a single layer on antenna port 1000. It excludes each symbol per slot
assigned to PSSCH DM-RS. For more information on PSSCH DM-RS, see the ltePSSCHDRSIndices
function. The indices are ordered as the PSSCH modulation symbols should be mapped, applying
frequency-first mapping. The resource elements in the last SC-FDMA symbol within a subframe are
counted in the mapping process but should not be transmitted. The sidelink-specific SC-FDMA
modulation creates this guard symbol. For more information on mapping symbols to the resource
element grid, see “Resource Grid Indexing”.

Physical Sidelink Shared Channel Processing

Physical sidelink shared channel (PSSCH) processing includes PSSCH-specific scrambling, QPSK or
16-QAM modulation, and SC-FDMA transform precoding. PSSCH processing follows the processing
steps used for PUSCH, with variations defined in TS 36.211, Section 9.3.

For PSSCH, the input codeword length is Mbits = NRE × Nbps, where Nbps is the number of bits per
symbol. PSSCH modulation is either QPSK (2 bits per symbol) or 16 QAM (4 bits per symbol).

The number of PSSCH resource elements (NRE) in a subframe is NRE = NPRB × NREperPRB × NSYM and
includes symbols associated with the sidelink SC-FDMA guard symbol.

• NPRB is the number of physical resource blocks (PRB) used for transmission.
• NREperPRB is the number of resource elements in a PRB. Each PRB has 12 resource elements.
• NSYM is the number of SC-FDMA symbols in a PSSCH subframe, including symbols associated with

the sidelink SC-FDMA guard symbol. The number of SC-FDMA symbols in a PSSCH subframe is 12
for D2D normal cyclic prefix or 10 for D2D extended cyclic prefix and V2X.

The info structure output by ltePSSCHIndices provides Mbits and NRE as info.G and info.Gd
respectively.

2 Functions

2-786

The scrambling sequence generator is initialized with cinit = nID
X × 214 + nssf

PSSCH × 29 + 510 at the
start of every PSSCH subframe. For D2D sidelink, nID

SA is the destination identity (NSAID) obtained
from the sidelink shared channel. For V2X, nID

SA is the V2X scrambling identity (NXID). nssf
PSSCH is the

subframe number in the PSSCH subframe pool (NSubframePSSCH).

ltePSSCH requires CyclicPrefixSL to deduce the number of resource blocks allocated for SC-
FDMA precoding symbols.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePSSCH | ltePSSCHDecode | ltePSSCHPRBS

 ltePSSCHIndices

2-787

https://www.3gpp.org

ltePSSCHPRBS
PSSCH pseudorandom binary scrambling sequence

Syntax
[seq,cinit] = ltePSSCHPRBS(ue,n)
[seq,cinit] = ltePSSCHPRBS(ue,n,mapping)

[subseq,cinit] = ltePSSCHPRBS(ue,pn)
[subseq,cinit] = ltePSSCHPRBS(ue,pn,mapping)

Description
[seq,cinit] = ltePSSCHPRBS(ue,n) returns the first n outputs of the PSSCH pseudorandom
binary scrambling sequence (PRBS) for the specified UE settings structure. It also returns an
initialization value cinit for the pseudorandom binary sequence (PRBS) generator.

The scrambling sequence generated should be applied to the coded PSSCH data carried by the
associated subframe. The PRBS sequence generator used is initialized with
cinit = nID

X × 214 + nssf
PSSCH × 29 + 510. For more information, see “Physical Sidelink Shared Channel

Processing” on page 2-791, ue.NSAID and ue.NXID

[seq,cinit] = ltePSSCHPRBS(ue,n,mapping) specifies the format of the returned sequence,
seq, through the mapping input.

[subseq,cinit] = ltePSSCHPRBS(ue,pn) returns a subsequence of a full PRBS sequence,
specified by pn.

[subseq,cinit] = ltePSSCHPRBS(ue,pn,mapping) specifies the format of the returned
subsequence, subseq, through the mapping input.

Examples

Scramble PSSCH Codeword

Scramble a PSSCH codeword by generating the PSSCH pseudorandom binary sequence (PRBS) and
applying an exclusive OR operation on the two sequences.

Create a UE settings structure with required fields. Generate the required length of the PRBS.
Scramble the PSSCH codeword with the PRBS sequence using xor.

ue = struct('NSAID',255,'NSubframePSSCH',0);

codeword = ones(1152,1);
psschPrbs = ltePSSCHPRBS(ue,length(codeword));

scrambled = xor(psschPrbs,codeword);

2 Functions

2-788

Descramble PSSCH Codeword

Descramble a received PSSCH codeword.

Scramble PSSCH Codeword

• Create a UE settings structure with required fields.
• Generate the required length of the PRBS.
• Scramble the PSSCH codeword with the PRBS sequence using xor.
• Modulate the logical scrambled data.

ue = struct('NSAID',255,'NSubframePSSCH',0);

codeword = ones(1152,1);
psschPrbs = ltePSSCHPRBS(ue,length(codeword));

scrambled = xor(psschPrbs,codeword);

txsym = lteSymbolModulate(scrambled,'16QAM');

Descramble Recovered Codeword

• Add noise to transmitted symbols and demodulate received soft data.
• Generate the PSSCH PRBS in signed form.
• Descramble the vector representing a sequence of soft bits by generating the PSSCH PRBS in

signed form and performing a pointwise multiplication between the PRBS sequence and the
recovered soft data.

• Compare the transmitted codeword to the recovered codeword.

sym = awgn(txsym,30,'measured');
softdata = lteSymbolDemodulate(sym,'16QAM');

scramblingSeq = ltePSSCHPRBS(ue,length(softdata),'signed');
descrambled = softdata.*scramblingSeq;

isequal(codeword,descrambled > 0)

ans = logical
 1

The transmitted codeword matches the hard decision on the descrambled data.

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.

 ltePSSCHPRBS

2-789

Data Types: char | string

NSAID — Sidelink group destination identity
integer in the interval [0, 255]

Sidelink group destination identity, specified as an integer in the interval [0, 255].

This field is the lower eight bits of the full 24-bit ProSe Layer-2 group destination ID. This field and
the NSubframePSSCH field control the value of the scrambling sequence at the start of each
subframe. This field is required only for D2D sidelink.
Data Types: double

NXID — V2X scrambling identity
integer scalar

V2X scrambling identity, specified as an integer scalar. NXID is the 16 bit CRC associated with the
PSCCH SCI grant. It is only required for V2X sidelink.
Data Types: double

NSubframePSSCH — PSSCH subframe number
integer scalar

PSSCH subframe number in the PSSCH subframe pool, specified as an integer scalar. (nssf
PSSCH)

NSubframePSSCH and NSAID control the values of the scrambling sequence. It is only required for
D2D sidelink.
Data Types: double

Data Types: struct

n — Number of elements in returned sequence
numeric scalar

Number of elements in returned sequence, seq, specified as a numeric scalar.
Data Types: double

pn — Range of elements in returned subsequence
row vector

Range of elements in returned subsequence, subseq, specified as a row vector of [p n]. The
subsequence returns n values of the PRBS generator, starting at position p (0-based).
Data Types: double

mapping — Output sequence formatting
'binary' (default) | 'signed'

Output sequence formatting, specified as 'binary' or 'signed'.

• 'binary' maps true to 1 and false to 0.
• 'signed' maps true to –1 and false to 1.

Data Types: char | string

2 Functions

2-790

Output Arguments
seq — PSSCH pseudorandom scrambling sequence
logical column vector | numeric column vector

PSSCH pseudorandom scrambling sequence, returned as a logical column vector or a numeric
column vector. seq contains the first n outputs of the physical sidelink shared channel (PSSCH)
scrambling sequence. If you set mapping to 'signed', the output data type is double. Otherwise,
the output data type is logical.
Data Types: logical | double

subseq — PSSCH pseudorandom scrambling subsequence
logical column vector | numeric column vector

PSSCH pseudorandom scrambling subsequence, returned as a logical column vector or a numeric
column vector. subseq contains the values of the PRBS generator specified by pn. If you set mapping
to 'signed', the output data type is double. Otherwise, the output data type is logical.
Data Types: logical | double

cinit — Initialization value for PRBS generator
numeric scalar

Initialization value for PRBS generator, returned as a numeric scalar.
Data Types: uint32

More About
Physical Sidelink Shared Channel Processing

Physical sidelink shared channel (PSSCH) processing includes PSSCH-specific scrambling, QPSK or
16-QAM modulation, and SC-FDMA transform precoding. PSSCH processing follows the processing
steps used for PUSCH, with variations defined in TS 36.211, Section 9.3.

For PSSCH, the input codeword length is Mbits = NRE × Nbps, where Nbps is the number of bits per
symbol. PSSCH modulation is either QPSK (2 bits per symbol) or 16 QAM (4 bits per symbol).

The number of PSSCH resource elements (NRE) in a subframe is NRE = NPRB × NREperPRB × NSYM and
includes symbols associated with the sidelink SC-FDMA guard symbol.

• NPRB is the number of physical resource blocks (PRB) used for transmission.
• NREperPRB is the number of resource elements in a PRB. Each PRB has 12 resource elements.

 ltePSSCHPRBS

2-791

• NSYM is the number of SC-FDMA symbols in a PSSCH subframe, including symbols associated with
the sidelink SC-FDMA guard symbol. The number of SC-FDMA symbols in a PSSCH subframe is 12
for D2D normal cyclic prefix or 10 for D2D extended cyclic prefix and V2X.

The info structure output by ltePSSCHIndices provides Mbits and NRE as info.G and info.Gd
respectively.

The scrambling sequence generator is initialized with cinit = nID
X × 214 + nssf

PSSCH × 29 + 510 at the
start of every PSSCH subframe. For D2D sidelink, nID

SA is the destination identity (NSAID) obtained
from the sidelink shared channel. For V2X, nID

SA is the V2X scrambling identity (NXID). nssf
PSSCH is the

subframe number in the PSSCH subframe pool (NSubframePSSCH).

ltePSSCH requires CyclicPrefixSL to deduce the number of resource blocks allocated for SC-
FDMA precoding symbols.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePSSCH | ltePSSCHIndices | ltePSSCHDecode | ltePRBS

2 Functions

2-792

https://www.3gpp.org

ltePSS
Primary synchronization signal

Syntax
s = ltePSS(enb)

Description
s = ltePSS(enb) returns a complex column vector containing the primary synchronization signal
(PSS) values for cell-wide settings in the enb structure.

This signal is only defined for subframes 0 and 5 in FDD, and subframes 1 and 6 in TDD. Therefore,
an empty vector is returned for other values of NSubframe. This behavior allows this function and
the corresponding sequence function ltePSSIndices to index the resource grid for any subframe
number as described in “Resource Grid Indexing”. However, the resource grid is only modified in
subframes 0 and 5 in FDD, or subframes 1 and 6 in TDD.

Examples

Generate Primary Synchronization Signal Values

Generate the primary synchronization signal (PSS) values using the cell-wide settings provided.

pss = ltePSS(struct('NCellID',1,'NSubframe',0,'DuplexMode','FDD'));
pss(1:4)

ans = 4×1 complex

 1.0000 + 0.0000i
 -0.9691 - 0.2468i
 -0.7331 - 0.6802i
 0.0747 + 0.9972i

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure. enb contains the following fields.

NCellID — Physical layer cell identity number
nonnegative scalar integer

Physical layer cell identity number, specified as a nonnegative scalar integer.
Example: 6
Data Types: double

 ltePSS

2-793

NSubframe — Subframe number
0 (default) | optional | nonnegative scalar integer

Subframe number, specified as nonnegative scalar integer.
Example: 8
Data Types: double

DuplexMode — Duplex mode type
'FDD' (default) | optional | 'TDD'

Duplex mode type, specified as 'FDD' or 'TDD'. Used for separating the transmission signals.
Data Types: char | string

Output Arguments
s — Primary synchronization signal (PSS) values
complex-valued numeric column vector

Primary synchronization signal (PSS) values, returned as a complex-valued numeric column vector.
These values are created for the cell-wide settings in the enb structure.
Example: 1.0000 + 0.0000i
Data Types: double

Version History
Introduced in R2014a

See Also
ltePSSIndices | lteSSS | ltePSSS

2 Functions

2-794

ltePSSIndices
PSS resource element indices

Syntax
ind = ltePSSIndices(enb)
ind = ltePSSIndices(enb,port)
ind = ltePSSIndices(enb,port,opts)

Description
ind = ltePSSIndices(enb) returns a column vector, ind, of resource element (RE) indices, Port
0 oriented, for the Primary Synchronization Signal (PSS) for the given cell-wide settings structure. By
default, the indices are returned in one-based linear indexing form that can directly index elements of
a 3-D array representing the resource array. These indices are ordered as the PSS modulation
symbols should be mapped. Alternative indexing formats can also be generated.

Note These indices are only defined for subframes 0 and 5 in FDD, and subframes 1 and 6 in TDD.
Therefore, an empty vector is returned for other values of NSubframe. This behavior allows this
function and the corresponding sequence function ltePSS to index the resource grid for any
subframe number as described in “Resource Grid Indexing”. However, the resource grid is only
modified in subframes 0 and 5 in FDD, or subframes 1 and 6 in TDD.

ind = ltePSSIndices(enb,port) returns indices appropriate for antenna port, port.

ind = ltePSSIndices(enb,port,opts) formats the returned indices using options specified by
opts.

Examples

Get PSS Resource Element Indices

Get PSS resource element indices in linear form for antenna port 0.

Create a cell-wide configuration structure initialed for RMC R.4. Generate PSS indices for RMC R.4
for antenna port 0.

enb = lteRMCDL('R.4');
ind = ltePSSIndices(enb,0);
ind(1:4)

ans = 4x1 uint32 column vector

 438
 439
 440
 441

 ltePSSIndices

2-795

Get Zero-based PSS Resource Element Indices

Get zero-based PSS resource element indices in linear form for antenna port 0.

enb = lteRMCDL('R.4');
ind = ltePSSIndices(enb,0,{'0based','ind'});
ind(1:4)

ans = 4x1 uint32 column vector

 437
 438
 439
 440

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure. enb contains the following fields.

NDLRB — Number of downlink resource blocks
integer from 6 to 110

Number of downlink resource blocks, specified as integer from 6 to 110.
Example: 9
Data Types: double

CyclicPrefix — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

NSubframe — Subframe number
0 (default) | nonnegative scalar integer | optional

Subframe number, specified as nonnegative scalar integer.
Example: 9
Data Types: double

DuplexMode — Duplex mode type
'FDD' (default) | 'TDD' | optional

Duplex mode type, specified as 'FDD' or 'TDD'.
Data Types: char | string

2 Functions

2-796

port — Antenna port number
non-negative scalar integer

Antenna port number, specified as a non-negative scalar integer.
Example: 2
Data Types: double

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — PSS resource element indices
integer column vector | 3-column integer matrix

PSS resource element indices, returned as an integer column vector or a three-column integer
matrix. This output is generated using the cell-wide settings structure, enb.
Data Types: uint32

Version History
Introduced in R2014a

See Also
ltePSS | lteSSSIndices | ltePSSSIndices

Topics
“Resource Grid Indexing”

 ltePSSIndices

2-797

ltePSSS
Primary sidelink synchronization signal

Syntax
s = ltePSSS(ue)

Description
s = ltePSSS(ue) returns a 124-by-1 complex column vector containing the primary sidelink
synchronization signal (PSSS) values for user equipment settings in the ue structure. For more
information, see “Primary Sidelink Synchronization Signal” on page 2-800.

Examples

Generate PSSS

Generate PSSS values for in-coverage and out-of-coverage identities.

psss_net = ltePSSS(struct('NSLID',0));
psss_oon = ltePSSS(struct('NSLID',168));

Plot the returned synchronization signal for the in-coverage identities (blue, +) and the out-of-
coverage identities (red, o).

scatPlot = scatterplot(psss_net,1,0,'b+');
grid
hold on
scatterplot(psss_oon,1,0,'ro',scatPlot)

2 Functions

2-798

Input Arguments
ue — User equipment settings
structure

UE-specific settings, specified as a structure containing this parameter field:

NSLID — Physical layer sidelink synchronization identity
integer from 0 to 335

Physical layer sidelink synchronization identity, specified as an integer from 0 to 335. (NID
SL)

For more information, see “Primary Sidelink Synchronization Signal” on page 2-800.
Example: 6
Data Types: double

Output Arguments
s — PSSS values
complex-valued numeric column vector

 ltePSSS

2-799

PSSS values, returned as a 124-by-1 complex-valued numeric column vector. These values are created
for the user equipment settings in the ue structure. For more information, see “Primary Sidelink
Synchronization Signal” on page 2-800.

More About
Primary Sidelink Synchronization Signal

The primary sidelink synchronization signal (PSSS) is transmitted in the central 62 resource elements
of two adjacent SC-FDMA symbols in a synchronization subframe. The same sequence of 62 complex
values is repeated in each of the symbols, resulting in a 124-by-1 element vector returned by the
ltePSSS function. The values of this sequence are ordered as they should be mapped into the
resource elements of the adjacent symbols using ltePSSSIndices. If a terminal is transmitting
PSSS, then the PSSS should be sent every 40 ms with the exact subframe dependent on the RRC
signaled subframe number offset (syncOffsetIndicator-r12).

The PSSS is sent on antenna port 1020, along with the secondary sidelink synchronization signal
(SSSS). A synchronization subframe also contains the PSBCH, which is sent on antenna port 1010.
The transmission power of the PSSS symbols should be the same as the PSBCH therefore they should
be scaled by 72 62 in a subframe. No PSCCH or PSSCH transmission will occur in a sidelink
subframe configured for synchronization purposes.

As specified in TS 36.211, Section 9.7, the PSSS identity assignment depends on the network
coverage. The set of all NID

SL is divided into two sets, id_net {0, ..., 167} and id_oon {168, ..., 335},
which are used by terminals that are in-network and out-of-network coverage, respectively. The
sidelink physical layer cell identity number, NID

SL, corresponds to the ltePSSS input UE settings
structure field ue.NSLID. Within each set, all identities result in the same PSSS. For an in-network
terminal, the ue.NSLID value corresponds to the RRC sidelink synchronization signal identity (slssid-
r12) associated with the cell.

Primary Sidelink Synchronization Signal Indexing

Use the indexing function, ltePSSSIndices, and the corresponding sequence function, ltePSSS, to
populate the resource grid for the desired subframe number. The PSSS values are output by
ltePSSS, ordered as they should be mapped, applying frequency-first mapping into the resource
elements of the adjacent symbols using ltePSSSIndices. When indexing is zero-based, the SC-
FDMA symbols used are {1,2} for normal cyclic prefix and {0, 1} for extended cyclic prefix.

Note The indicated symbol indices are based on TS 36.211, Section 9.7. However to align with the
LTE Toolbox subframe orientation, these indices are expanded from symbol index per slot to symbol
index per subframe.

For more information on mapping symbols to the resource element grid, see “Resource Grid
Indexing”.

Version History
Introduced in R2016b

2 Functions

2-800

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePSSSIndices | lteSSSS | ltePSS | ltePSBCH

Topics
“Resource Grid Indexing”

 ltePSSS

2-801

https://www.3gpp.org

ltePSSSIndices
PSSS resource element indices

Syntax
ind = ltePSSSIndices(ue)
ind = ltePSSSIndices(ue,opts)

Description
ind = ltePSSSIndices(ue) returns a 124-by-1 complex column vector of resource element (RE)
indices for the primary sidelink synchronization signal (PSSS) values for user equipment settings in
the ue structure. By default, the indices are returned in one-based linear indexing form. You can use
this form to directly index elements of a matrix representing the subframe resource grid for antenna
port 1020. For more information, see “Primary Sidelink Synchronization Signal Indexing” on page 2-
805.

ind = ltePSSSIndices(ue,opts) formats the returned indices using options specified by opts.

Examples

Generate PSSS Indices

Generate PSSS values and indices. Write the values into the PSSS resource elements in a
synchronization subframe (normal cyclic prefix) and display an image of their locations.

Create a user equipment settings structure and a resource grid that has a 10 MHz bandwidth and
normal cyclic prefix.

ue.NSLRB = 50;
ue.CyclicPrefixSL = 'Normal';
ue.NSLID = 1;
subframe = lteSLResourceGrid(ue);

Generate PSSS indices and display the first five indices. Load the PSSS symbols into the resource
grid. Display an image showing the PSSS symbol locations.

psss_indices = ltePSSSIndices(ue);
psss_indices(1:5)

ans = 5x1 uint32 column vector

 870
 871
 872
 873
 874

subframe(psss_indices) = ltePSSS(ue);

2 Functions

2-802

imagesc(100*abs(subframe));
axis xy;

Generate Zero-Based PSSS Indices

Generate PSSS indices using zero-based indexing style. Compare these indices to one-based indices.

Create a user equipment settings structure and a resource grid that has a 10 MHz bandwidth and
normal cyclic prefix.

ue.NSLRB = 50;
ue.CyclicPrefixSL = 'Normal';
ue.NSLID = 1;
subframe = lteSLResourceGrid(ue);

Generate PSSS zero-based indices and view the first five indices.

psss_indices = ltePSSSIndices(ue,'0based');
psss_indices_size = size(psss_indices)

psss_indices_size = 1×2

 124 1

psss_indices(1:5)

 ltePSSSIndices

2-803

ans = 5x1 uint32 column vector

 869
 870
 871
 872
 873

Generate PSSS one-based indices and view the first five indices.

psss_indices = ltePSSSIndices(ue,'1based');
psss_indices_size = size(psss_indices)

psss_indices_size = 1×2

 124 1

psss_indices(1:5)

ans = 5x1 uint32 column vector

 870
 871
 872
 873
 874

For zero-based indexing, the first assigned index is one lower than the one-based indexing style.

Input Arguments
ue — User equipment settings
structure

UE-specific settings, specified as a structure containing these parameter fields:

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

2 Functions

2-804

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — PSSS resource element indices
integer column vector | three column integer matrix

PSSS resource element indices, returned as an integer column vector or a three-column integer
matrix. This output is generated using the UE-settings structure, ue. For more information, see
“Primary Sidelink Synchronization Signal Indexing” on page 2-805.

More About
Primary Sidelink Synchronization Signal Indexing

Use the indexing function, ltePSSSIndices, and the corresponding sequence function, ltePSSS, to
populate the resource grid for the desired subframe number. The PSSS values are output by
ltePSSS, ordered as they should be mapped, applying frequency-first mapping into the resource
elements of the adjacent symbols using ltePSSSIndices. When indexing is zero-based, the SC-
FDMA symbols used are {1,2} for normal cyclic prefix and {0, 1} for extended cyclic prefix.

Note The indicated symbol indices are based on TS 36.211, Section 9.7. However to align with the
LTE Toolbox subframe orientation, these indices are expanded from symbol index per slot to symbol
index per subframe.

For more information on mapping symbols to the resource element grid, see “Resource Grid
Indexing”.

Primary Sidelink Synchronization Signal

The primary sidelink synchronization signal (PSSS) is transmitted in the central 62 resource elements
of two adjacent SC-FDMA symbols in a synchronization subframe. The same sequence of 62 complex
values is repeated in each of the symbols, resulting in a 124-by-1 element vector returned by the

 ltePSSSIndices

2-805

ltePSSS function. The values of this sequence are ordered as they should be mapped into the
resource elements of the adjacent symbols using ltePSSSIndices. If a terminal is transmitting
PSSS, then the PSSS should be sent every 40 ms with the exact subframe dependent on the RRC
signaled subframe number offset (syncOffsetIndicator-r12).

The PSSS is sent on antenna port 1020, along with the secondary sidelink synchronization signal
(SSSS). A synchronization subframe also contains the PSBCH, which is sent on antenna port 1010.
The transmission power of the PSSS symbols should be the same as the PSBCH therefore they should
be scaled by 72 62 in a subframe. No PSCCH or PSSCH transmission will occur in a sidelink
subframe configured for synchronization purposes.

As specified in TS 36.211, Section 9.7, the PSSS identity assignment depends on the network
coverage. The set of all NID

SL is divided into two sets, id_net {0, ..., 167} and id_oon {168, ..., 335},
which are used by terminals that are in-network and out-of-network coverage, respectively. The
sidelink physical layer cell identity number, NID

SL, corresponds to the ltePSSS input UE settings
structure field ue.NSLID. Within each set, all identities result in the same PSSS. For an in-network
terminal, the ue.NSLID value corresponds to the RRC sidelink synchronization signal identity (slssid-
r12) associated with the cell.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePSSS | lteSSSSIndices | ltePSSIndices

Topics
“Resource Grid Indexing”

2 Functions

2-806

https://www.3gpp.org

ltePUCCH1
Physical uplink control channel format 1

Syntax
sym = ltePUCCH1(ue,chs,ack)
[sym,info] = ltePUCCH1(ue,chs,ack)

Description
sym = ltePUCCH1(ue,chs,ack) returns a matrix containing physical uplink control channel
(PUCCH) format 1 symbols given a structure of UE-specific settings, a structure of channel
transmission configuration settings, and hybrid ARQ (HARQ) indicator values.

If the configured PUCCH resource indices match indices configured for a scheduling request (SR), as
specified in TS 36.213 [1], Section 10.1.5, you can also use this function to generate an SR.

[sym,info] = ltePUCCH1(ue,chs,ack) also returns a PUCCH information structure array,
info.

Examples

Generate PUCCH Format 1 Symbols

Generate the PUCCH format 1 symbols for UE-specific settings.

ue.NCellID = 1;
ue.NSubframe = 0;
chs.ResourceIdx = 0;
pucch1Sym = ltePUCCH1(ue,chs,[]);

Generate PUCCH Format 1 Symbols for Two Antennas

Generate the physical uplink control channel (PUCCH) format 1 symbols for two transmit antenna
paths.

Initialize parameters for a UE-specific configuration structure and a channel configuration structure.
Generate PUCCH1 symbols and information outputs.

ue.NCellID = 1;
ue.NSubframe = 0;
ue.CyclicPrefixUL = 'Normal';
ue.Hopping = 'Off';

chs.ResourceIdx = [0 3];
chs.DeltaShift = 1;
chs.CyclicShifts = 0;
chs.Shortened = 0;

 ltePUCCH1

2-807

[pucch1Sym,info] = ltePUCCH1(ue,chs,[]);

Because there are two antennas, the symbols are output as a two-column vector, and the info output
structure contains two elements.

pucch1Sym(1:10,:)

ans = 10×2 complex

 0.5000 + 0.5000i -0.5000 + 0.5000i
 -0.6830 + 0.1830i 0.6830 - 0.1830i
 0.6830 + 0.1830i 0.1830 - 0.6830i
 -0.5000 + 0.5000i -0.5000 + 0.5000i
 -0.1830 - 0.6830i 0.6830 - 0.1830i
 -0.6830 - 0.1830i 0.6830 + 0.1830i
 0.5000 + 0.5000i 0.5000 - 0.5000i
 0.6830 - 0.1830i 0.6830 - 0.1830i
 -0.1830 + 0.6830i -0.6830 - 0.1830i
 0.5000 + 0.5000i -0.5000 - 0.5000i

size(info)

ans = 1×2

 1 2

View the contents of the info structure elements.

info(2)

ans = struct with fields:
 Alpha: [3.6652 2.0944 4.1888 1.0472 5.2360 2.0944 2.6180 ...]
 SeqGroup: [1 1]
 SeqIdx: [0 0]
 NResourceIdx: [3 11]
 NCellCyclicShift: [64 193 89 191 71 101 234 105]
 OrthSeqIdx: [0 0]
 Symbols: [1.0000 + 0.0000i 1.0000 + 0.0000i ...]
 OrthSeq: [4x2 double]
 ScrambSeq: [0.0000 + 1.0000i 0.0000 + 1.0000i]

Input Arguments
ue — UE-specific settings
structure

UE-specific configuration settings, specified as a structure containing these fields.

Parameter Field Required or
Optional

Values Description

NCellID Required Integer from 0 to 503 Physical layer cell identity

2 Functions

2-808

Parameter Field Required or
Optional

Values Description

NSubframe Required 0 (default), nonnegative scalar
integer

Subframe number

CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
Hopping Optional 'Off' (default), 'Group' Frequency hopping method.
Shortened Optional 0 (default), 1 Option to shorten the subframe by

omitting the last symbol, specified
as 0 or 1. If 1, the last symbol of
the subframe is not used. For
subframes with possible SRS
transmission, set Shortened to 1
to maintain a standard compliant
configuration.

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing these fields.

Parameter Field Required or
Optional

Values Description

ResourceIdx Optional 0 (default), integer from 0 to 2047
or vector of integers.

PUCCH resource indices, specified
as an integer or a vector of
integers. Values range from 0 to
2047. These indices determine the
physical resource blocks, cyclic
shift and orthogonal cover used
for transmission. (nPUCCH

(1)). Define
one index for each transmission
antenna.

DeltaShift Optional 1 (default), 2, 3 Delta shift, specified as 1, 2, or 3.
(Δshift)

DeltaOffset Optional 0 (default), 1, 2 (Δoffset). Warning: The use of this
parameter field is not advised. It
applies only to 3GPP releases
preceding v8.5.0. This parameter
will be removed in a future
release.

CyclicShifts Optional 0 (default), integer from 0 to 7 Number of cyclic shifts used for
format 1 in resource blocks (RBs)
with a mixture of format 1 and
format 2 PUCCH, specified as an
integer from 0 to 7. (Ncs

(1))

ack — Hybrid ARQ indicator values
nonnegative integer vector containing 0, 1 or 2 elements

 ltePUCCH1

2-809

Hybrid ARQ indicator values, specified as a nonnegative integer vector. This vector is expected to be
the block of bits b(0),...,b(Mbit–1) specified in TS 36.211 [2], Section 5.4.1. An Mbit value of 0, 1, or 2
corresponds to PUCCH format 1, 1a, or 1b, respectively, as described in TS 36.211 [2], Table 5.4-1.
Example: [] indicates that no HARQ are transmitted in the subframe.

Output Arguments
sym — PUCCH format 1 symbols
numeric column vector

PUCCH format 1 symbols, returned as a numeric column vector. The symbols for each antenna are in
the columns of sym, with the number of columns determined by the number of PUCCH resource
indices specified in chs.ResourceIdx.
Example: [0.7071 + 0.7071i,...]

info — PUCCH format 1 resource information
structure array

PUCCH format 1 resource information, returned as a structure array with elements corresponding to
each transmit antenna and containing these fields.

Alpha — Reference signal cyclic shift for each OFDM symbol
two-column vector

Reference signal cyclic shift for each OFDM symbol, returned as a two-column vector. (α)

SeqGroup — PUCCH base sequence group number for each slot
two-column vector

PUCCH base sequence group number for each slot, returned as a two-column vector. (u)

SeqIdx — PUCCH base sequence group number indices
two-column vector

PUCCH base sequence group number indices for each slot, returned as a two-column vector. (v)

NResourceIdx — PUCCH resource indices for each slot
two-column vector

PUCCH resource indices for each slot, returned as a two-column vector. (n')

NCellCyclicShift — Cell-specific cyclic shift for each OFDM symbol
vector

Cell-specific cyclic shift for each OFDM symbol, returned as a vector. (ncs
cell)

OrthSeqIdx — Orthogonal sequence index for each slot
vector

Orthogonal sequence index for each slot, returned as a two-element vector. (noc)

Symbols — Modulated data symbols for each OFDM symbol
vector

2 Functions

2-810

Modulated data symbols for each OFDM symbol, returned as a vector. (d(0))
Example: [0.7071 + 0.7071i,...]

OrthSeq — Orthogonal sequence of each slot
numeric matrix

Orthogonal sequence of each slot, returned as a numeric matrix. Each column in the matrix contains
the orthogonal sequence (wnoc

) for each slot.

Note When ue.Shortened is 1, the transmission is shortened and the second column of
info.OrthSeq has a 0 in the last row. This 0 value occurs because, in this case, the spreading factor
for the second slot is 3 rather than 4.

Example: [1.000 + 1.000i,...]

ScrambSeq — Scrambling value
two-element vector

Scrambling value for each slot (S), returned as two-element vector.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer

procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and
Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePUCCH1Decode | ltePUCCH1Indices | ltePUCCH1DRS | ltePUCCH1DRSIndices | ltePUCCH2
| ltePUCCH3

 ltePUCCH1

2-811

https://www.3gpp.org
https://www.3gpp.org

ltePUCCH1Decode
Physical uplink control channel format 1 decoding

Syntax
ack = ltePUCCH1Decode(ue,chs,oack,sym)

Description
ack = ltePUCCH1Decode(ue,chs,oack,sym) returns a vector of hybrid-ARQ (HARQ) indicator
values, ack, obtained by performing PUCCH Format 1 decoding of the complex matrix sym. The
decoder uses a maximum likelihood (ML) approach, assuming that sym has already been equalized to
best restore the original transmitted complex values. The symbols for each antenna are in the
columns of sym. The number of columns in sym should match the number of PUCCH resource indices
specified in the structure chs.

The output argument ack is a vector containing oack hybrid-ARQ indicator values.

Examples

Decode PUCCH Format 1B Symbols

Decoding of a PUCCH Format 1b received symbol vector pucch1Sym.

Initialize a UE-specific configuration structure (ue), channel configuration structure (chs) and ACK
vector (txAck)

ue.NCellID = 0;
ue.NSubframe = 0;
ue.CyclicPrefixUL = 'Normal';
ue.Hopping = 'Off';
ue.Shortened = 0;

chs.DeltaShift = 1;
chs.ResourceIdx = 0;
chs.CyclicShifts = 0;

txAck = [0;1];

Generate PUCCH symbols. Then decode the symbols and verify that the Rx ACK vector matches the
Tx ACK vector.

pucch1Sym = ltePUCCH1(ue,chs,txAck);

rxAck = ltePUCCH1Decode(ue,chs,length(txAck),pucch1Sym)

rxAck = 2x1 logical array

 0
 1

2 Functions

2-812

Input Arguments
ue — UE-specific settings
structure

UE-specific configuration settings, specified as a structure that can contain the following fields.

Parameter Field Required or
Optional

Values Description

NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
Hopping Optional 'Off' (default), 'Group' Frequency hopping method.
Shortened Optional 0 (default), 1 Option to shorten the subframe by

omitting the last symbol, specified
as 0 or 1. If 1, the last symbol of
the subframe is not used. For
subframes with possible SRS
transmission, set Shortened to 1
to maintain a standard compliant
configuration.

Data Types: struct

chs — Channel transmission configuration
structure

PUCCH channel settings, specified as a structure that can contain the following fields.

Parameter Field Required or
Optional

Values Description

ResourceIdx Optional 0 (default), integer from 0 to 2047
or vector of integers.

PUCCH resource indices, specified
as an integer or a vector of
integers. Values range from 0 to
2047. These indices determine the
physical resource blocks, cyclic
shift and orthogonal cover used
for transmission. (nPUCCH

(1)). Define
one index for each transmission
antenna.

DeltaShift Optional 1 (default), 2, 3 Delta shift, specified as 1, 2, or 3.
(Δshift)

 ltePUCCH1Decode

2-813

Parameter Field Required or
Optional

Values Description

DeltaOffset Optional 0 (default), 1, 2 (Δoffset). Warning: The use of this
parameter field is not advised. It
applies only to 3GPP releases
preceding v8.5.0. This parameter
will be removed in a future
release.

CyclicShifts Optional 0 (default), integer from 0 to 7 Number of cyclic shifts used for
format 1 in resource blocks (RBs)
with a mixture of format 1 and
format 2 PUCCH, specified as an
integer from 0 to 7. (Ncs

(1))

Data Types: struct

oack — Number of uncoded HARQ-ACK bits
0 (default) | nonnegative integer vector

Uncoded HARQ-ACK bits, specified as a nonnegative integer vector. oack specifies the number of
Hybrid ARQ indicator values expected: 1 (PUCCH Format 1a) or 2 (PUCCH Format 1b).
Data Types: double

sym — Symbols of each antenna
complex numeric matrix

Symbols for each antenna, specified as complex numeric matrix. The number of columns in sym
should match the number of PUCCH resource indices specified in the structure, chs.
Example: 0.25881 + 0.9659i
Data Types: double
Complex Number Support: Yes

Output Arguments
ack — Hybrid ARQ indicator values
logical column vector or matrix

oack Hybrid ARQ indicator values, specified as a logical column vector or matrix. This vector is
obtained by performing PUCCH Format 1 decoding of the complex matrix, sym. A Scheduling Request
(SR), which is transmitted on PUCCH Format 1 (no ACK bits), can be detected by setting oack = 1; in
this case the received Hybrid ARQ indicator value, ack, is expected to be zero.

If multiple decoded Hybrid ARQ indicator vectors have a likelihood equal to the maximum, ack is a
matrix where each column represents one of the equally likely Hybrid ARQ indicator vectors. If a
minimum likelihood threshold is not met, ack is empty.
Data Types: logical

Version History
Introduced in R2014a

2 Functions

2-814

See Also
ltePUCCH1 | ltePUCCH1Indices | ltePUCCH1DRS | ltePUCCH1DRSIndices | ltePUCCH2Decode
| ltePUCCH3Decode

 ltePUCCH1Decode

2-815

ltePUCCH1DRS
PUCCH format 1 demodulation reference signal

Syntax
seq = ltePUCCH1DRS(ue,chs)
[seq,info] = ltePUCCH1DRS(ue,chs)

Description
seq = ltePUCCH1DRS(ue,chs) returns a matrix containing demodulation reference signal (DRS)
associated with PUCCH format 1 transmission, given structures containing the UE-specific settings,
and the channel transmission configuration settings.

[seq,info] = ltePUCCH1DRS(ue,chs) also returns a PUCCH information structure array, info.

Examples

Generate PUCCH Format 1 DM-RS

Generate PUCCH format 1 DM-RS values for UE-specific settings.

Initialize UE-specific and channel configuration structures. Generate PUCCH format 1 DM-RS values.

ue.NCellID = 1;
ue.NSubframe = 0;
ue.CyclicPrefixUL = 'Normal';
ue.Hopping = 'Off';

chs.ResourceIdx = 0;
chs.DeltaShift = 1;
chs.CyclicShifts = 0;

drsSeq = ltePUCCH1DRS(ue,chs);

Generate PUCCH Format 1 DM-RS Using Virtual Cell ID

Demonstrate Uplink Release 11 coordinated multipoint (CoMP) operation. Intercell interference can
be avoided by using a virtual cell identity and a distinct DM-RS cyclic shift hopping identity for a
potentially interfering UE in a neighboring cell.

Configuration for UE of interest, UE 1 in cell 1.

ue1.NCellID = 1;
ue1.NSubframe = 0;
ue1.CyclicPrefixUL = 'Normal';
ue1.Hopping = 'Off';

2 Functions

2-816

chs1.ResourceIdx = 0;
chs1.DeltaShift = 1;
chs1.CyclicShifts = 0;

Configuration for interferer, UE 2 in cell 2.

ue2.NCellID = 2;
ue2.NSubframe = 0;
ue2.CyclicPrefixUL = 'Normal';
ue2.Hopping = 'Off';

chs2.ResourceIdx = 1;
chs2.DeltaShift = 1;
chs2.CyclicShifts = 0;

Measure the interference between the DM-RS signals.

interferenceNoCoMP = abs(sum(ltePUCCH1DRS(ue1,chs1).*conj(ltePUCCH1DRS(ue2,chs2))))

interferenceNoCoMP = 2.0706

Reconfigure interferer for CoMP operation: use virtual cell identity equal to the cell identity for the
UE of interest.

ue2.NPUCCHID = ue1.NCellID;

Measure the interference between the DM-RS signals when using CoMP:

interferenceUsingCoMP = abs(sum(ltePUCCH1DRS(ue1,chs1).*conj(ltePUCCH1DRS(ue2,chs2))))

interferenceUsingCoMP = 2.3645e-14

Compare the correlations between the DM-RS signals for two UEs with and without CoMP,
interferenceUsingCoMP and interferenceNoCoMP respectively. Using CoMP, the interference is
reduced to effectively zero.

Generate PUCCH Format 1 DM-RS for Two Antennas

Generate the PUCCH format 1 DM-RS for two transmit antenna paths.

Initialize UE-specific and channel configuration structures. Generate PUCCH1 DM-RS and
information outputs.

ue.NCellID = 1;
ue.NSubframe = 0;
ue.CyclicPrefixUL = 'Normal';
ue.Hopping = 'Off';

chs.ResourceIdx = [0 3];
chs.DeltaShift = 1;
chs.CyclicShifts = 0;

[drsSeq,info] = ltePUCCH1DRS(ue,chs);

Because there are two antennas, the DM-RS sequences are output as a two-column vector and the
info output structure contains two elements. View ind and the size of info to confirm this.

 ltePUCCH1DRS

2-817

drsSeq(1:10,:)

ans = 10×2 complex

 0.5000 + 0.5000i 0.5000 + 0.5000i
 0.5000 + 0.5000i -0.5000 + 0.5000i
 -0.5000 + 0.5000i 0.5000 - 0.5000i
 -0.5000 + 0.5000i 0.5000 + 0.5000i
 -0.5000 + 0.5000i -0.5000 + 0.5000i
 0.5000 - 0.5000i 0.5000 + 0.5000i
 0.5000 + 0.5000i -0.5000 - 0.5000i
 -0.5000 - 0.5000i -0.5000 + 0.5000i
 -0.5000 - 0.5000i -0.5000 - 0.5000i
 0.5000 + 0.5000i -0.5000 + 0.5000i

size(info)

ans = 1×2

 1 2

View the contents of the two info structure elements.

info(1)

ans = struct with fields:
 Alpha: [0 5.2360 4.1888 4.7124 1.0472 1.5708]
 SeqGroup: [1 1]
 SeqIdx: [0 0]
 NResourceIdx: [0 2]
 NCellCyclicShift: [192 46 212 91 84 25]
 OrthSeqIdx: [0 0]
 Symbols: [1.0000 + 0.0000i 1.0000 + 0.0000i ...]
 OrthSeq: [3x2 double]

info(2)

ans = struct with fields:
 Alpha: [1.5708 0.5236 5.7596 3.1416 5.7596 0]
 SeqGroup: [1 1]
 SeqIdx: [0 0]
 NResourceIdx: [3 11]
 NCellCyclicShift: [192 46 212 91 84 25]
 OrthSeqIdx: [0 0]
 Symbols: [1.0000 + 0.0000i 1.0000 + 0.0000i ...]
 OrthSeq: [3x2 double]

Input Arguments
ue — UE-specific settings
structure

UE-specific configuration settings, specified as a structure containing these fields.

2 Functions

2-818

Parameter Field Required or
Optional

Values Description

NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
Hopping Optional 'Off' (default), 'Group' Frequency hopping method.
NPUCCHID Optional NCellID (default)

Integer from 0 to 503

PUCCH virtual cell identity. If this
field is not present, NCellID is
used as the identity.

chs — Channel transmission configuration
structure

PUCCH channel settings, specified as a structure containing the following fields.

Parameter Field Required or
Optional

Values Description

ResourceIdx Optional 0 (default), integer from 0 to 2047
or vector of integers.

PUCCH resource indices, specified
as an integer or a vector of
integers. Values range from 0 to
2047. These indices determine the
physical resource blocks, cyclic
shift and orthogonal cover used
for transmission. (nPUCCH

(1)). Define
one index for each transmission
antenna.

DeltaShift Optional 1 (default), 2, 3 Delta shift, specified as 1, 2, or 3.
(Δshift)

DeltaOffset Optional 0 (default), 1, 2 (Δoffset). Warning: The use of this
parameter field is not advised. It
applies only to 3GPP releases
preceding v8.5.0. This parameter
will be removed in a future
release.

CyclicShifts Optional 0 (default), integer from 0 to 7 Number of cyclic shifts used for
format 1 in resource blocks (RBs)
with a mixture of format 1 and
format 2 PUCCH, specified as an
integer from 0 to 7. (Ncs

(1))

Output Arguments
seq — PUCCH format 1 DRS values
numeric matrix

 ltePUCCH1DRS

2-819

PUCCH format 1 DRS values, returned as a numeric matrix. The symbols for each antenna are in the
columns of seq, with the number of columns determined by the number of PUCCH resource indices
specified in chs.ResourceIdx.
Example: [0.707+0.707i,...]

info — PUCCH format 1 DRS information
structure array

PUCCH format 1 DRS information, returned as a structure array with elements corresponding to
each transmit antenna and containing these fields.

Alpha — Reference signal cyclic shift for each OFDM symbol
two-column vector

Reference signal cyclic shift for each OFDM symbol, returned as a two-column vector. (α)

SeqGroup — PUCCH base sequence group number for each slot
two-column vector

PUCCH base sequence group number for each slot, returned as two-column vector. (u)

SeqIdx — PUCCH base sequence number for each slot
two-column vector

PUCCH base sequence number for each slot, returned as two-column vector. (v)

NResourceIdx — PUCCH resource indices for each slot
vector

PUCCH resource indices for each slot, returned as two-column vector. (n')

NCellCyclicShift — Cell-specific cyclic shift for each OFDM symbol
vector

Cell-specific cyclic shift for each OFDM symbol, returned as vector. (ncs
cell)

OrthSeqIdx — Orthogonal sequence index for each slot
two-column vector

Orthogonal sequence index for each slot, returned as two-column vector. (noc)

Symbols — Modulated data symbols
vector

Modulated data symbols, returned as a vector. There is one element for each OFDM symbol. (z)
Example: [0.7071 + 0.7071i,...]

OrthSeq — Orthogonal sequence for each slot
numeric matrix

Orthogonal sequence for each slot, returned as a numeric matrix. (w)
Example: [1.000 + 1.000i,...]

2 Functions

2-820

Version History
Introduced in R2014a

See Also
ltePUCCH1 | ltePUCCH1Decode | ltePUCCH1Indices | ltePUCCH1DRSIndices | ltePUCCH2DRS
| ltePUCCH3DRS

 ltePUCCH1DRS

2-821

ltePUCCH1DRSIndices
PUCCH format 1 DRS resource element indices

Syntax
ind = ltePUCCH1DRSIndices(ue,chs)
[ind,info] = ltePUCCH1DRSIndices(ue,chs)
[___] = ltePUCCH1DRSIndices(ue,chs,opts)

Description
ind = ltePUCCH1DRSIndices(ue,chs) returns a matrix of resource element indices for the
demodulation reference signal (DRS) associated with PUCCH format 1 transmission given structures
containing the UE-specific settings, and the channel transmission configuration settings.

[ind,info] = ltePUCCH1DRSIndices(ue,chs) also returns a PUCCH information structure
array, info.

[___] = ltePUCCH1DRSIndices(ue,chs,opts) formats the returned indices using options
specified by opts.

This syntax supports output options from prior syntaxes.

Examples

Generate PUCCH Format 1 DM-RS Indices

Generate PUCCH format 1 DM-RS RE indices for a 1.4 MHz bandwidth and PUCCH resource index 0.
Use default values for all other parameters.

Initialize UE-specific and channel configuration structures. Generate PUCCH format 1 DM-RS
indices.

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';

chs.ResourceIdx = 0;
chs.DeltaShift = 1;
chs.CyclicShifts = 0;
chs.ResourceSize = 0;

ind = ltePUCCH1DRSIndices(ue,chs);
ind(1:4)

ans = 4x1 uint32 column vector

 145
 146
 147
 148

2 Functions

2-822

Generate PUCCH Format 1 DM-RS Indices for Two Antennas

Generate the PUCCH format 1 DM-RS indices for two transmit antenna paths.

Initialize UE-specific and channel configuration structures. Generate PUCCH1 DRS indices and
information outputs.

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';

chs.ResourceIdx = [0 4];
chs.ResourceSize = 0;
chs.DeltaShift = 1;
chs.CyclicShifts = 0;

[ind,info] = ltePUCCH1DRSIndices(ue,chs);

Because there are two antennas, the DM-RS indices are output as a two-column vector, and the info
output structure contains two elements. View ind and the size of info to confirm this.

ind(1:6,:)

ans = 6x2 uint32 matrix

 145 1153
 146 1154
 147 1155
 148 1156
 149 1157
 150 1158

size(info)

ans = 1×2

 1 2

View the contents of the two info structure elements.

info(1)

ans = struct with fields:
 PRBSet: [0 5]
 RBIdx: 0

info(2)

ans = struct with fields:
 PRBSet: [0 5]
 RBIdx: 0

 ltePUCCH1DRSIndices

2-823

Generate PUCCH Format 1 DM-RS Indices for Two Antennas Varying Indexing Style

Generate the PUCCH format 1 DM-RS indices for two transmit antenna paths, and output in subscript
indexing form.

Initialize UE-specific and channel configuration structures, and the indexing option parameter.
Generate PUCCH1 DM-RS indices and information outputs.

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';

chs.ResourceIdx = [0 4];
chs.ResourceSize = 0;
chs.DeltaShift = 1;
chs.CyclicShifts = 0;

opts = {'sub'};

[ind,info] = ltePUCCH1DRSIndices(ue,chs,opts);

Using 'sub' indexing style, the indices are output in [subcarrier, symbol, antenna] subscript form.
View the midpoint of ind and observe the antenna index change.

size(ind)

ans = 1×2

 144 3

ind(70:74,:)

ans = 5x3 uint32 matrix

 70 12 1
 71 12 1
 72 12 1
 1 3 2
 2 3 2

size(info)

ans = 1×2

 1 2

Because there are two antennas, the info output structure contains two elements. View one of the
info structure elements.

info(1)

ans = struct with fields:
 PRBSet: [0 5]
 RBIdx: 0

2 Functions

2-824

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure containing these fields.

NULRB — Number of uplink resource blocks
integer from 6 to 110

Number of uplink resource blocks, specified as an integer from 6 to 110.
Data Types: double

CyclicPrefixUL — Cyclic prefix length for uplink channels
'Normal' (default) | 'Extended' | optional

Cyclic prefix length for uplink channels, specified as 'Normal' or 'Extended'.
Data Types: char | string

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing these fields.

ResourceIdx — PUCCH resource indices
0 (default) | 0,...,2047 | integer | vector of integers | optional

PUCCH resource indices, specified as an integer or a vector of integers. Values range from 0 to 2047.
These indices determine the physical resource blocks, cyclic shift and orthogonal cover used for
transmission. (nPUCCH

(1)). Define one index for each transmission antenna.

Data Types: double

ResourceSize — Size of resources allocated to PUCCH format 2
0 (default) | 0,...,98 | integer | optional

Size of resources allocated to PUCCH format 2, specified as an integer from 0 to 98. This parameter
affects the location of this transmission. (NRB

(2))

Data Types: double

DeltaShift — Delta shift
1 (default) | 2 | 3 | optional

Delta shift, specified as 1, 2, or 3. (Δshift)
Data Types: double

CyclicShifts — Number of cyclic shifts used for format 1
0 (default) | optional | 0,...,7 | integer

Number of cyclic shifts used for format 1 in resource blocks (RBs) with a mixture of format 1 and
format 2 PUCCH, specified as an integer from 0 to 7. (Ncs

(1))

 ltePUCCH1DRSIndices

2-825

Data Types: double

Data Types: struct

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — Resource element indices
integer column vector | three-column integer matrix

Resource element indices, returned as an integer column vector or a three-column integer matrix. By
default the indices are returned in one-based linear indexing form that can directly index elements of
a resource matrix. These indices are ordered according to PUCCH format 1 DRS modulation symbol
mapping. The opts input offers alternative indexing formats. The indices for each antenna are in the
columns of ind, with the number of columns determined by the number of PUCCH resource indices
specified in chs.ResourceIdx.
Example: [145,146,147,...]
Data Types: uint32

info — PUCCH format 1 DRS information
structure array

PUCCH format 1 DRS information, returned as a structure array with elements corresponding to
each transmit antenna and containing these fields.

PRBSet — Indices occupied by PRB in each slot of subframe
nonnegative integer vector

Indices occupied by PRB in each slot of the subframe, returned as a nonnegative integer vector. The
indices are zero-based.

2 Functions

2-826

Example: [0,5]
Data Types: double

RBIdx — PUCCH logical resource block index
nonnegative integer

PUCCH logical resource block index, returned as a nonnegative integer. (m)
Data Types: double

Data Types: struct

Version History
Introduced in R2014a

See Also
ltePUCCH1 | ltePUCCH1Decode | ltePUCCH1Indices | ltePUCCH1DRS | ltePUCCH2DRSIndices
| ltePUCCH3DRSIndices

 ltePUCCH1DRSIndices

2-827

ltePUCCH1Indices
PUCCH format 1 resource element indices

Syntax
ind = ltePUCCH1Indices(ue,chs)
[ind,info] = ltePUCCH1Indices(ue,chs)
[___] = ltePUCCH1Indices(ue,chs,opts)

Description
ind = ltePUCCH1Indices(ue,chs) returns a matrix of resource element (RE) indices for the
physical uplink control channel (PUCCH) format 1 transmission, given structures containing the UE-
specific settings, and the channel transmission configuration.

[ind,info] = ltePUCCH1Indices(ue,chs) also returns a PUCCH information structure array.

[___] = ltePUCCH1Indices(ue,chs,opts) formats the returned indices using options
specified by opts.

This syntax supports output options from prior syntaxes.

Examples

Generate PUCCH Format 1 Indices

Generate PUCCH format 1 RE indices for a 1.4 MHz bandwidth, PUCCH resource index 0. Use
default values for all other parameters.

Initialize UE-specific and channel configuration structures (ue and chs). Generate PUCCH format 1
indices (ind).

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';

chs.ResourceIdx = 0;
chs.DeltaShift = 1;
chs.CyclicShifts = 0;
chs.ResourceSize = 0;
chs.Shortened = 0;

ind = ltePUCCH1Indices(ue,chs);
ind(1:4)

ans = 4x1 uint32 column vector

 1
 2
 3
 4

2 Functions

2-828

Generate PUCCH Format 1 Indices for Three Antennas

Generate the physical uplink control channel (PUCCH) format 1 indices for three transmit antenna
paths, and display the information structure output.

Initialize UE-specific and channel configuration structures. Generate PUCCH 1 indices and
information outputs.

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';
ue.Shortened = 0;

chs.ResourceIdx = [0 129 2];
chs.ResourceSize = 0;
chs.DeltaShift = 1;
chs.CyclicShifts = 0;

[ind,info] = ltePUCCH1Indices(ue,chs);

Because there are three antennas, the indices are output as a three-column vector, and the info
output structure contains three elements. View ind and the size of info to confirm this.

ind(1:5,:)

ans = 5x3 uint32 matrix

 1 1057 2017
 2 1058 2018
 3 1059 2019
 4 1060 2020
 5 1061 2021

size(info)

ans = 1×2

 1 3

View the contents of one of the info structure elements.

info(3)

ans = struct with fields:
 PRBSet: [0 5]
 RBIdx: 0

Generate PUCCH Format 1 Indices Varying Indexing Style

Generate the physical uplink control channel (PUCCH) format 1 indices for two transmit antenna
paths and output in subscript indexing form.

 ltePUCCH1Indices

2-829

Initialize UE-specific and channel configuration structures (ue and chs) and the indexing option
parameter, opt. Generate PUCCH1 indices and information outputs (ind and info).

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';

chs.ResourceIdx = [0 4];
chs.ResourceSize = 0;
chs.DeltaShift = 1;
chs.CyclicShifts = 0;
chs.Shortened = 0;

[ind,info] = ltePUCCH1Indices(ue,chs,{'sub'});

Using 'sub' indexing style, the indices are output in [subcarrier, symbol, antenna] subscript
form. View the midpoint of ind and observe the antenna index change.

size(ind)

ans = 1×2

 192 3

ind(94:99,:)

ans = 6x3 uint32 matrix

 70 14 1
 71 14 1
 72 14 1
 1 1 2
 2 1 2
 3 1 2

Because there are two antennas, the info output structure contains two elements. View the contents
of the second info structure element.

size(info)

ans = 1×2

 1 2

info(2)

ans = struct with fields:
 PRBSet: [0 5]
 RBIdx: 0

Input Arguments
ue — UE-specific settings
structure

2 Functions

2-830

UE-specific settings, specified as a structure containing these fields.

NULRB — Number of uplink resource blocks
nonnegative integer

Number of uplink resource blocks, specified as a nonnegative integer.
Data Types: double

CyclicPrefixUL — Cyclic prefix length for uplink channels
'Normal' (default) | 'Extended' | optional

Cyclic prefix length for uplink channels, specified as 'Normal' or 'Extended'.
Data Types: char | string

Shortened — Option to shorten the subframe
0 (default) | 1 | optional

Option to shorten the subframe by omitting the last symbol, specified as 0 or 1. If 1, the last symbol of
the subframe is not used. For subframes with possible SRS transmission, set Shortened to 1 to
maintain a standard compliant configuration.

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing these fields.

ResourceIdx — PUCCH resource indices
0 (default) | 0,...,2047 | integer | vector of integers | optional

PUCCH resource indices, specified as an integer or a vector of integers. Values range from 0 to 2047.
There is one index for each transmission antenna. These indices determine the cyclic shift and
orthogonal cover used for transmission. (nPUCCH

(1))

ResourceSize — Size of resources allocated to PUCCH format 2
0 (default) | 0,...,98 | integer | optional

Size of resources allocated to PUCCH format 2, specified as an integer from 0 to 98. This parameter
affects the location of this transmission. (NRB

(2))

DeltaShift — Delta shift
1 (default) | 2 | 3 | optional

Delta shift, specified as 1, 2, or 3. (Δshift)

CyclicShifts — Number of cyclic shifts used for format 1
0 (default) | 0,...,7 | integer | optional

Number of cyclic shifts used for format 1 in RBs with a mixture of Format 1 and Format 2 PUCCH,
specified as an integer from 0 to 7. (Ncs

(1))

 ltePUCCH1Indices

2-831

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — PUCCH format 1 resource element indices
integer column vector | three-column integer matrix

PUCCH format 1 resource element indices, returned as an integer column vector or a three-column
integer matrix. By default, the indices are returned in one-based linear indexing form that can
directly index elements of a resource matrix. These indices are ordered according to PUCCH format 1
modulation symbol mapping as specified in TS 36.211 [1], Section 5.4. The opts input offers
alternative indexing formats. The indices for each antenna are in the columns of ind, with the
number of columns determined by the number of PUCCH resource indices specified in
chs.ResourceIdx.
Example: [1,2,3,4...]
Data Types: uint32

info — PUCCH format 1 information
structure array

PUCCH format 1 information, returned as a structure array with elements corresponding to each
transmit antenna and containing these fields.

PRBSet — Set of PRB indices
column vector | two-column matrix

Set of PRB indices, returned as a column vector or two-column matrix corresponding to the resource
allocations.

• When returned as a column integer vector, the resource allocation is the same in both slots of the
subframe.

2 Functions

2-832

• When returned as a two-column integer matrix, the resource allocations can vary for each slot in
the subframe.

The PRB indices are zero-based.
Example: [0,5]
Data Types: double

RBIdx — PUCCH logical resource block index
nonnegative integer

PUCCH logical resource block index, returned as a nonnegative integer. (m)
Data Types: double

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePUCCH1 | ltePUCCH1Decode | ltePUCCH1DRS | ltePUCCH1DRSIndices | ltePUCCH2Indices
| ltePUCCH3Indices

 ltePUCCH1Indices

2-833

https://www.3gpp.org

ltePUCCH2
Physical uplink control channel format 2

Syntax
sym = ltePUCCH2(ue,chs,bits)
[sym,info] = ltePUCCH2(ue,chs,bits)

Description
sym = ltePUCCH2(ue,chs,bits) returns a matrix containing physical uplink control channel
(PUCCH) format 2 symbols given a structure of UE-specific settings, a structure with channel
transmission configuration settings, and a vector of coded CQI/PMI or RI bits.

[sym,info] = ltePUCCH2(ue,chs,bits) also returns a PUCCH information structure array,
info.

Examples

Generate PUCCH Format2 symbols

Generate PUCCH format 2 symbol values, using NCellID set to 1 and NSubframe set to 0.

Initialize ue and chs configuration structures. Generate symbols.

ue.NCellID = 1;
ue.NSubframe = 0;
ue.RNTI = 1;
ue.CyclicPrefixUL = 'Normal';
ue.Hopping = 'Off';

chs.ResourceIdx = 0;
chs.ResourceSize = 0;
chs.CyclicShifts = 0;

sym = ltePUCCH2(ue,chs,ones(20,1));
sym(1:5)

ans = 5×1 complex

 0.0000 + 1.0000i
 -0.5000 - 0.8660i
 -0.5000 + 0.8660i
 -0.0000 - 1.0000i
 0.5000 + 0.8660i

2 Functions

2-834

Generate PUCCH Format 2 Symbols for Two Antennas

Generate the physical uplink control channel (PUCCH) format 2 symbols for two transmit antenna
paths.

Initialize parameters for a UE-specific configuration structure and a channel configuration structure.
Generate PUCCH 2 symbols and the information structure.

ue.NCellID = 1;
ue.NSubframe = 0;
ue.RNTI = 1;
ue.CyclicPrefixUL = 'Normal';
ue.Hopping = 'Off';

chs.ResourceIdx = [0 3];
chs.ResourceSize = 0;
chs.CyclicShifts = 0;

[pucch2Sym,info] = ltePUCCH2(ue,chs,[]);

Because there are two antennas, the symbols are output as a two-column vector, and the info output
structure contains two elements.

pucch2Sym(1:10,:)

ans = 10×2 complex

 0.5000 + 0.5000i 0.5000 + 0.5000i
 -0.6830 - 0.1830i 0.1830 - 0.6830i
 0.1830 + 0.6830i -0.1830 - 0.6830i
 -0.5000 - 0.5000i -0.5000 + 0.5000i
 0.6830 + 0.1830i 0.6830 + 0.1830i
 0.6830 - 0.1830i 0.1830 + 0.6830i
 -0.5000 - 0.5000i 0.5000 + 0.5000i
 -0.6830 - 0.1830i -0.1830 + 0.6830i
 0.6830 - 0.1830i 0.6830 - 0.1830i
 0.5000 - 0.5000i 0.5000 + 0.5000i

size(info)

ans = 1×2

 1 2

View the contents of the second info structure element.

info(2)

ans = struct with fields:
 Alpha: [4.1888 2.0944 1.0472 0 1.5708 3.1416 1.0472 ...]
 SeqGroup: [1 1]
 SeqIdx: [0 0]
 NResourceIdx: [4 7]
 NCellCyclicShift: [64 192 46 212 191 71 91 84 25 105]
 Symbols: [1.0000 + 0.0000i 1.0000 + 0.0000i ...]

 ltePUCCH2

2-835

Input Arguments
ue — UE-specific settings
structure

UE-specific configuration settings, specified as a structure containing these fields.

Parameter Field Required or
Optional

Values Description

NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

RNTI Required 0 (default), scalar integer Radio network temporary
identifier (RNTI) value (16 bits)

CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
Hopping Optional 'Off' (default), 'Group' Frequency hopping method.

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing these fields.

Parameter Field Required or
Optional

Values Description

ResourceIdx Optional 0 (default), integer from 0 to 1185
or vector of integers.

PUCCH resource indices which
determine the physical resource
blocks, cyclic shift, and orthogonal
cover used for transmission.
(nPUCCH

(2)). Define one index for
each transmission antenna.

ResourceSize Optional 0 (default), integer from 0 to 98. Size of resource allocated to
PUCCH format 2 (NRB

(2))

CyclicShifts Optional 0 (default), integer from 0 to 7 Number of cyclic shifts used for
format 1 in resource blocks (RBs)
with a mixture of format 1 and
format 2 PUCCH, specified as an
integer from 0 to 7. (Ncs

(1))

bits — Coded CQI/PMI or RI bits
vector

Coded CQI/PMI or RI bits (coded UCI), specified as a vector that is formed by performing UCI
encoding of a bit vector representing the CQI/PMI or RI information fields described in TS 36.212 [2],
Section 5.2.3.3. This 20 bit long coded bit vector is denoted block of bits b(0),...,b(19) in TS 36.211
[1], Section 5.4.2. If Mbit is 21 or 22, corresponding to PUCCH format 2a or 2b, respectively, as
described in TS 36.211 [1], Table 5.4-1, the further bits, b(20),...,b(Mbit–1), should be provided as
input to the ltePUCCH2DRS function for transmission. An Mbit value of 20 corresponds to PUCCH
format 2, with no additional bits being transmitted on the PUCCH format 2 DRS.

2 Functions

2-836

Data Types: logical | double

Output Arguments
sym — PUCCH format 2 symbols
numeric column vector

PUCCH format 2 symbols, returned as numeric column vector. The symbols for each antenna are in
the columns of sym, with the number of columns determined by the number of PUCCH resource
indices specified in chs.ResourceIdx.
Example: 0.7071 + 0.7071i
Data Types: double

info — PUCCH format 2 information
structure array

PUCCH format 2 information, returned as a structure array with elements corresponding to each
transmit antenna and containing these fields.

Alpha — Reference signal cyclic shift for each OFDM symbol
two-column vector

Reference signal cyclic shift for each OFDM symbol, returned as a two-column vector. (α)

SeqGroup — PUCCH base sequence group number for each slot
two-column vector

PUCCH base sequence group number for each slot, returned as a two-column vector. (u)

SeqIdx — PUCCH base sequence group number indices
two-column vector

PUCCH base sequence group number indices for each slot, returned as a two-column vector. (v)

NResourceIdx — PUCCH resource indices for each slot
two-column vector

PUCCH resource indices for each slot, returned as a two-column vector. (n')

NCellCyclicShift — Cell-specific cyclic shift for each OFDM symbol
vector

Cell-specific cyclic shift for each OFDM symbol, returned as a vector. (ncs
cell)

Symbols — Modulated data symbols for each OFDM symbol
vector

Modulated data symbols for each OFDM symbol, returned as a vector. (d(0))
Example: [0.7071 + 0.7071i,...]

 ltePUCCH2

2-837

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel
coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePUCCH2Decode | ltePUCCH2Indices | ltePUCCH2DRS | ltePUCCH2DRSIndices |
lteUCIEncode | ltePUCCH1 | ltePUCCH3

2 Functions

2-838

https://www.3gpp.org
https://www.3gpp.org

ltePUCCH2DRS
PUCCH format 2 demodulation reference signal

Syntax
seq = ltePUCCH2DRS(ue,chs,ack)
[seq,info] = ltePUCCH2DRS(ue,chs,ack)

Description
seq = ltePUCCH2DRS(ue,chs,ack) returns a matrix containing demodulation reference signal
(DRS) associated with PUCCH format 2 transmission, given a structure of UE-specific settings, a
structure with channel transmission configuration settings, and hybrid ARQ (HARQ) indicator values,
ack.

[seq,info] = ltePUCCH2DRS(ue,chs,ack) also returns a PUCCH information structure array,
info.

Examples

Generate PUCCH Format 2 DM-RS

Generate PUCCH Format 2 DM-RS symbols for UE specific settings.

Initialize input configuration structures (ue and chs). Here no HARQ bits will be sent by inputting an
empty ack vector. Generate the PUCCH Format 2 DM-RS symbols.

ue.NCellID = 1;
ue.NSubframe = 0;
ue.CyclicPrefixUL = 'Normal';
ue.Hopping = 'Off';

chs.ResourceIdx = 0;
chs.ResourceSize = 0;
chs.CyclicShifts = 0;

sym = ltePUCCH2DRS(ue,chs,[]);

Generate PUCCH Format 2 DM-RS Using Virtual Cell ID

Demonstrate Uplink Release 11 coordinated multipoint (CoMP) operation. Intercell interference can
be avoided by using a virtual cell identity for a potentially interfering UE in a neighboring cell.

Configuration for UE of interest, UE 1 in cell 1.

ue1.NCellID = 1;
ue1.NSubframe = 0;
ue1.CyclicPrefixUL = 'Normal';

 ltePUCCH2DRS

2-839

ue1.Hopping = 'Off';

chs1.ResourceIdx = 0;
chs1.ResourceSize = 0;
chs1.CyclicShifts = 0;

ack1 = 0;

Configuration for interferer, UE 2 in cell 2.

ue2.NCellID = 2;
ue2.NSubframe = 0;
ue2.CyclicPrefixUL = 'Normal';
ue2.Hopping = 'Off';

chs2.ResourceIdx = 1;
chs2.ResourceSize = 0;
chs2.CyclicShifts = 0;

ack2 = 0;

Measure the interference between the DM-RS signals.

interferenceNoCoMP = abs(sum(ltePUCCH2DRS(ue1,chs1,ack1).*conj(ltePUCCH2DRS(ue2,chs2,ack2))))

interferenceNoCoMP = 5.4903

Reconfigure interferer for CoMP operation: use virtual cell identity equal to the cell identity for the
UE of interest.

ue2.NPUCCHID = ue1.NCellID;

Measure the interference between the DM-RS signals when using CoMP.

interferenceUsingCoMP = abs(sum(ltePUCCH2DRS(ue1,chs1,ack1).*conj(ltePUCCH2DRS(ue2,chs2,ack2))))

interferenceUsingCoMP = 4.2221e-15

Comparing the correlations between the DM-RS signals for two UEs with and without CoMP,
interferenceUsingCoMP and interferenceNoCoMP respectively. Using CoMP, the interference is
reduced to effectively zero.

Generate PUCCH Format 2 DM-RS for Two Antennas

Generate the PUCCH format 2 DM-RS sequences for two transmit antenna paths.

Initialize UE-specific and channel configuration structures. Provide an empty vector for the ack,
indicating there are no HARQ bits for this PUCCH transmission. Generate PUCCH 2 DM-RS and
information outputs.

ue.NCellID = 1;
ue.NSubframe = 0;
ue.CyclicPrefixUL = 'Normal';
ue.Hopping = 'Off';

chs.ResourceIdx = [0 3];

2 Functions

2-840

chs.ResourceSize = 0;
chs.CyclicShifts = 0;

ack = [];

[drsSeq,info] = ltePUCCH2DRS(ue,chs,ack);

Because there are two antennas, the DM-RS sequences are output as a two- column vector, and the
info output structure contains two elements.

drsSeq(1:10,:)

ans = 10×2 complex

 0.5000 + 0.5000i 0.5000 + 0.5000i
 -0.1830 + 0.6830i -0.6830 - 0.1830i
 -0.1830 - 0.6830i 0.1830 + 0.6830i
 0.5000 - 0.5000i -0.5000 - 0.5000i
 0.6830 + 0.1830i 0.6830 + 0.1830i
 -0.1830 - 0.6830i 0.6830 - 0.1830i
 0.5000 + 0.5000i -0.5000 - 0.5000i
 0.1830 - 0.6830i -0.6830 - 0.1830i
 0.6830 - 0.1830i 0.6830 - 0.1830i
 -0.5000 - 0.5000i 0.5000 - 0.5000i

size(info)

ans = 1×2

 1 2

View the contents of the two info structure elements.

info(1)

ans = struct with fields:
 Alpha: [1.0472 3.1416 1.5708 2.0944]
 SeqGroup: [1 1]
 SeqIdx: [0 0]
 NResourceIdx: [1 10]
 NCellCyclicShift: [193 89 101 234]
 Symbols: [1.0000 + 0.0000i 1.0000 + 0.0000i ...]
 OrthSeq: [2x2 double]

info(2)

ans = struct with fields:
 Alpha: [2.6180 4.7124 0 0.5236]
 SeqGroup: [1 1]
 SeqIdx: [0 0]
 NResourceIdx: [4 7]
 NCellCyclicShift: [193 89 101 234]
 Symbols: [1.0000 + 0.0000i 1.0000 + 0.0000i ...]
 OrthSeq: [2x2 double]

 ltePUCCH2DRS

2-841

Input Arguments
ue — UE-specific settings
structure

UE-specific configuration settings, specified as a structure that can contain the following fields.

Parameter Field Required or
Optional

Values Description

NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
Hopping Optional 'Off' (default), 'Group' Frequency hopping method.
NPUCCHID Optional NCellID (default)

Integer from 0 to 503

PUCCH virtual cell identity. If this
field is not present, NCellID is
used as the identity.

Data Types: struct

chs — Channel transmission configuration
structure

PUCCH channel settings, specified as a structure that can contain the following fields.

Parameter Field Required or
Optional

Values Description

ResourceIdx Optional 0 (default), integer from 0 to 1185
or vector of integers.

PUCCH resource indices which
determine the physical resource
blocks, cyclic shift, and orthogonal
cover used for transmission.
(nPUCCH

(2)). Define one index for
each transmission antenna.

ResourceSize Optional 0 (default), integer from 0 to 98. Size of resource allocated to
PUCCH format 2 (NRB

(2))

CyclicShifts Optional 0 (default), integer from 0 to 7 Number of cyclic shifts used for
format 1 in resource blocks (RBs)
with a mixture of format 1 and
format 2 PUCCH, specified as an
integer from 0 to 7. (Ncs

(1))

ack — Hybrid ARQ indicator values
binary vector containing 0, 1 or 2 elements

Hybrid ARQ indicator values, specified as nonnegative integer vector. This vector is expected to be
the block of bits b(0),...,b(Mbit–1) specified in TS 36.211 [1], Section 5.4.2. An Mbit value of 20, 21, or
22 corresponds to PUCCH format 2, 2a, or 2b, respectively, as described in TS 36.211 [1], Table 5.4-1.
Example: [] indicates that no HARQ are transmitted in the subframe.

2 Functions

2-842

Output Arguments
seq — PUCCH format 2 DRS values
numeric matrix

PUCCH format 2 DRS values, returned as a numeric matrix. The symbols for each antenna are in the
columns of seq, with the number of columns determined by the number of PUCCH resource indices
specified in chs.ResourceIdx.

Note The standard does not support format 2a or 2b transmission with extended cyclic prefix. If the
ack setting corresponds to format 2a or 2b transmission and extended cyclic prefix is set for
ue.CyclicPrefixUL, the function returns an empty matrix for seq.

Data Types: double

info — PUCCH format 2 information
structure array

PUCCH format 2 information, returned as a structure array with elements corresponding to each
transmit antenna and containing these fields. When configured for format 2a or 2b transmission with
extended cyclic prefix, the info structure contains all fields, but each field is empty.

Alpha — Reference signal cyclic shift for each OFDM symbol
two-column vector

Reference signal cyclic shift for each OFDM symbol, returned as a two-column vector. (α)

SeqGroup — PUCCH base sequence group number for each slot
two-column vector

PUCCH base sequence group number for each slot, returned as two-column vector. (u)

SeqIdx — PUCCH base sequence number for each slot
two-column vector

PUCCH base sequence number for each slot, returned as two-column vector. (v)

NResourceIdx — PUCCH resource indices for each slot
vector

PUCCH resource indices for each slot, returned as two-column vector. (n')

NCellCyclicShift — Cell-specific cyclic shift for each OFDM symbol
vector

Cell-specific cyclic shift for each OFDM symbol, returned as vector. (ncs
cell)

Symbols — Modulated data symbols
vector

Modulated data symbols, returned as a vector. There is one element for each OFDM symbol. (z)
Example: [0.7071 + 0.7071i,...]

 ltePUCCH2DRS

2-843

OrthSeq — Orthogonal sequence for each slot
4-by-2 numeric matrix

Orthogonal sequence for each slot, returned as a 4-by-2 numeric matrix. (w)
Example: [1.000 + 1.000i,...]

Data Types: struct

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePUCCH2DRSDecode | ltePUCCH2DRSIndices | ltePUCCH2 | ltePUCCH2Decode |
ltePUCCH2Indices | ltePUCCH1DRS | ltePUCCH3DRS

2 Functions

2-844

https://www.3gpp.org

ltePUCCH2DRSDecode
PUCCH format 2 DRS decoding

Syntax
ack = ltePUCCH2DRSDecode(ue,chs,oack,sym)

Description
ack = ltePUCCH2DRSDecode(ue,chs,oack,sym) returns a vector of hybrid automatic repeat
request (HARQ) indicator values, ack, obtained by performing PUCCH format 2 DRS decoding of the
complex matrix, sym. The decoder uses a maximum likelihood (ML) approach, assuming that sym has
already been equalized, to best restore the originally transmitted complex values. The symbols for
each antenna are in the columns of sym. The number of columns in sym should match the number of
PUCCH resource indices specified in the chs structure.

oack specifies the number of HARQ indicator values expected.

ack is a column vector containing oack HARQ indicator (HI) values.

Examples

Decode PUCCH Format 2A DM-RS

Decode a PUCCH format 2A DM-RS from a synchronized and equalized resource array.

Initialize input configuration structures demonstrating use of 'Name',Value pair assignment and
direct field assignment.

ue = struct('NULRB',6,'NCellID',0,'NSubframe',0,'Hopping','Off');
pucch2 = struct('ResourceIdx',0);

ue.CyclicPrefixUL = 'Normal';
ue.NTxAnts = 1;
pucch2.ResourceSize = 0;
pucch2.CyclicShifts = 0;

For the transmitter, create the PUCCH format 2A DM-RS.

reGrid = lteULResourceGrid(ue);
drsIndices = ltePUCCH2DRSIndices(ue,pucch2);
txAck = [1;0];
reGrid(drsIndices) = ltePUCCH2DRS(ue,pucch2,txAck);

On the receiver side, decode the PUCCH format 2 DM-RS symbols and view rxAck to confirm it
matches txAck

drsSymbols = reGrid(drsIndices);
rxAck = ltePUCCH2DRSDecode(ue,pucch2,length(txAck),drsSymbols)

rxAck = 2x1 logical array

 ltePUCCH2DRSDecode

2-845

 1
 0

Input Arguments
ue — UE-specific settings
structure

UE-specific configuration settings, specified as a structure that can contain the following fields.

Parameter Field Required or
Optional

Values Description

NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
Hopping Optional 'Off' (default), 'Group' Frequency hopping method.
NPUCCHID Optional Integer from 0 to 503 PUCCH virtual cell identity. If this

field is not present, NCellID is
used as the identity.

chs — Channel transmission configuration
structure

PUCCH channel settings, specified as a structure that can contain the following fields.

Parameter Field Required or
Optional

Values Description

ResourceIdx Optional 0 (default), integer from 0 to 1185
or vector of integers.

PUCCH resource indices which
determine the physical resource
blocks, cyclic shift, and orthogonal
cover used for transmission.
(nPUCCH

(2)). Define one index for
each transmission antenna.

ResourceSize Optional 0 (default), integer from 0 to 98. Size of resource allocated to
PUCCH format 2 (NRB

(2))

CyclicShifts Optional 0 (default), integer from 0 to 7 Number of cyclic shifts used for
format 1 in resource blocks (RBs)
with a mixture of format 1 and
format 2 PUCCH, specified as an
integer from 0 to 7. (Ncs

(1))

oack — Number of uncoded HARQ-ACK bits
1 | 2

oack specifies the number of HARQ indicator values expected, specified as nonnegative integer
vector. The number of HARQ indicator values is 1 for PUCCH format 2A and 2 for PUCCH format 2B.

2 Functions

2-846

Data Types: double

sym — Symbols of each antenna
complex numeric matrix

Symbols for each antenna, specified as complex numeric matrix. The number of columns in sym
should match the number of PUCCH resource indices specified in the chs structure.
Example: 0.25881 + 0.9659i
Data Types: double
Complex Number Support: Yes

Output Arguments
ack — Hybrid ARQ indicator values
logical column vector

Hybrid ARQ indicator values, returned as a logical column vector. This output is obtained by
performing PUCCH format 1 decoding of the complex matrix, sym.
Data Types: logical

Version History
Introduced in R2014a

See Also
ltePUCCH2DRS | ltePUCCH2DRSIndices | ltePUCCH2 | ltePUCCH2Decode | ltePUCCH2Indices
| ltePUCCH2PRBS | ltePUCCH1DRS | ltePUCCH3DRS

 ltePUCCH2DRSDecode

2-847

ltePUCCH2DRSIndices
PUCCH format 2 DRS resource element indices

Syntax
ind = ltePUCCH2DRSIndices(ue,chs)
[ind,info] = ltePUCCH2DRSIndices(ue,chs)
[___] = ltePUCCH2DRSIndices(ue,chs,opts)

Description
ind = ltePUCCH2DRSIndices(ue,chs) returns a matrix of resource element indices for the
demodulation reference signal (DRS) associated with the PUCCH format 2 transmission given
structures containing the UE-specific settings, and the channel transmission configuration.

[ind,info] = ltePUCCH2DRSIndices(ue,chs) also returns a PUCCH information structure
array, info.

[___] = ltePUCCH2DRSIndices(ue,chs,opts) formats the returned indices using the options
specified by opts.

This syntax supports output options from prior syntaxes.

Examples

Generate PUCCH Format 2 DM-RS Indices

Generate PUCCH format 2 DM-RS RE indices for a 1.4 MHz bandwidth and PUCCH resource index 0.
Use default values for all other parameters.

Initialize UE-specific and channel configuration structures. Generate PUCCH format 2 DM-RS
indices.

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';

chs.ResourceIdx = 0;

ind = ltePUCCH2DRSIndices(ue,chs);
ind(1:4)

ans = 4x1 uint32 column vector

 73
 74
 75
 76

2 Functions

2-848

Generate PUCCH Format 2 DM-RS Indices for Four Antennas

Generate the PUCCH format 2 DM-RS indices for four transmit antenna paths, and display the output
information structure.

Initialize UE-specific and channel configuration structures. Generate PUCCH 2 DM-RS indices and
information outputs.

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';

chs.ResourceIdx = [0 37 4 111];

[ind,info] = ltePUCCH2DRSIndices(ue,chs);

Because there are four antennas, the DM-RS indices are output as a four-column vector and the info
output structure contains four elements. View ind and the size of info to confirm.

ind(1:6,:)

ans = 6x4 uint32 matrix

 73 1129 2089 3109
 74 1130 2090 3110
 75 1131 2091 3111
 76 1132 2092 3112
 77 1133 2093 3113
 78 1134 2094 3114

size(info)

ans = 1×2

 1 4

View the contents of one of the info structure elements.

info(4)

ans = struct with fields:
 PRBSet: [1 4]
 RBIdx: 9

Generate PUCCH Format 2 DM-RS Indices Varying Indexing Style

Generate the PUCCH format 2 DM-RS indices for two transmit antenna paths, and output in subscript
indexing form.

Initialize UE-specific and channel configuration structures and the indexing option parameter.
Generate PUCCH 2 DM-RS indices and information outputs.

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';

 ltePUCCH2DRSIndices

2-849

chs.ResourceIdx = [0 4];

[ind,info] = ltePUCCH2DRSIndices(ue,chs,{'sub'});

Using 'sub' indexing style, the indices are output in [subcarrier, symbol, antenna] subscript form.
View the midpoint of ind and observe the antenna index change.

size(ind)

ans = 1×2

 96 3

ind(46:51,:)

ans = 6x3 uint32 matrix

 70 13 1
 71 13 1
 72 13 1
 1 2 2
 2 2 2
 3 2 2

size(info)

ans = 1×2

 1 2

Because there are two antennas, the info output structure contains two elements. View one of the
info structure elements.

info(2)

ans = struct with fields:
 PRBSet: [0 5]
 RBIdx: 0

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure containing these fields.

NULRB — Number of uplink resource blocks
integer from 6 to 110.

Number of uplink resource blocks, specified as an integer from 6 to 110.
Data Types: double

2 Functions

2-850

CyclicPrefixUL — Cyclic prefix length for uplink channels
'Normal' (default) | 'Extended' | optional

Cyclic prefix length for uplink channels, specified as 'Normal' or 'Extended'.
Data Types: char | string

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing the following fields.

ResourceIdx — PUCCH resource indices
0 (default) | 0,...,1185 | integer | vector of integers | optional

PUCCH resource indices, specified as an integer or a vector of integers. Values range from 0 to 1185.
There is one index for each transmission antenna. These indices determine the cyclic shift and
orthogonal cover used for transmission. (nPUCCH

(2))

Data Types: struct

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — Resource element indices
integer column vector | three-column integer matrix

Resource element indices, returned as an integer column vector or a three-column integer matrix. By
default the indices are returned in one-based linear indexing form that can directly index elements of
a resource matrix. These indices are ordered according to PUCCH format 2 DRS modulation symbol
mapping. The opts input offers alternative indexing formats. The indices for each antenna are in the

 ltePUCCH2DRSIndices

2-851

columns of ind, with the number of columns determined by the number of PUCCH resource indices
specified in chs.ResourceIdx.
Example: [145,146,147,...]
Data Types: uint32

info — PUCCH format 2 DRS information
structure array

PUCCH format 2 DRS information, returned as a structure array with elements corresponding to
each transmit antenna and containing these fields.

PRBSet — Indices occupied by PRB in each slot of subframe
nonnegative integer vector

Indices occupied by PRB in each slot of the subframe, returned as a nonnegative integer vector. The
indices are zero-based.
Example: [0,5]
Data Types: double

RBIdx — PUCCH logical resource block index
nonnegative integer

PUCCH logical resource block index, returned as a nonnegative integer. (m)
Data Types: double

Data Types: struct

Version History
Introduced in R2014a

See Also
ltePUCCH2 | ltePUCCH2Decode | ltePUCCH2Indices | ltePUCCH2DRS | ltePUCCH2DRSDecode |
ltePUCCH2PRBS | ltePUCCH1DRSIndices | ltePUCCH3DRSIndices

2 Functions

2-852

ltePUCCH2Decode
Physical uplink control channel format 2 decoding

Syntax
out = ltePUCCH2Decode(ue,chs,sym)

Description
out = ltePUCCH2Decode(ue,chs,sym) performs decoding of the PUCCH format 2 given UE-
specific settings ue and channel transmission configuration chs. out is a soft bit vector consisting of
20 bits, formed by decoding complex symbol matrix sym, performing demodulation with the PUCCH
format 2 reference sequence, QPSK demodulation, and descrambling. The symbols for each antenna
are in the columns of sym, and the number of columns should match the number of PUCCH Resource
Indices specified in the structure, chs.

Examples

Decode PUCCH Format 2 Signal

Decode a PUCCH format 2 signal from an equalized resource array, grid.

First, create a UE configuration structure, ue, and a PUCCH configuration structure, pucch2.

ue = struct('NULRB',6,'NCellID',0,'NSubframe',0,'RNTI',1);
pucch2 = struct('ResourceIdx',0);

For the transmitter, create a PUCCH format 2 resource grid.

rgrid = lteULResourceGrid(ue);
pucch2Indices = ltePUCCH2Indices(ue,pucch2);
tx = [1;0;0;0;0;1];
encoded = lteUCIEncode(tx);
rgrid(pucch2Indices) = ltePUCCH2(ue,pucch2,encoded);

On the receiver side, decode the PUCCH format 2 signal contained in equalized resource array, grid.
Also decode the UCI bits.

rx = ltePUCCH2Decode(ue,pucch2,rgrid(pucch2Indices));
decoded = lteUCIDecode(rx,length(tx))

decoded = 6x1 logical array

 1
 0
 0
 0
 0
 1

 ltePUCCH2Decode

2-853

Input Arguments
ue — UE-specific settings
structure

ue is a structure having the following fields.

NCellID — Cell identity number
0 (default)

Physical layer cell identity number, specified as a nonnegative scalar integer.
Example: 4
Data Types: double

NSubframe — Subframe number
0 (default)

Position reference signal subframe number, specified as a nonnegative scalar integer.
Example: 8
Data Types: double

RNTI — Radio network temporary identifier (16-bit)
scalar integer

Radio network temporary identifier (16-bit), specified as a scalar integer.
Data Types: double

CyclicPrefixUL — Cyclic prefix length for uplink channels
'Normal' (default) | optional | 'Extended'

Cyclic prefix length for uplink channels, specified as 'Normal' or 'Extended'. Optional.
Data Types: char | string

Hopping — Uplink frequency hopping
'Off' (default) | optional | 'Group'

Uplink frequency hopping, specified as 'Off' or 'Group'. Optional.
Data Types: char | string

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure. chs contains the following fields.

ResourceIdx — PUCCH resource indices
0 (default) | optional | 0...1185

PUCCH resource indices, specified as a nonnegative vector with one element for each transmission
antenna. These indices determine the cyclic shift and orthogonal cover used for transmission.
(n2_pucch)

2 Functions

2-854

Example: 78
Data Types: double

ResourceSize — Size of resources allocated to PUCCH format 2
0 (default) | optional | 0...98

Size of resources allocated to PUCCH format 2, specified as nonnegative scalar integer. This
parameter affects location of this transmission. (N2RB)
Data Types: double

CyclicShifts — Number of cyclic shifts for format 1 resource blocks
0 (default) | optional | 0...7

Number of cyclic shifts for format 1 resource blocks, in RBs, specified as a nonnegative scalar
integer. This parameter can be used in a mixture of format 1 and format 2 PUCCH. (N1cs)
Example: 7
Data Types: double

sym — Symbols of each antenna
complex numeric matrix

Symbols for each antenna, specified as complex numeric matrix. The number of columns should
match the number of PUCCH resource indices specified in the channel transmission configuration
structure, chs.
Example: 0.25881 + 0.9659i
Data Types: double
Complex Number Support: Yes

Output Arguments
out — PUCCH format 2 decoded soft bit output
logical column vector

PUCCH format 2 decoded soft bit output, returned as a logical column vector. This output contains
the result of decoding sym.
Data Types: logical

Version History
Introduced in R2014a

See Also
ltePUCCH2 | ltePUCCH2Indices | ltePUCCH2PRBS | ltePUCCH2DRS | ltePUCCH2DRSIndices |
ltePUCCH2DRSDecode | lteUCIDecode | ltePUCCH1Decode | ltePUCCH3Decode

 ltePUCCH2Decode

2-855

ltePUCCH2Indices
PUCCH format 2 resource element indices

Syntax
ind = ltePUCCH2Indices(ue,chs)
[ind,info] = ltePUCCH2Indices(ue,chs)
[___] = ltePUCCH2Indices(ue,chs,opts)

Description
ind = ltePUCCH2Indices(ue,chs) returns a matrix of resource element indices for the Physical
Uplink Control Channel (PUCCH) Format 2 transmission given structures containing the UE-specific
settings, and the channel transmission configuration.

[ind,info] = ltePUCCH2Indices(ue,chs) also returns a PUCCH information structure array
info.

[___] = ltePUCCH2Indices(ue,chs,opts) formats the returned indices using options
specified by opts.

This syntax supports output options from prior syntaxes.

Examples

Generate PUCCH Format 2 Indices

Generate PUCCH format 2 RE indices for a 1.4 MHz bandwidth and PUCCH resource index 0. Use
default values for all other parameters.

Initialize UE-specific and channel configuration structures. Generate PUCCH format 2 indices.

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';

chs.ResourceIdx = 0;

ind = ltePUCCH2Indices(ue,chs);
ind(1:4)

ans = 4x1 uint32 column vector

 1
 2
 3
 4

2 Functions

2-856

Generate PUCCH Format 2 Indices for Three Antennas

Generate the physical uplink control channel (PUCCH) format 2 indices for three transmit antenna
paths, and display the information structure output.

Initialize UE-specific and channel configuration structures. Generate PUCCH 2 indices and
information outputs.

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';

chs.ResourceIdx = [0 129 2];

[ind,info] = ltePUCCH2Indices(ue,chs);

Because there are three antennas, the indices are output as a three column vector and the info
output structure contains three elements. View ind and the size of info to confirm this.

ind(1:5,:)

ans = 5x3 uint32 matrix

 1 1069 2017
 2 1070 2018
 3 1071 2019
 4 1072 2020
 5 1073 2021

size(info)

ans = 1×2

 1 3

View the contents of one of the info structure elements.

info(1)

ans = struct with fields:
 PRBSet: [0 5]
 RBIdx: 0

Generate PUCCH Format 2 Indices Varying Indexing Style

Generate the PUCCH format 2 indices for two transmit antenna paths, and output in subscript
indexing form.

Initialize UE-specific and channel configuration structures, and the indexing option parameter.
Generate PUCCH 2 indices and information outputs.

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';

 ltePUCCH2Indices

2-857

chs.ResourceIdx = [0 4];

opts = {'sub'};

[ind,info] = ltePUCCH2Indices(ue,chs,opts);

Using 'sub' indexing style, the indices are output in [subcarrier, symbol, antenna] subscript
form. View the midpoint of ind and observe the antenna index change.

size(ind)

ans = 1×2

 240 3

ind(118:123,:)

ans = 6x3 uint32 matrix

 70 14 1
 71 14 1
 72 14 1
 1 1 2
 2 1 2
 3 1 2

Because there are two antennas, the info output structure contains two elements. View the contents
of one of the info structure elements.

size(info)

ans = 1×2

 1 2

info(2)

ans = struct with fields:
 PRBSet: [0 5]
 RBIdx: 0

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure containing these fields.

NULRB — Number of uplink resource blocks
integer from 6 to 110

Number of uplink resource blocks, specified as an integer from 6 to 110.
Data Types: double

2 Functions

2-858

CyclicPrefixUL — Cyclic prefix length for uplink channels
'Normal' (default) | 'Extended' | optional

Cyclic prefix length for uplink channels, specified as 'Normal' or 'Extended'.
Data Types: char | string

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing the following fields.

ResourceIdx — PUCCH resource indices
0 (default) | 0,...,1185 | integer | vector of integers | optional

PUCCH resource indices, specified as an integer or a vector of integers. Values range from 0 to 1185.
There is one index for each transmission antenna. These indices determine the cyclic shift and
orthogonal cover used for transmission. (nPUCCH

(2))

Data Types: double

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — PUCCH format 2resource element indices
integer column vector | three-column integer matrix

PUCCH format 2 resource element indices, returned as an integer column vector or a three-column
integer matrix. By default, the indices are returned in one-based linear indexing form that can
directly index elements of a resource matrix. These indices are ordered according to PUCCH format 2
modulation symbol mapping as specified in TS 36.211 [1], Section 5.4. The opts input offers
alternative indexing formats. The indices for each antenna are in the columns of ind, with the

 ltePUCCH2Indices

2-859

number of columns determined by the number of PUCCH resource indices specified in
chs.ResourceIdx.
Example: [1,2,3,4...]
Data Types: uint32

info — PUCCH format 2 information
structure array

PUCCH format 2 information, returned as a structure array with elements corresponding to each
transmit antenna and containing these fields.

PRBSet — Set of PRB indices
column vector | two-column matrix

Set of PRB indices, returned as an integer column vector or two-column integer matrix corresponding
to the resource allocations.

• When returned as a column vector, the resource allocation is the same in both slots of the
subframe.

• When returned as a two-column matrix, the resource allocations can vary for each slot in the
subframe.

The PRB indices are zero-based.
Example: [0,5]
Data Types: double

RBIdx — PUCCH logical resource block index
nonnegative integer

PUCCH logical resource block index, returned as a nonnegative integer. (m)
Data Types: uint32

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePUCCH2 | ltePUCCH2Decode | ltePUCCH2DRS | ltePUCCH2DRSIndices |
ltePUCCH2DRSDecode | ltePUCCH2PRBS | ltePUCCH1Indices | ltePUCCH3Indices

2 Functions

2-860

https://www.3gpp.org

ltePUCCH2PRBS
PUCCH format 2 pseudorandom scrambling sequence

Syntax
[seq,cinit] = ltePUCCH2PRBS(ue,n)
[seq,cinit] = ltePUCCH2PRBS(ue,n,mapping)

[subseq,cinit] = ltePUCCH2PRBS(ue,pn)
[subseq,cinit] = ltePUCCH2PRBS(ue,pn,mapping)

Description
[seq,cinit] = ltePUCCH2PRBS(ue,n) returns the first n outputs of the Physical Uplink Control
Channel (PUCCH) Format 2 scrambling sequence when initialized according to UE-specific settings,
ue. It also returns an initialization value cinit for the pseudorandom binary sequence (PRBS)
generator.

[seq,cinit] = ltePUCCH2PRBS(ue,n,mapping) allows control over the format of the returned
sequence, seq, with the input mapping.

[subseq,cinit] = ltePUCCH2PRBS(ue,pn) returns a subsequence of a full PRBS sequence,
specified by pn.

[subseq,cinit] = ltePUCCH2PRBS(ue,pn,mapping) allows control over the format of the
returned subsequence, subseq, with the input mapping.

Examples

Scramble UCI bits

Scramble the encoded UCI bits representing RI=3 using 2 bits. According to Table 5.2.2.6-6 in TS
36.212 this maps to the set of input bits [1; 0].

Create user-specific configuration structure. Generate a UCI codeword and a pseudorandom
scrambling sequence for the PUCCH2 the same length as the codeword.

ue.NCellID = 1;
ue.NSubframe = 0;
ue.RNTI = 1;
cw = lteUCIEncode([1;0]);
seq = ltePUCCH2PRBS(ue,length(cw));
size(seq)

ans = 1×2

 20 1

Scramble the UCI codeword using the generated scrambling sequence.

 ltePUCCH2PRBS

2-861

scrambled = xor(seq,cw);

Generate PUCCH Format 2 Pseudorandom Scrambling Sequence

Generate unsigned and signed PUCCH format 2 pseudorandom scrambling sequences.

Create user-specific configuration structure.

ue.NCellID = 1;
ue.NSubframe = 0;
ue.RNTI = 1;

Generate a PUCCH format 2 pseudorandom scrambling sequence.

seq = ltePUCCH2PRBS(ue,5)

seq = 5x1 logical array

 1
 1
 0
 0
 1

Generate a signed PUCCH format 2 pseudorandom scrambling sequence.

seq = ltePUCCH2PRBS(ue,5,'signed')

seq = 5×1

 -1
 -1
 1
 1
 -1

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure. ue contains the following fields.

NCellID — Physical layer cell identity number
nonnegative scalar integer

Physical layer cell identity number, specified as a nonnegative scalar integer.
Example: 1
Data Types: double

2 Functions

2-862

NSubframe — Subframe number
nonnegative scalar integer

Subframe number, specified as a nonnegative scalar integer.
Example: 0
Data Types: double

RNTI — Radio network temporary identifier
scalar integer

Radio network temporary identifier (16-bit), specified as a scalar integer.
Example: 1
Data Types: double

n — Number of elements in returned sequence
numeric scalar

Number of elements in returned sequence, seq, specified as a numeric scalar.
Data Types: double

pn — Range of elements in returned subsequence
row vector

Range of elements in returned subsequence, subseq, specified as a row vector of [p n]. The
subsequence returns n values of the PRBS generator, starting at position p (0-based).
Data Types: double

mapping — Output sequence formatting
'binary' (default) | 'signed'

Output sequence formatting, specified as 'binary' or 'signed'. mapping controls the format of
the returned sequence.

• 'binary' maps true to 1 and false to 0.
• 'signed' maps true to –1 and false to 1.

Data Types: char | string

Output Arguments
seq — PUCCH format 2 pseudorandom scrambling sequence
logical column vector | numeric column vector

PUCCH format 2 pseudorandom scrambling sequence, returned as a logical column vector or a
numeric column vector. seq contains the first n outputs of the scrambling sequence. If you set
mapping to 'signed', the output data type is double. Otherwise, the output data type is logical.
Data Types: logical | double

subseq — PUCCH format 2 pseudorandom scrambling subsequence
logical column vector | numeric column vector

 ltePUCCH2PRBS

2-863

PUCCH format 2 pseudorandom scrambling subsequence, returned as a logical column vector or a
numeric column vector. subseq contains the values of the PRBS generator specified by pn. If you set
mapping to 'signed', the output data type is double. Otherwise, the output data type is logical.
Data Types: logical | double

cinit — Initialization value for PRBS generator
numeric scalar

Initialization value for PRBS generator, returned as a numeric scalar.
Data Types: uint32

Version History
Introduced in R2014a

See Also
ltePUCCH2 | ltePUCCH2Decode | ltePUCCH2Indices | ltePUCCH2DRS | ltePUCCH2DRSDecode |
ltePUCCH2DRSIndices | ltePUCCH3Indices | ltePUCCH3PRBS

2 Functions

2-864

ltePUCCH3
Physical uplink control channel format 3

Syntax
sym = ltePUCCH3(ue,chs,bits)
[sym,info] = ltePUCCH3(ue,chs,bits)

Description
sym = ltePUCCH3(ue,chs,bits) returns a matrix containing Physical Uplink Control Channel
(PUCCH) format 3 symbols given a structure of UE-specific settings, a structure with channel
transmission configuration settings, and a vector of coded hybrid ARQ (HARQ) values, bits.

[sym,info] = ltePUCCH3(ue,chs,bits) also returns a PUCCH information structure array,
info.

Examples

Generate PUCCH Format 3 Symbols

Generate PUCCH format 3 modulated symbols.

Initialize ue and chs configuration structures. Generate and view PUCCH Format 3 symbols.

ue.NCellID = 0;
ue.NSubframe = 0;
ue.RNTI = 1;
ue.CyclicPrefixUL = 'Normal';
ue.Shortened = 0;

chs.ResourceIdx = 0;

sym = ltePUCCH3(ue,chs,ones(48,1));
sym(1:5)

ans = 5×1 complex

 1.6330 - 1.2247i
 -0.7071 + 0.7071i
 -0.5577 + 0.1494i
 0.4082 - 0.0000i
 -0.5577 - 0.9659i

 ltePUCCH3

2-865

Generate PUCCH Format 3 Symbols for Two Antennas

Generate the physical uplink control channel (PUCCH) format 3 symbols for two transmit antenna
paths and display the information structure.

Initialize parameters for a UE-specific configuration structure and a channel configuration structure.
Generate PUCCH1 symbols and information outputs.

ue.NCellID = 1;
ue.RNTI = 1;
ue.NSubframe = 0;
ue.CyclicPrefixUL = 'Normal';
ue.Shortened = 0;

chs.ResourceIdx = [0 3];

[pucch3Sym,info] = ltePUCCH3(ue,chs,[]);

Because there are two antennas, the symbols are output as a two-column vector, and the info output
structure contains two elements.

pucch3Sym(1:6,:)

ans = 6×2 complex

 0.0000 + 2.4495i 0.0000 + 2.4495i
 0.0000 - 0.0000i 0.0000 - 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 - 0.0000i 0.0000 - 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i

size(info)

ans = 1×2

 1 2

View the contents of the second info structure element.

info(2)

ans = struct with fields:
 NCellCyclicShift: [64 192 46 212 191 71 91 84 25 105]
 OrthSeqIdx: [3 4]
 Symbols: [1.0000 + 0.0000i 1.0000 + 0.0000i ...]
 OrthSeq: [5x2 double]
 NSymbSlot: [5 5]

Input Arguments
ue — UE-specific settings
structure

2 Functions

2-866

UE-specific configuration settings, specified as a structure that can contain these fields.

Parameter Field Required or
Optional

Values Description

NCellID Required Integer from 0 to 503 Physical layer cell identity
RNTI Required 0 (default), scalar integer Radio network temporary

identifier (RNTI) value (16 bits)
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
Shortened Optional 0 (default), 1 Option to shorten the subframe by

omitting the last symbol, specified
as 0 or 1. If 1, the last symbol of
the subframe is not used. For
subframes with possible SRS
transmission, set Shortened to 1
to maintain a standard compliant
configuration.

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing these fields.

ResourceIdx — PUCCH Resource Indices
0 (default) | optional | 0,...,549 | vector | vector of integers

PUCCH Resource Indices, specified as an integer or vector of integers with values from 0 to 549.
There is one index for each transmission antenna. These indices determine the cyclic shift and
orthogonal cover used for transmission. (nPUCCH

(3)).

Data Types: struct

bits — Coded HARQ-ACK bits
nonnegative integer column vector of length 48

Coded HARQ-ACK bits, specified as a nonnegative integer column vector of length 48. TS 36.211 [1],
Table 5.4-1 specifies the vector length for PUCCH format 3 is Mbit = 48. bits is expected to be the
block of bits b(0)...b(Mbit–1)specified in TS 36.211 [1], Section 5.4.2A. bits is also expected to be
generated by performing uplink control information (UCI) channel coding as described TS 36.212 [2],
Section 5.2.3.1. For PUCCH format 3, UCI includes encoding of concatenated HARQ-ACK bits and
any appended periodic CSI bits plus Scheduling Request (SR) bit when present.
Data Types: double

Output Arguments
sym — PUCCH format 3 symbols
matrix

 ltePUCCH3

2-867

PUCCH format 3 symbols, returned as matrix. The symbols for each antenna are in the columns of
sym, with the number of columns determined by the number of PUCCH resource indices specified in
chs.ResourceIdx.
Example: [0.7071 + 0.7071i,...]
Data Types: double

info — PUCCH format 3 information
structure

PUCCH format 3 information, returned as a structure array with elements corresponding to each
transmit antenna and containing these fields.

NCellCyclicShift — Cell-specific cyclic shift for each OFDM symbol
vector

Cell-specific cyclic shift for each OFDM symbol, returned as a vector. (ncs
cell)

OrthSeqIdx — Orthogonal sequence index for each slot
vector

Orthogonal sequence index for each slot, returned as a two-element vector. (noc)

Symbols — Modulated data symbols for each OFDM symbol
vector

Modulated data symbols for each OFDM symbol, returned as a vector. (d)
Example: [0.7071 + 0.7071i,...]

OrthSeq — Orthogonal sequence for each slot
numeric matrix

Orthogonal sequence of each slot, returned as a numeric matrix. Each column in the matrix contains
the orthogonal sequence (wnoc

) for each slot.

Note When ue.Shortened = 1, transmissions are shortened, and the second column of
info.OrthSeq has a zero in the last row because the spreading factor for the second slot is 4
instead of 5.

Example: [1.000 + 1.000i,...]

NSymbSlot — Number of OFDM symbols in each slot
vector of integers

The number of OFDM symbols in each slot, returned as a vector of integers. (NSF, 0
PUCCH NSF, 1

PUCCH)

Data Types: struct

Version History
Introduced in R2014a

2 Functions

2-868

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel
coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePUCCH3Decode | ltePUCCH3Indices | ltePUCCH3DRS | ltePUCCH3DRSIndices |
ltePUCCH3PRBS | lteUCI3Encode

 ltePUCCH3

2-869

https://www.3gpp.org
https://www.3gpp.org

ltePUCCH3Decode
Physical uplink control channel format 3 decoding

Syntax
out = ltePUCCH3Decode(ue,chs,sym)

Description
out = ltePUCCH3Decode(ue,chs,sym) decodes the PUCCH format 3 given UE-specific settings,
ue, and channel transmission configuration, chs. out is a soft bit vector of coded UCI consisting of
48 bits, formed by decoding the complex symbol matrix, sym. The symbol decoding steps are SC-
FDMA deprecoding, demodulation with the PUCCH Format 3 reference sequence, QPSK
demodulation, and descrambling. The symbols for each antenna are in the columns of sym, and the
number of columns should match the number of PUCCH Resource Indices specified in the structure
chs.

Examples

Decode PUCCH Format 3 Signal

Decode a PUCCH format 3 signal contained in an equalized resource array for the specified UE and
PUCCH configuration structures.

ue.NULRB = 6;
ue.NCellID = 0;
ue.RNTI = 1;
ue.CyclicPrefixUL = 'Normal';
ue.NTxAnts = 1;
ue.Shortened = 0;
ue.NSubframe = 0;

pucch3.ResourceIdx = 0;

To model the transmitter, create an uplink resource grid and populate it with PUCCH format 3
symbols.

reGrid = lteULResourceGrid(ue);
pucch3Indices = ltePUCCH3Indices(ue,pucch3);
tx = [1; 0; 0; 1; 1; 1];
encoded = lteUCI3Encode(tx);
reGrid(pucch3Indices) = ltePUCCH3(ue,pucch3,encoded);

To model the receiver, decode the PUCCH format 3 symbols contained in an equalized resource array.
Decode and display the UCI. Verify received decoded bits match tx bits.

eqGrid = reGrid;
rx = ltePUCCH3Decode(ue,pucch3,eqGrid(pucch3Indices));
decoded = lteUCI3Decode(rx,length(tx))

2 Functions

2-870

decoded = 6x1 logical array

 1
 0
 0
 1
 1
 1

Input Arguments
ue — UE-specific settings
structure

UE-specific configuration settings, specified as a structure that can contain the following fields.

Parameter Field Required or
Optional

Values Description

NCellID Required Integer from 0 to 503 Physical layer cell identity
RNTI Required 0 (default), scalar integer Radio network temporary

identifier (RNTI) value (16 bits)
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
Shortened Optional 0 (default), 1 Option to shorten the subframe by

omitting the last symbol, specified
as 0 or 1. If 1, the last symbol of
the subframe is not used. For
subframes with possible SRS
transmission, set Shortened to 1
to maintain a standard compliant
configuration.

Data Types: struct

chs — Channel transmission configuration
structure

PUCCH channel settings, specified as a structure that can contain the following fields.

Parameter Field Required or
Optional

Values Description

ResourceIdx Optional 0 (default), integer from 0 to 549,
or vector of integers.

PUCCH resource indices which
determine the physical resource
blocks, cyclic shift, and orthogonal
cover used for transmission
(nPUCCH

(3)). Define one index for
each transmission antenna.

 ltePUCCH3Decode

2-871

Data Types: struct

sym — PUCCH format 3 symbols
complex-valued matrix

PUCCH format 3 symbols, specified as a complex-valued matrix. The symbols for each antenna are in
the columns of sym, and the number of columns should match the number of PUCCH resource indices
specified in the structure chs.
Data Types: double
Complex Number Support: Yes

Output Arguments
out — Soft bit vector
48-by-1 real-valued column vector

Soft bit vector consisting of 48 bits, returned as a 48-by-1 real-valued column vector. The number of
PUCCH Resource Indices specified in the structure chs determines the number of columns in out.
Data Types: double

Version History
Introduced in R2014a

See Also
ltePUCCH3 | ltePUCCH3Indices | ltePUCCH3DRS | ltePUCCH3DRSIndices | ltePUCCH3PRBS |
lteUCI3Decode

2 Functions

2-872

ltePUCCH3DRS
PUCCH format 3 demodulation reference signal

Syntax
seq = ltePUCCH3DRS(ue,chs)
[seq,info] = ltePUCCH3DRS(ue,chs)

Description
seq = ltePUCCH3DRS(ue,chs) returns a matrix containing demodulation reference signal (DRS)
associated with PUCCH format 3 transmission given structures containing the UE-specific settings,
and the channel transmission configuration settings.

[seq,info] = ltePUCCH3DRS(ue,chs) also returns a PUCCH information structure array, info.

Examples

Generate PUCCH Format 3 DM-RS

Generate the PUCCH Format 3 Demodulation Reference Signal (DM-RS) values for UE-specific
settings.

Initialize UE specific (ue) and channel (chs) configuration structures. Generate PUCCH DM-RS
values.

ue.NCellID = 1;
ue.NSubframe = 0;
ue.CyclicPrefixUL = 'Normal';
ue.Hopping = 'Off';
ue.Shortened = 0;

chs.ResourceIdx = 0;
chs.CyclicShifts = 0;

pucch3RefSig = ltePUCCH3DRS(ue,chs);
pucch3RefSig(1:4)

ans = 4×1 complex

 0.7071 + 0.7071i
 0.2588 + 0.9659i
 -0.9659 - 0.2588i
 -0.7071 - 0.7071i

 ltePUCCH3DRS

2-873

Generate PUCCH Format 3 DM-RS Using Virtual Cell ID

Demonstrate Uplink Release 11 coordinated multipoint (CoMP) operation. Intercell interference can
be avoided by using a virtual cell identity for a potentially interfering UE in a neighboring cell.

Configuration for UE of interest, UE 1 in cell 1.

ue1.NCellID = 1;
ue1.NSubframe = 0;
ue1.CyclicPrefixUL = 'Normal';
ue1.Hopping = 'Off';
ue1.Shortened = 0;

chs1.ResourceIdx = 0;

Configuration for interferer, UE 2 in cell 2.

ue2.NCellID = 2;
ue2.NSubframe = 0;
ue2.CyclicPrefixUL = 'Normal';
ue2.Hopping = 'Off';
ue2.Shortened = 0;

chs2.ResourceIdx = 1;

Measure the interference between the DM-RS signals.

interferenceNoCoMP = abs(sum(ltePUCCH3DRS(ue1,chs1).*conj(ltePUCCH3DRS(ue2,chs2))))

interferenceNoCoMP = 6.3246

Reconfigure interferer for CoMP operation: use virtual cell identity equal to the cell identity for the
UE of interest.

ue2.NPUCCHID = ue1.NCellID;

Measure the interference between the DM-RS signals when using CoMP.

interferenceUsingCoMP = abs(sum(ltePUCCH3DRS(ue1,chs1).*conj(ltePUCCH3DRS(ue2,chs2))))

interferenceUsingCoMP = 8.7702e-15

Comparing the correlations between the DM-RS signals for two UEs with and without CoMP,
interferenceUsingCoMP and interferenceNoCoMP respectively. Using CoMP, the interference is
reduced to effectively zero.

Generate PUCCH Format 3 DM-RS for Two Antennas

Generate the PUCCH format 3 DM-RS sequences for two transmit antenna paths. Display the
information structure.

Initialize UE-specific and channel configuration structures. Provide an empty vector for the ack,
indicating there are no HARQ bits for this PUCCH transmission. Generate PUCCH 3 DM-RS and
information outputs.

2 Functions

2-874

ue.NCellID = 1;
ue.NSubframe = 0;
ue.CyclicPrefixUL = 'Normal';
ue.Hopping = 'Off';
ue.Shortened = 0;

chs.ResourceIdx = [0 3];

ack = [];

[drsSeq,info] = ltePUCCH3DRS(ue,chs,ack);

Because there are two antennas, the DM-RS sequences are output as a two-column vector and the
info output structure contains two elements. View ind and the size of info to confirm this.

drsSeq(1:6,:)

ans = 6×2 complex

 0.5000 + 0.5000i 0.5000 + 0.5000i
 0.1830 + 0.6830i 0.5000 - 0.5000i
 -0.6830 - 0.1830i 0.5000 - 0.5000i
 -0.5000 - 0.5000i -0.5000 - 0.5000i
 -0.1830 - 0.6830i -0.5000 + 0.5000i
 -0.1830 + 0.6830i -0.5000 - 0.5000i

size(info)

ans = 1×2

 1 2

View the contents of the two info structure elements.

info(1)

ans = struct with fields:
 Alpha: [0.5236 2.6180 2.6180 3.1416]
 SeqGroup: [1 1]
 SeqIdx: [0 0]
 NResourceIdx: [0 0]
 NCellCyclicShift: [193 89 101 234]
 OrthSeqIdx: [0 0]
 Symbols: [1.0000 + 0.0000i 1.0000 + 0.0000i ...]
 OrthSeq: [2x2 double]
 NSymbSlot: [5 5]

info(2)

ans = struct with fields:
 Alpha: [4.7124 0.5236 1.5708 2.0944]
 SeqGroup: [1 1]
 SeqIdx: [0 0]
 NResourceIdx: [8 10]
 NCellCyclicShift: [193 89 101 234]
 OrthSeqIdx: [3 4]

 ltePUCCH3DRS

2-875

 Symbols: [1.0000 + 0.0000i 1.0000 + 0.0000i ...]
 OrthSeq: [2x2 double]
 NSymbSlot: [5 5]

Input Arguments
ue — UE-specific settings
structure

UE-specific cell-wide settings, specified as a structure containing the following fields.

Parameter Field Required or
Optional

Values Description

NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
NTxAnts Optional 1 (default), 2, 4 Number of transmission antennas.
Hopping Optional 'Off' (default), 'Group' Frequency hopping method.
Shortened Optional 0 (default), 1 Option to shorten the subframe by

omitting the last symbol, specified
as 0 or 1. If 1, the last symbol of
the subframe is not used. For
subframes with possible SRS
transmission, set Shortened to 1
to maintain a standard compliant
configuration.

NPUCCHID Optional NCellID (default)

Integer from 0 to 503

PUCCH virtual cell identity. If this
field is not present, NCellID is
used as the identity.

Data Types: struct

chs — Channel transmission configuration
structure

PUCCH channel settings, specified as a structure containing the following fields.

Parameter Field Required or
Optional

Values Description

ResourceIdx Optional 0 (default), integer from 0 to 549,
or vector of integers.

PUCCH resource indices which
determine the physical resource
blocks, cyclic shift, and orthogonal
cover used for transmission
(nPUCCH

(3)). Define one index for
each transmission antenna.

Data Types: struct

2 Functions

2-876

Output Arguments
seq — PUCCH format 3 DRS values
numeric matrix

PUCCH format 3 DRS values, returned as a numeric matrix. The symbols for each antenna are in the
columns of seq, with the number of columns determined by the number of PUCCH resource indices
specified in chs.ResourceIdx.

info — PUCCH format 3 DRS information
structure array

PUCCH format 3 DRS information, returned as a structure array with elements corresponding to
each transmit antenna and containing these fields.

Alpha — Reference signal cyclic shift for each OFDM symbol
two-column vector

Reference signal cyclic shift for each OFDM symbol, returned as a two-column vector. (α)

SeqGroup — PUCCH base sequence group number for each slot
two-column vector

PUCCH base sequence group number for each slot, returned as two-column vector. (u)

SeqIdx — PUCCH base sequence number for each slot
two-column vector

PUCCH base sequence number for each slot, returned as two-column vector. (v)

NResourceIdx — PUCCH resource indices for each slot
vector

PUCCH resource indices for each slot, returned as two-column vector. (n')

NCellCyclicShift — Cell-specific cyclic shift for each OFDM symbol
vector

Cell-specific cyclic shift for each OFDM symbol, returned as vector. (ncs
cell)

OrthSeqIdx — Orthogonal sequence index for each slot
two-column vector

Orthogonal sequence index for each slot, returned as two-column vector. (noc)

Symbols — Modulated data symbols
vector

Modulated data symbols, returned as a vector. There is one element for each OFDM symbol. (z)
Example: [0.7071 + 0.7071i,...]

OrthSeq — Orthogonal sequence for each slot
numeric matrix

Orthogonal sequence for each slot, returned as a numeric matrix. (w)

 ltePUCCH3DRS

2-877

Example: [1.000 + 1.000i,...]

NSymbSlot — Number of OFDM symbols in each slot
vector of integers

The number of OFDM symbols in each slot, returned as a vector of integers. (NSF, 0
PUCCH NSF, 1

PUCCH)

Data Types: double

Data Types: struct

Version History
Introduced in R2014a

See Also
ltePUCCH3 | ltePUCCH3Decode | ltePUCCH3Indices | ltePUCCH3DRSIndices |
ltePUCCH3PRBS | ltePUCCH1DRS | ltePUCCH2DRS

2 Functions

2-878

ltePUCCH3DRSIndices
PUCCH format 3 DRS resource element indices

Syntax
ind = ltePUCCH3DRSIndices(ue,chs)
[ind,info] = ltePUCCH3DRSIndices(ue,chs)
[___] = ltePUCCH3DRSIndices(ue,chs,opts)

Description
ind = ltePUCCH3DRSIndices(ue,chs) returns a matrix of resource element indices for the
demodulation reference signal (DRS) associated with PUCCH format 3 transmission given structures
containing the UE-specific settings, and the channel transmission configuration settings.

[ind,info] = ltePUCCH3DRSIndices(ue,chs) also returns a PUCCH information structure
array, info.

[___] = ltePUCCH3DRSIndices(ue,chs,opts) formats the returned indices using the options
specified by opts.

This syntax supports output options from prior syntaxes.

Examples

Generate PUCCH Format 3 DM-RS Indices

Generate PUCCH format 3 DM-RS RE indices for a 5 MHz bandwidth and PUCCH resource index 0.

Initialize UE-specific and channel configuration structures. Generate PUCCH format 3 DM-RS
indices.

ue.NULRB = 25;
ue.CyclicPrefixUL = 'Normal';

chs.ResourceIdx = 0;

ind = ltePUCCH3DRSIndices(ue,chs);
ind(1:4)

ans = 4x1 uint32 column vector

 301
 302
 303
 304

 ltePUCCH3DRSIndices

2-879

Generate PUCCH Format 3 DM-RS Indices for Four Antennas

Generate the PUCCH format 3 DM-RS indices for a 3 MHz bandwidth, and four transmit antenna
paths. Display the output information structure.

Initialize UE-specific and channel configuration structures. Generate PUCCH 3 DM-RS indices and
information outputs.

ue.NULRB = 15;
ue.CyclicPrefixUL = 'Normal';

chs.ResourceIdx = [0 37 4 111];

[ind,info] = ltePUCCH3DRSIndices(ue,chs);

Because there are four antennas, the DM-RS indices are output as a four-column vector, and the info
output structure contains four elements. View ind and the size of info to confirm this.

ind(1:6,:)

ans = 6x4 uint32 matrix

 181 2833 5221 7873
 182 2834 5222 7874
 183 2835 5223 7875
 184 2836 5224 7876
 185 2837 5225 7877
 186 2838 5226 7878

size(info)

ans = 1×2

 1 4

View one of the info structure elements.

info(4)

ans = struct with fields:
 PRBSet: [11 3]
 RBIdx: 22

Generate PUCCH Format 3 DM-RS Indices Varying Indexing Style

Generate the PUCCH format 3 DM-RS indices for two transmit antenna paths, and output in subscript
indexing form.

Initialize UE-specific and channel configuration structures and the indexing option parameter.
Generate PUCCH 3 DM-RS indices and information outputs.

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';

2 Functions

2-880

chs.ResourceIdx = [0 4];
chs.ResourceSize = 0;
chs.DeltaShift = 1;
chs.CyclicShifts = 0;

[ind,info] = ltePUCCH3DRSIndices(ue,chs,{'sub'});

Using 'sub' indexing style, the indices are output in [subcarrier, symbol, antenna] subscript form.
View the midpoint of ind and observe the antenna index change.

size(ind)

ans = 1×2

 96 3

ind(46:51,:)

ans = 6x3 uint32 matrix

 70 13 1
 71 13 1
 72 13 1
 1 2 2
 2 2 2
 3 2 2

size(info)

ans = 1×2

 1 2

Because there are two antennas, the info output structure contains two elements. View one of the
info structure elements.

info(2)

ans = struct with fields:
 PRBSet: [0 5]
 RBIdx: 0

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure containing these fields.

NULRB — Number of uplink resource blocks
nonnegative integer

 ltePUCCH3DRSIndices

2-881

Number of uplink resource blocks, specified as a nonnegative integer.

CyclicPrefixUL — Cyclic prefix length for uplink channels
'Normal' (default) | 'Extended' | optional

Cyclic prefix length for uplink channels, specified as 'Normal' or 'Extended'.
Data Types: char | string

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing the following fields.

ResourceIdx — PUCCH resource indices
0 (default) | 0,...,549 | integer | vector of integers | optional

PUCCH resource indices, specified as an integer or a vector of integers. Values range from 0 to 549.
There is one index for each transmission antenna. These indices determine the cyclic shift and
orthogonal cover used for transmission. (nPUCCH

(3))

Data Types: struct

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — Resource element indices
integer column vector | three-column integer matrix

Resource element indices, returned as an integer column vector or a three-column integer matrix. By
default the indices are returned in one-based linear indexing form that can directly index elements of

2 Functions

2-882

a resource matrix. These indices are ordered according to PUCCH format 3 DRS modulation symbol
mapping. The opts input offers alternative indexing formats. The indices for each antenna are in the
columns of ind, with the number of columns determined by the number of PUCCH resource indices
specified in chs.ResourceIdx.
Example: 1,2,3....
Data Types: uint32

info — PUCCH format 3 DRS information
structure array

PUCCH format 3 DRS information, returned as a structure array with elements corresponding to
each transmit antenna and containing these fields.

PRBSet — Indices occupied by PRB in each slot of subframe
nonnegative integer vector

Indices occupied by PRB in each slot of the subframe, returned as a nonnegative integer vector. The
indices are zero-based.
Example: [0,5]
Data Types: double

RBIdx — PUCCH logical resource block index
nonnegative integer

PUCCH logical resource block index, returned as a nonnegative integer. (m)
Data Types: double

Data Types: struct

Version History
Introduced in R2014a

See Also
ltePUCCH3 | ltePUCCH3Decode | ltePUCCH3Indices | ltePUCCH3DRS | ltePUCCH3PRBS |
ltePUCCH1DRSIndices | ltePUCCH2DRSIndices

 ltePUCCH3DRSIndices

2-883

ltePUCCH3Indices
PUCCH format 3 resource element indices

Syntax
ind = ltePUCCH3Indices(ue,chs)
[ind,info] = ltePUCCH3Indices(ue,chs)
[___] = ltePUCCH3Indices(ue,chs,opts)

Description
ind = ltePUCCH3Indices(ue,chs) returns a column vector of physical uplink control channel
(PUCCH) format 3 resource element indices given structures containing the UE-specific settings, and
the channel transmission configuration settings.

[ind,info] = ltePUCCH3Indices(ue,chs) also returns a PUCCH information structure, info.

[___] = ltePUCCH3Indices(ue,chs,opts) formats the returned indices using options
specified by opts.

This syntax supports output options from prior syntaxes.

Examples

Generate PUCCH Format 3 Indices

Generate PUCCH format 3 RE indices for a 1.4 MHz bandwidth and PUCCH resource index 0. Use
default values for all other parameters.

Initialize UE-specific and channel configuration structures. Generate PUCCH format 3 indices.

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';
ue.Shortened = 0;

chs.ResourceIdx = 0;

ind = ltePUCCH3Indices(ue,chs);
ind(1:4)

ans = 4x1 uint32 column vector

 1
 2
 3
 4

2 Functions

2-884

Generate PUCCH Format 3 Indices for Two Antennas

Generate the PUCCH format 3 indices for three transmit antenna paths, and display the information
structure output.

Initialize UE-specific and channel configuration structures. Generate PUCCH 3 indices and
information outputs.

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';
ue.Shortened = 0;

chs.ResourceIdx = [0 2];

[ind,info] = ltePUCCH3Indices(ue,chs);

Because there are two antennas, the indices are output as a two-column vector, and the info output
structure contains two elements.

ind(1:5,:)

ans = 5x2 uint32 matrix

 1 1009
 2 1010
 3 1011
 4 1012
 5 1013

size(info)

ans = 1×2

 1 2

View one of the info structure elements.

info(1)

ans = struct with fields:
 PRBSet: [0 5]
 RBIdx: 0
 NSymbSlot: [5 5]

Generate PUCCH Format 3 Indices Varying Indexing Style

Generate the PUCCH format 3 indices for two transmit antenna paths, and output in subscript
indexing form.

Initialize UE-specific and channel configuration structures, and the indexing option parameter.
Generate PUCCH 3 indices and information outputs.

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';

 ltePUCCH3Indices

2-885

ue.Shortened = 0;

chs.ResourceIdx = [0 9];

opts = {'sub'};

[ind,info] = ltePUCCH3Indices(ue,chs,opts);

Using 'sub' indexing style, the indices are output in [subcarrier, symbol, antenna] subscript
form. View the midpoint of ind and observe the antenna index change.

size(ind)

ans = 1×2

 240 3

ind(118:123,:)

ans = 6x3 uint32 matrix

 70 14 1
 71 14 1
 72 14 1
 61 1 2
 62 1 2
 63 1 2

Because there are two antennas, the info output structure contains two elements. View one of the
info structure elements.

size(info)

ans = 1×2

 1 2

info(1)

ans = struct with fields:
 PRBSet: [0 5]
 RBIdx: 0
 NSymbSlot: [5 5]

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure, specified as a structure containing these fields.

NULRB — Number of uplink resource blocks
nonnegative integer

2 Functions

2-886

Number of uplink resource blocks, specified as a nonnegative integer.

CyclicPrefixUL — Cyclic prefix length for uplink channels
'Normal' (default) | optional | 'Extended'

Cyclic prefix length for uplink channels, specified as 'Normal' or 'Extended'.
Data Types: char | string

Shortened — Option to shorten the subframe
0 (default) | optional | 1

Option to shorten the subframe by omitting the last symbol, specified as 0 or 1. For subframes with
possible SRS transmission, this parameter is required. If 1, the last symbol of the subframe is not
used.

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing the following fields.

ResourceIdx — PUCCH resource indices
0 (default) | optional | 0,...,549 | integer | vector of integers

PUCCH resource indices, specified as an integer or a vector of integers. Values range from 0 to 549.
There is one index for each transmission antenna. These indices determine the cyclic shift and
orthogonal cover used for transmission. (nPUCCH

(3))

Data Types: struct

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

 ltePUCCH3Indices

2-887

Output Arguments
ind — PUCCH format 3 resource element indices
integer column vector | three-column integer matrix

PUCCH format 3 resource element indices, returned as an integer column vector or a three-column
integer matrix. By default, the indices are returned in one-based linear indexing form that can
directly index elements of a resource matrix. These indices are ordered according to PUCCH format 3
modulation symbol mapping as specified in TS 36.211 [1], Section 5.4. The opts input offers
alternative indexing formats. The indices for each antenna are in the columns of ind, with the
number of columns determined by the number of PUCCH resource indices specified in
chs.ResourceIdx.
Example: [1,2,3,4...]

info — PUCCH format 3 information
scalar structure | structure array

PUCCH format 3 information, returned as a structure array with elements corresponding to each
transmit antenna and containing these fields.

PRBSet — Set of PRB indices
column vector | two-column matrix

Set of PRB indices, returned as a column vector or two-column matrix corresponding to the resource
allocations.

• When returned as a column vector, the resource allocation is the same in both slots of the
subframe.

• When returned as a two-column matrix, the resource allocations can vary for each slot in the
subframe.

The PRB indices are zero-based.
Example: [0,5]

RBIdx — PUCCH logical resource block index
nonnegative integer

PUCCH logical resource block index, returned as a nonnegative integer. (m)

NSymbSlot — Number of OFDM symbols in each slot
vector of integers

The number of OFDM symbols in each slot, returned as a vector of integers. (NSF, 0
PUCCH NSF, 1

PUCCH)

Data Types: struct

Version History
Introduced in R2014a

2 Functions

2-888

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePUCCH3 | ltePUCCH3Decode | ltePUCCH3DRS | ltePUCCH3DRSIndices | ltePUCCH3PRBS |
ltePUCCH1Indices | ltePUCCH2Indices

 ltePUCCH3Indices

2-889

https://www.3gpp.org

ltePUCCH3PRBS
PUCCH format 3 pseudorandom scrambling sequence

Syntax
[seq,cinit] = ltePUCCH3PRBS(ue,n)
[seq,cinit] = ltePUCCH3PRBS(ue,n,mapping)

[subseq,cinit] = ltePUCCH3PRBS(ue,pn)
[subseq,cinit] = ltePUCCH3PRBS(ue,pn,mapping)

Description
[seq,cinit] = ltePUCCH3PRBS(ue,n) returns a column vector containing the first n outputs of
the Physical Uplink Control Channel (PUCCH) format 3 scrambling sequence when initialized
according to UE-specific settings, ue, which must be a structure. It also returns an initialization value
cinit for the pseudorandom binary sequence (PRBS) generator.

[seq,cinit] = ltePUCCH3PRBS(ue,n,mapping) allows control over the format of the returned
sequence, seq, with the input mapping.

[subseq,cinit] = ltePUCCH3PRBS(ue,pn) returns a subsequence of a full PRBS sequence,
specified by pn.

[subseq,cinit] = ltePUCCH3PRBS(ue,pn,mapping) allows additional control over the format
of the returned subsequence, subseq, with the input mapping.

Examples

Scramble Random PUCCH3 Codeword

Scramble a random PUCCH3 codeword.

Create a ue-specific configuration structure. Generate a codeword. Generate a PUCCH3
pseudorandom scrambling sequence the same length as the codeword.

ue.NCellID = 1;
ue.NSubframe = 0;
ue.RNTI = 1;
cw = randi([0 1],48,1);
seq = ltePUCCH3PRBS(ue,length(cw));

Scramble codeword with PDCCH PRBS.

scrambled = xor(seq,cw);

2 Functions

2-890

Scramble UCI3 Codeword

Scramble a UCI3 codeword with a PUCCH3 pseudorandom scrambling sequence.

Create a ue-specific configuration structure. Generate a UCI3 codeword. The UCI3 codeword is 48
bits long.

ue.NCellID = 1;
ue.NSubframe = 0;
ue.RNTI = 1;

txAck = [1;0;0;1];
cw = lteUCI3Encode(txAck);
cwLength = length(cw)

cwLength = 48

Generate a PUCCH3 pseudorandom scrambling sequence the same length as the codeword. Scramble
codeword with PDCCH PRBS.

seq = ltePUCCH3PRBS(ue,length(cw));
scrambled = xor(seq,cw);

Generate PUCCH Format 3 Pseudorandom Scrambling Sequence

This example shows the generation of unsigned and signed PUCCH format 3 pseudorandom
scrambling sequences.

Initialize ue specific parameters.

ue = struct('NCellID',1,'NSubframe',0,'RNTI',1);

Generate a PUCCH format 3 pseudorandom scrambling sequence.

pucch3Seq = ltePUCCH3PRBS(ue,5)

pucch3Seq = 5x1 logical array

 1
 1
 0
 0
 1

Generate a signed PUCCH format 3 pseudorandom scrambling sequence.

pucch3Seq = ltePUCCH3PRBS(ue,5,'signed')

pucch3Seq = 5×1

 -1
 -1
 1
 1

 ltePUCCH3PRBS

2-891

 -1

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure having the following fields.

NCellID — Physical layer cell identity
integer (0...503)

Physical layer cell identity, specified as an integer between 0 and 503.
Data Types: double

NSubframe — Subframe number
integer

Subframe number, specified as an integer.
Data Types: double

RNTI — Radio Network Temporary Identifier
integer

Radio Network Temporary Identifier (16-bit), specified as an integer.
Data Types: double

Data Types: struct

n — Number of elements in returned sequence
numeric scalar

Number of elements in returned sequence, seq, specified as a numeric scalar.
Data Types: double

pn — Range of elements in returned subsequence
row vector

Range of elements in returned subsequence, subseq, specified as a row vector of [p n]. The
subsequence returns n values of the PRBS generator, starting at position p (0-based).
Data Types: double

mapping — Output sequence formatting
'binary' (default) | 'signed'

Output sequence formatting, specified as 'binary' or 'signed'. mapping controls the format of
the returned sequence.

• 'binary' maps true to 1 and false to 0.
• 'signed' maps true to –1 and false to 1.

2 Functions

2-892

Data Types: char | string

Output Arguments
seq — PUCCH format 3 scrambling sequence
logical column vector | numeric column vector

PUCCH format 3 scrambling sequence, returned as a logical column vector or a numeric column
vector. seq contains the first n outputs of the scrambling sequence. If you set mapping to 'signed',
the output data type is double. Otherwise, the output data type is logical.
Data Types: logical | double

subseq — PUCCH format 3 scrambling subsequence
logical column vector | numeric column vector

PUCCH format 3 scrambling subsequence, returned as a logical column vector or a numeric column
vector. subseq contains the values of the PRBS generator specified by pn. If you set mapping to
'signed', the output data type is double. Otherwise, the output data type is logical.
Data Types: logical | double

cinit — Initialization value for PRBS generator
numeric scalar

Initialization value for PRBS generator, returned as a numeric scalar.
Data Types: uint32

Version History
Introduced in R2014a

See Also
ltePUCCH3 | ltePUCCH3Decode | ltePUCCH3Indices | ltePUCCH3DRS | ltePUCCH3DRSIndices
| ltePRBS | ltePUCCH2PRBS

 ltePUCCH3PRBS

2-893

ltePUSCH
Physical uplink shared channel

Syntax
sym=ltePUSCH(ue,chs,cws)

Description
sym=ltePUSCH(ue,chs,cws) returns a vector containing the Physical Uplink Shared Channel
(PUSCH) complex symbols for UE-specific settings, ue, PUSCH channel-specific configuration, chs,
and the codeword or codewords contained in cws. The size of the matrix sym is N-by-P. Where N is
the number of modulation symbols for one antenna port and P is the number of transmission
antennas.

Examples

Create PUSCH Complex Symbols

Generate PUSCH symbols for TS36.104 Uplink FRC A3-3 with 3MHz bandwidth.

Initialize UE specific (ue) and channel (pusch) configuration structures, and fixed reference channel
(frc).

ue.NCellID = 1;
ue.NSubframe = 0;
ue.RNTI = 1;

pusch.Modulation = 'QPSK';
pusch.PRBSet = [0:14].';
pusch.RV = 0;

frc = lteRMCUL('A3-3');

Generate transport block (trBlk), UL-SCH codewords (cw), and PUSCH symbols (puschSym).

trBlk = randi([0,1],frc.PUSCH.TrBlkSizes(1),1);
cw = lteULSCH(ue,pusch,trBlk);
puschSym = ltePUSCH(ue,pusch,cw);

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure having the following fields.

2 Functions

2-894

Parameter
Field

Required or
Optional

Values Description

NCellID Required Nonnegative integer Physical layer cell identity
NSubframe Required Integer Subframe number
RNTI Required Integer Radio network temporary identifier

(RNTI) value (16 bits)
NTxAnts Optional 1 (default), 2, 4 Number of transmission antennas.

Data Types: struct

chs — PUSCH channel-specific configuration
structure

PUSCH channel-specific configuration, specified as a structure having the following fields.

Parameter
Field

Required or
Optional

Values Description

Modulation Required 'QPSK', '16QAM',
'64QAM', or
'256QAM'

Modulation format, specified as a
character vector or string scalar for one
codeword, or a cell array of character
vectors or string array for two
codewords.

PRBSet Required Integer column vector
or two-column matrix

Physical Resource Block (PRB) indices,
specified as a column vector or two-
column matrix, corresponding to the slot
wise resource allocations for this
PUSCH.

If a column vector is provided for
PRBSet, the resource allocation is the
same in both slots of the subframe. The
two-column matrix can be used to
specify differing PRBs for each slot in a
subframe. The PRB indices are zero-
based.

NLayers Optional 1 (default), 2, 3, 4 Number of transmission layers.
The following field is required only when ue.NTxAnts is set to 2 or 4. Acceptable values for PMI
depend upon ue.NTxAnts and NLayers.
 PMI Optional Numeric scalar

(0...23)

0 (default)

Scalar precoder matrix indication (PMI)
to be used during precoding

Data Types: struct

cws — Codeword bit values
vector | cell array

Codeword bit values to be modulated, specified as a vector of bit values for one codeword, or a cell
array containing one or two vectors of bit values corresponding to the one or two codewords.

 ltePUSCH

2-895

Data Types: double

Output Arguments
sym — PUSCH symbols
complex-valued numeric matrix

PUSCH symbols, returned as a complex-valued numeric matrix of size N-by-P. N is the number of
modulation symbols for one antenna port. P is the number of transmission antennas.
Data Types: double

Version History
Introduced in R2013b

References
[1] 3GPP TS 36.104. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio

Transmission and Reception.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

See Also
ltePUSCHDecode | ltePUSCHIndices | ltePUSCHDRS | ltePUSCHDRSIndices |
ltePUSCHPrecode | lteULScramble | lteULPrecode | lteULSCH | lteULPMIInfo

2 Functions

2-896

https://www.3gpp.org

ltePUSCHDecode
Physical uplink shared channel decoding

Syntax
[cws,symbols] = ltePUSCHDecode(ue,chs,sym)
[cws,symbols] = ltePUSCHDecode(ue,chs,sym,hest,noiseest)
[cws,symbols] = ltePUSCHDecode(ue,chs,sym,hest,noiseest,alg)

Description
[cws,symbols] = ltePUSCHDecode(ue,chs,sym) returns soft bit vector or cell array of soft bit
vectors cws containing the received codeword estimates and received constellation of complex
symbol vector symbols. The output results from decoding of physical uplink shared channel (PUSCH)
complex symbols sym for UE-specific settings ue and channel transmission configuration chs.

The function performs the inverse of PUSCH processing. See TS 36.211, Section 5.3 [1] or ltePUSCH
for details.

Multiple codewords can be parameterized by two different forms of the chs structure. Each
codeword can be defined by separate elements of a 1-by-2 structure array, or the codeword
parameters can be combined together in the fields of a single scalar, or 1-by-1, structure. Any scalar
field values apply to both codewords and a scalar NLayers is the total number. For details, see “UL-
SCH Parameterization” .

If UCI control information, such as RI or HARQ-ACK, is present in the received complex PUSCH
symbols, then this function performs the descrambling of the placeholder bits by establishing the
correct locations with the help of the UCI-related parameters present in chs.

[cws,symbols] = ltePUSCHDecode(ue,chs,sym,hest,noiseest) also specifies channel
estimate, hest and noise estimate noiseest. In this case, sym is an M-by-NRxAnts matrix, where M
is the number of symbols per antenna and NRxAnts is the number of receive antennas. When
ue.NTxAnts is greater than 1, the reception is performed using an MMSE equalizer, equalizing
between transmitted and received layers. When ue.NTxAnts is 1, the reception is performed using
MMSE equalization on the received antennas.

[cws,symbols] = ltePUSCHDecode(ue,chs,sym,hest,noiseest,alg) provides control over
weighting the output soft bits with Channel State Information (CSI) calculated during the
equalization stage using algorithmic configuration structure, alg.

Examples

Decode PUSCH Symbols from FRC

Decode the PUSCH modulation symbols contained in the output of a Fixed Reference Channel (FRC).

frc = lteRMCUL('A3-2');
trData = randi([0,1],frc.PUSCH.TrBlkSizes(1),1);
[waveform,reGrid] = lteRMCULTool(frc,trData);

 ltePUSCHDecode

2-897

puschIndices = ltePUSCHIndices(frc,frc.PUSCH);
rxCw = ltePUSCHDecode(frc,frc.PUSCH,reGrid(puschIndices));

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure having the following fields.

Parameter
Field

Required or
Optional

Values Description

NCellID Required Integer Physical layer cell identity
NSubframe Required 0 (default),

nonnegative scalar
integer

Subframe number

RNTI Required 0 (default), scalar
integer

Radio network temporary identifier
(RNTI) value (16 bits)

CyclicPref
ixUL

Optional 'Normal' (default),
'Extended'

Cyclic prefix length.

NTxAnts Optional 1 (default), 2, 4 Number of transmission antennas.
Shortened Optional 0 (default), 1 Option to shorten the subframe by

omitting the last symbol, specified as 0
or 1. If 1, the last symbol of the
subframe is not used. For subframes
with possible SRS transmission, set
Shortened to 1 to maintain a standard
compliant configuration.

Data Types: struct

chs — Channel transmission configuration
scalar structure | structure array

Channel transmission configuration, specified as a scalar structure or a structure array. chs is the
PUSCH channel-specific structure having these fields. If UCI is present in the transmitted PUSCH to
be decoded, the optional fields, ORI, OACK, QdRI, and QdACK,must be configured in the chs
structure.

Parameter
Field

Required or
Optional

Values Description

Modulation Required 'QPSK', '16QAM',
'64QAM', or
'256QAM'

Modulation format

2 Functions

2-898

Parameter
Field

Required or
Optional

Values Description

PRBSet Required Integer column vector
or two-column matrix

Physical Resource Block (PRB) indices,
specified as a column vector or two-
column matrix, corresponding to the slot
wise resource allocations for this
PUSCH.

If a column vector is provided for
PRBSet, the resource allocation is the
same in both slots of the subframe. The
two-column matrix can be used to
specify differing PRBs for each slot in a
subframe. The PRB indices are zero-
based.

NLayers Optional 1 (default), 2, 3, 4 Number of transmission layers.
The following field is required only when ue.NTxAnts is set to 2 or 4. Acceptable values for PMI
depend upon ue.NTxAnts and NLayers.
 PMI Optional Numeric scalar

(0...23)

0 (default)

Scalar precoder matrix indication (PMI)
to be used during precoding

ORI Optional Integer

0 (default)

Number of uncoded RI bits

OACK Optional nonnegative scalar
integer, 0 (default)

Number of uncoded HARQ-ACK bits.

QdRI Optional Integer

0 (default)

Number of coded RI symbols in UL-SCH,
specified as an integer. Optional. (Q'_RI)

QdACK Optional nonnegative scalar
integer

0 (default)

Number of coded HARQ-ACK symbols in
UL-SCH (Q'_ACK), specified as an
integer. Optional.

Data Types: struct

sym — PUSCH symbols
complex-valued matrix

PUSCH symbols, specified as a complex-valued matrix of size M-by-P, where M is the number of
symbols per antenna or layer and P is the number of transmission antennas.
Data Types: double
Complex Number Support: Yes

hest — Channel estimate
3-D numeric array

 ltePUSCHDecode

2-899

Channel estimate, specified as a 3-D numeric array of size M-by-NRxAnts-by-NTxAnts. Where M is
the number of symbols per antenna, NRxAnts is the number of receive antennas, and NTxAnts is the
number of transmit antennas ports, given by ue.NTxAnts.
Data Types: double

noiseest — Noise estimate
numeric scalar

Noise estimate, specified as a numeric scalar. This argument is an estimate of the noise power
spectral density per RE on received subframe. The lteULChannelEstimate function provides such
an estimate.
Data Types: double

alg — Algorithmic configuration
structure

Algorithmic configuration, specified as a structure having the following field.

Parameter
Field

Required or
Optional

Values Description

CSI Optional 'On' (default), 'Off' Flag provides control over weighting the
soft values that are used to determine
the output values with the channel state
information (CSI) calculated during the
equalization process. If 'On', soft
values are weighted by CSI.

Data Types: struct

Output Arguments
cws — Codewords
column vector | cell array of column vectors

Codewords, returned as a column vector or a cell array of column vectors. The soft bit vectors
contain the received codeword estimates.
Data Types: double

symbols — Received constellation of symbols
complex-valued column vector

Received constellation of symbols, received as a complex-valued column vector.
Data Types: double

Version History
Introduced in R2013b

2 Functions

2-900

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePUSCH | ltePUSCHIndices | ltePUSCHDRS | ltePUSCHDRSIndices | ltePUSCHDeprecode |
lteULDescramble | lteULDeprecode | lteULSCHDecode | lteULPMIInfo

 ltePUSCHDecode

2-901

https://www.3gpp.org

ltePUSCHDeprecode
PUSCH MIMO deprecoding onto transmission layers

Syntax
out = ltePUSCHDeprecode(in,nu,codebook)
out = ltePUSCHDeprecode(chs,in)

Description
out = ltePUSCHDeprecode(in,nu,codebook) deprecodes the precoded symbol matrix, in, onto
nu layers. It performs deprecoding using matrix pseudo inversion, to undo the processing described
in TS 36.211, Section 5.3.3A [1]. This function returns an M-by-nu matrix, out, containing nu layers
with M symbols in each layer. The deprecoder transposes the operation defined in TS 36.211, Section
5.3.3A, specifically the symbols for layers and antennas lie in columns rather than rows. The input
argument in is an N-by-P matrix, where P is the number of transmission antennas and N is the
number of symbols per antenna. When P is 2 or 4, deprecoding for spatial multiplexing is applied with
the scalar codebook index, codebook. TS 36.211, Section 5.3.3A [1] specifies the codebook matrix
corresponding to a particular index.

out = ltePUSCHDeprecode(chs,in) deprecodes the precoded symbol matrix, in, according to
channel transmission configuration, chs.

Examples

Deprecode PUSCH Symbols

By precoding with an identity matrix, we can gain access to the precoding matrices themselves. The
precoded matrix is first generated with codebook index 0 for 4 layers and 4 antennas. The precoded
matrix is then deprecoded, resulting in an identity matrix.

 nLayers = 4;
 nAntennas = 4;
 codeBookIdx = 0;
 precodingMatrix = ltePUSCHPrecode(eye(nLayers),nAntennas,codeBookIdx);
 out = ltePUSCHDeprecode(precodingMatrix,nLayers,codeBookIdx)

out = 4×4 complex

 1.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i

Input Arguments
in — Precoded symbol input
complex-valued numeric matrix

2 Functions

2-902

Precoded symbol input, specified as an N-by-P complex-valued numeric matrix. Where P is the
number of transmission antennas and N is the number of symbols per antenna.
Example: [0.5000 + 0.0000i 0.5000 + 0.0000i; 0.5000 + 0.0000i -0.5000 +
0.0000i]

Data Types: double
Complex Number Support: Yes

nu — Number of layers
1 | 2 | 3 | 4

Number of layers, specified as 1, 2, 3, or 4.
Example: 2
Data Types: double

codebook — Codebook index
numeric scalar

Codebook index, specified as a numeric scalar. When the number of transmit antennas, P, is 1, this
input argument is ignored.
Data Types: double

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure having the following fields.

NLayers — Number of transmission layers
1 (default) | optional | 2 | 3 | 4

Number of transmission layers, specified as an integer from 1 through 4. Optional.
Data Types: double

PMI — Precoder matrix indication
0 (default) | optional | numeric scalar (0...23)

Precoder matrix indication, specified as a numeric scalar between 0 (default) and 23. Only required if
the number of transmission antennas, P, is 2 or 4. Acceptable values for PMI depend upon P and the
number of transmission layers, NLayers. The scalar PMI is used during deprecoding.
Data Types: double

Data Types: struct

Output Arguments
out — Deprecoded output
numeric matrix

Deprecoded output, returned as an M-by-nu matrix, containing nu layers with M symbols in each
layer.
Data Types: double

 ltePUSCHDeprecode

2-903

Version History
Introduced in R2013b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePUSCHPrecode | ltePUSCH | ltePUSCHDecode | ltePUSCHIndices | ltePUSCHDRS |
ltePUSCHDRSIndices | lteULDeprecode | lteULPMIInfo

2 Functions

2-904

https://www.3gpp.org

ltePUSCHDRS
PUSCH demodulation reference signal

Syntax
[antseq,info,layerseq] = ltePUSCHDRS(ue,chs)

Description
[antseq,info,layerseq] = ltePUSCHDRS(ue,chs) returns the physical uplink shared channel
(PUSCH) transmission demodulation reference signal (DM-RS) antenna sequence values,antseq, the
layer sequence values, layerseq, and the information structure, info, given input structures
containing UE-specific settings, and the channel transmission configuration settings.

When the number of transmission antennas is greater than one, the DM-RS is precoded using spatial
multiplexing.

For short base reference sequences, such as those used with PUSCH allocations of 1 or 2 PRBs, and
when chs.PRBSet is empty, Zadoff-Chu sequences are not used. In this case, RootSeq and NZC are
set to –1. If antseq is empty, such as when the input PRBSet is empty, the info structure contains
all fields, but each field is either empty for vector fields or –1 for scalar fields.

Examples

Generate PUSCH DM-RS

Generate the PUSCH Demodulation Reference Signal (DM-RS) values for UE-specific settings.

Initialize UE specific (ue) and channel (chs) configuration structures. Generate PUSCH DM-RS
values.

ue.NCellID = 1;
ue.NSubframe = 0;
ue.CyclicPrefixUL = 'Normal';
ue.Hopping = 'Off';
ue.SeqGroup = 0;
ue.CyclicShift = 0;
ue.NTxAnts = 1;

chs.PRBSet = (0:5).';
chs.NLayers = 1;
chs.OrthCover = 'Off';
chs.DynCyclicShift = 0;

puschSeq = ltePUSCHDRS(ue,chs);
puschSeq(1:10)

ans = 10×1 complex

 1.0000 + 0.0000i

 ltePUSCHDRS

2-905

 -0.0810 + 0.9967i
 -0.9610 + 0.2766i
 -0.8839 - 0.4677i
 -0.6886 - 0.7251i
 -0.7692 - 0.6390i
 -0.9912 - 0.1324i
 -0.6447 + 0.7645i
 0.6779 + 0.7352i
 0.4872 - 0.8733i

Generate PUSCH DM-RS Using Alternate IDs

Demonstrate Uplink Release 11 coordinated multipoint (CoMP) operation. To avoid intercell
interference, use a virtual cell identity (NPUSCHID) and a distinct DM-RS cyclic shift hopping
identity (NDMRSID) for a potentially interfering UE in a neighboring cell.

Configure the UE of interest: UE 1 in cell 1.

ue1.NCellID = 1;
ue1.NSubframe = 0;
ue1.CyclicPrefixUL = 'Normal';
ue1.NTxAnts = 1;
ue1.Hopping = 'Off';
ue1.SeqGroup = 0;
ue1.CyclicShift = 0;

chs1.PRBSet = (0:5).';
chs1.NLayers = 1;
chs1.DynCyclicShift = 0;
chs1.OrthCover = 'Off';

Configure the interferer: UE 2 in cell 2.

ue2.NCellID = 2;
ue2.NSubframe = 0;
ue2.CyclicPrefixUL = 'Normal';
ue2.NTxAnts = 1;
ue2.Hopping = 'Off';
ue2.SeqGroup = 0;
ue2.CyclicShift = 0;

chs2.PRBSet = (0:5).';
chs2.NLayers = 1;
chs2.DynCyclicShift = 0;
chs2.OrthCover = 'Off';

Measure the interference between the DM-RS signals.

interferenceNoCoMP = ...
 abs(sum(ltePUSCHDRS(ue1,chs1).*conj(ltePUSCHDRS(ue2,chs2))));

Reconfigure for CoMP operation. Use a virtual cell identity equal to the cell identity for the UE of
interest. Configure the two UEs with different cyclic shift hopping patterns using the DM-RS identity
parameter.

2 Functions

2-906

ue1.NDMRSID = 1;
ue2.NPUSCHID = ue1.NCellID;
ue2.NDMRSID = 2;

Measure the interference between the DM-RS signals when using CoMP.

interferenceUsingCoMP = ...
 abs(sum(ltePUSCHDRS(ue1,chs1).*conj(ltePUSCHDRS(ue2,chs2))));

Compare the correlations between the DM-RS signals for the two UEs with and without CoMP,
interferenceUsingCoMP and interferenceNoCoMP, respectively.

interferenceUsingCoMP

interferenceUsingCoMP = 1.0482e-13

interferenceNoCoMP

interferenceNoCoMP = 21.3188

With CoMP, the interference is reduced to effectively zero.

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure. ue can contain the following fields.

Parameter
Field

Required or
Optional

Values Description

NCellID Required Nonnegative integer Physical layer cell identity
NSubframe Required 0 (default),

nonnegative scalar
integer

Subframe number

CyclicPref
ixUL

Optional 'Normal' (default),
'Extended'

Cyclic prefix length for uplink.

NTxAnts Optional 1 (default), 2, 4 Number of transmission antennas.
Hopping Optional 'Off' (default),

'Group', or
'Sequence'

Frequency hopping method.

SeqGroup Optional 0 (default), integer
from 0 to 29

PUSCH sequence group assignment
(ΔSS).

Used only if NDMRSID or NPUSCHID is
absent.

CyclicShif
t

Optional 0 (default), integer
from 0 to 7

Number of cyclic shifts used for PUSCH
DM-RS (yields nDMRS

(1)).

 ltePUSCHDRS

2-907

Parameter
Field

Required or
Optional

Values Description

NPUSCHID Optional 0 (default),
nonnegative scalar
integer from 0 to 509

PUSCH virtual cell identity. If this field
is not present, NCellID is used for
group hopping sequence-shift pattern
initialization.

See note.
NDMRSID Optional 0 (default),

nonnegative scalar
integer from 0 to 509

DM-RS identity for cyclic shift hopping
(nID

csh_DMRS). If this field is not present,
NCellID is used for cyclic shift hopping
initialization.

See note.
Note

1 The pseudorandom sequence generator for cyclic shift hopping is initialized according to
NDMRSID, if present — otherwise it is initialized according to the cell identity NCellID and the
sequence group assignment SeqGroup. Similarly, the sequence-shift pattern for group hopping is
initialized according to NPUSCHID, if present — otherwise it is initialized according to NCellID
and SeqGroup.

Data Types: struct

chs — Channel transmission configuration
structure

PUSCH channel configuration, specified as a structure that can contain the following fields.

Parameter
Field

Required
or
Optional

Values Description

PRBSet Required Integer column
vector or two-
column matrix

Physical resource block set, specified as an integer column
vector or two-column matrix. This parameter field contains
the zero-based physical resource block (PRB) indices
corresponding to the slot-wise resource allocations for this
PUSCH.

If PRBSet is a column vector, the resource allocation is the
same in both slots of the subframe. To specify differing PRBs
for each slot in a subframe, use a two-column matrix. The
PRB indices are zero-based.

NLayers Optional 1 (default), 2, 3, 4 Number of transmission layers.
DynCyclicShi
ft

Optional 0 (default), integer
from 0 to 7

Cyclic shift for DM-RS (yields nDMRS
(2)).

OrthoCover Optional 'Off' (default),
'On'

Applies ('On'), or does not apply ('Off'), orthogonal cover
sequence w (Activate-DMRS-with OCC).

The following field is applicable only when ue.NTxAnts is set to 2 or 4.

2 Functions

2-908

Parameter
Field

Required
or
Optional

Values Description

 PMI Optional 0 (default), integer
from 0 to 23

Scalar precoder matrix indication (PMI) used during
precoding of the DM-RS reference symbols.

Data Types: struct

Output Arguments
antseq — PUSCH DM-RS sequence
M-by-P matrix

PUSCH DM-RS sequence values, returned as an M-by-P complex-valued matrix. M is the number of
DM-RS symbols per antenna, and P is the number of transmission antennas. When P is greater than
one, the DM-RS is precoded using spatial multiplexing.
Data Types: double

info — Information about PUSCH DM-RS
structure array

Information about PUSCH DM-RS, returned as a structure array, with one element per transmission
layer, having the following fields.

Alpha — Reference signal cyclic shift
row vector

Reference signal cyclic shift for each slot, returned as a row vector. (α)

Alpha is proportional to NCS, α =
2πncs, λ

12 .

Data Types: double

SeqGroup — Base sequence group number
row vector

Base sequence group number for each slot, returned as a row vector. (u)
Data Types: double

SeqIdx — Base sequence number
row vector

Base sequence number for each slot, returned as a row vector. (v)
Data Types: double

RootSeq — Root Zadoff-Chu sequence index
row vector

Root Zadoff-Chu sequence index for each slot, returned as a row vector. (q)
Data Types: double

 ltePUSCHDRS

2-909

NCS — Cyclic shift values for each slot
two-column vector

Cyclic shift values for each slot, returned as a two-column vector (ncs,λ).

Data Types: double

NZC — Zadoff-Chu sequence length
integer

Zadoff-Chu sequence length, returned as an integer. (NZC
RS)

Data Types: double

N1DMRS — Component of reference signal cyclic shift
integer

Component of the reference signal cyclic shift signaled from higher layers, returned as an integer.
(nDMRS

(1))

Data Types: double

N2DMRS — Component of the reference signal cyclic shift
integer

Component of the reference signal cyclic shift signaled from the most recent DCI format 0 message,
returned as an integer. (nDMRS

(2))

Data Types: double

NPRS — Cell-specific component of reference signal cyclic shift
row vector

Cell-specific component of the reference signal cyclic shift for each slot, returned as a row vector.
(nPRS in LTE Release 8 and 9, nPN in LTE Release 10 and beyond)
Data Types: double

OrthSeq — Orthogonal cover value
row vector

Orthogonal cover value for each slot, specified as a row vector. (w)
Data Types: double

Data Types: struct

layerseq — PUSCH DM-RS sequence by layers
M-by-NU matrix

PUSCH DM-RS sequence by layers, returned as an M-by-NU complex matrix. M is the number of DM-
RS symbols per layer, and NU is the number of transmission layers. If the number of transmission
antennas is greater than one, the DM-RS is precoded using spatial multiplexing.
Data Types: double

2 Functions

2-910

Version History
Introduced in R2013b

See Also
ltePUSCH | ltePUSCHDecode | ltePUSCHPrecode | ltePUSCHDeprecode | ltePUSCHIndices |
ltePUSCHDRSIndices | lteULPMIInfo

 ltePUSCHDRS

2-911

ltePUSCHDRSIndices
PUSCH DM-RS resource element indices

Syntax
ind = ltePUSCHDRSIndices(ue,chs)
ind = ltePUSCHDRSIndices(ue,chs,opts)

Description
ind = ltePUSCHDRSIndices(ue,chs) returns a matrix of resource element (RE) indices for the
demodulation reference signal (DM-RS) associated with the physical uplink shared channel (PUSCH)
transmission, given structures containing the UE-specific settings and the channel transmission
configuration settings.

If indices for a number of layers, NU, are required, rather than indices for NTxAnts, the first NU
columns of the output can be used. The first NU columns of ind are the appropriate indices for the
layerseq output from the ltePUSCHDRS function.

ind = ltePUSCHDRSIndices(ue,chs,opts) formats the returned indices using options specified
by opts.

Examples

Generate PUSCH DM-RS RE Indices

Generate PUSCH DM-RS resource element indices for the uplink reference measurement channel
A3-1.

ue = lteRMCUL('A3-1');
puschInd = ltePUSCHDRSIndices(ue,ue.PUSCH);
puschInd(1:4)

ans = 4x1 uint32 column vector

 217
 218
 219
 220

Generate PUSCH DM-RS RE Indices Varying Output Format

Generate the zero-based PUSCH DM-RS indices for the uplink reference measurement channel A3-3.

ue = lteRMCUL('A3-3');
puschInd = ltePUSCHDRSIndices(ue,ue.PUSCH,{'0based','ind'});
puschInd(1:4)

2 Functions

2-912

ans = 4x1 uint32 column vector

 540
 541
 542
 543

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure having the following fields.

NULRB — Number of uplink resource blocks
integer

Number of uplink resource blocks, specified as an integer.
Data Types: double

CyclicPrefixUL — Cyclic prefix length for uplink
'Normal' (default) | 'Extended' | optional

Cyclic prefix length for uplink (UL), specified as either 'Normal' or 'Extended'.
Data Types: char | string

NTxAnts — Number of transmission antennas
1 (default) | 2 | 4 | optional

Number of transmission antennas, specified as 1, 2, or 4.
Data Types: double

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure having the following fields.

PRBSet — Physical resource block indices
column vector | two-column matrix

Physical resource block (PRB) indices, specified as a column integer vector or two-column integer
matrix. The PRB indices correspond to the slot-wise resource allocations for this PUSCH.

• When specified as a column vector, the resource allocation is the same in both slots of the
subframe.

• When specified as a two-column matrix, the resource allocations can vary for each slot in the
subframe.

The PRB indices are zero-based.

 ltePUSCHDRSIndices

2-913

Data Types: double

Data Types: struct

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — PUSCH DM-RS resource element indices
integer matrix

PUSCH DM-RS resource element indices, returned as an NSC-by-NTX integer matrix. NSC is the
number of DM-RS indices per antenna, and NTX is the number of transmission antennas. The resource
element (RE) indices for the demodulation reference signal (DM-RS) are associated with PUSCH
transmission. By default, the indices are returned in one-based linear indexing form that can directly
index elements of a resource matrix. These indices are ordered according to the PUSCH DM-RS
modulation symbol mapping specified in TS 36.211 [1], Section 5.5.2. The opts input offers
alternative indexing formats.
Data Types: uint32

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

2 Functions

2-914

https://www.3gpp.org

See Also
ltePUSCH | ltePUSCHDecode | ltePUSCHPrecode | ltePUSCHDeprecode | ltePUSCHIndices |
ltePUSCHDRS

 ltePUSCHDRSIndices

2-915

ltePUSCHIndices
PUSCH resource element indices

Syntax
[ind,info] = ltePUSCHIndices(ue,chs)
[ind,info] = ltePUSCHIndices(ue,chs,opts)

Description
[ind,info] = ltePUSCHIndices(ue,chs) returns a column vector of resource element indices
given the UE-specific settings structure, ue, and channel transmission configuration, chs. It returns a
column vector of Physical Uplink Shared Channel (PUSCH) resource element (RE) indices and a
structure, info, containing information related to the PUSCH indices. By default, the indices are
returned in 1-based linear indexing form that can directly index elements of a resource matrix. These
indices are ordered as the PUSCH modulation symbols should be mapped. Alternative indexing
formats can also be generated.

Support of PUSCH frequency hopping is provided by the function lteDCIResourceAllocation,
which creates PRBSet from a DCI Format 0 message.

[ind,info] = ltePUSCHIndices(ue,chs,opts) formats the returned indices using options
specified by opts.

Examples

Generate PUSCH RE Indices

Generate 0-based PUSCH resource element (RE) indices in linear form.

frc = lteRMCUL('A1-1');
puschIndices = ltePUSCHIndices(frc,frc.PUSCH,{'0based','ind'});
puschIndices(1:4)

ans = 4x1 uint32 column vector

 0
 1
 2
 3

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure having the following fields.

2 Functions

2-916

Parameter
Field

Required or
Optional

Values Description

NULRB Required Scalar integer from 6
to 110

Number of uplink resource blocks.
(NRB

UL)
CyclicPref
ixUL

Optional 'Normal' (default),
'Extended'

Cyclic prefix length.

NTxAnts Optional 1 (default), 2, 4 Number of transmission antennas.
Shortened Optional 0 (default), 1 Option to shorten the subframe by

omitting the last symbol, specified as 0
or 1. If 1, the last symbol of the
subframe is not used. For subframes
with possible SRS transmission, set
Shortened to 1 to maintain a standard
compliant configuration.

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure. It contains the following fields.

Parameter
Field

Required or
Optional

Values Description

PRBSet Required Integer column vector
or two-column matrix

PRB indices, specified as a column
vector or a 2-column matrix, containing
the Physical Resource Block indices
(PRBs) corresponding to the resource
allocations for this PUSCH.

Modulation Optional 'QPSK', '16QAM',
'64QAM', or
'256QAM'

Modulation format, specified as a
character vector or string scalar for one
codeword, or a cell array of character
vectors or string array for two
codewords.

NLayers Optional 1 (default), 2, 3, 4 Number of transmission layers.

Data Types: struct

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.

 ltePUSCHIndices

2-917

Category Options Description
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — PUSCH resource element indices
column vector of integers

PUSCH resource element (RE) indices, returned as column vector of integers.
Data Types: uint32

info — Information related to PUSCH indices
structure

Information related to the PUSCH indices, returned as a structure having the following fields.

Parameter
Field

Values Description

G 1- or 2-element vector of
integers

A one- or two-element vector, specifying the number
of coded and rate matched UL-SCH data bits for
each codeword

Gd Integer Number of coded and rate matched UL-SCH data
symbols, equal to the number of rows in the PUSCH
indices

Data Types: struct

Version History
Introduced in R2014a

See Also
ltePUSCH | ltePUSCHDecode | ltePUSCHPrecode | ltePUSCHDeprecode | ltePUSCHDRS |
ltePUSCHDRSIndices | lteDCIResourceAllocation

2 Functions

2-918

ltePUSCHPrecode
PUSCH MIMO precoding of transmission layers

Syntax
out = ltePUSCHPrecode(in,p,codebook)
out = ltePUSCHPrecode(ue,chs,in)

Description
out = ltePUSCHPrecode(in,p,codebook) precodes the matrix of layers, in, onto p antennas.
When p is 2 or 4, precoding for spatial multiplexing is applied with the scalar codebook index,
codebook. It performs precoding according to TS 36.211, Section 5.3.3A [1]. This function returns an
M-by-P matrix. Where M is the number of symbols per antenna and P is the number of transmission
antennas. The precoder transposes the operation defined in TS 36.211, Section 5.3.3A, specifically
the symbols for layers and antennas lie in columns rather than rows.

out = ltePUSCHPrecode(ue,chs,in) precodes the matrix of layers, in, according to UE-specific
settings, ue, and channel transmission configuration, chs.

Examples

Perform PUSCH MIMO Precoding

Generate a PUSCH precoding matrix with codebook index 1 for 3 layers and 4 antennas. By
precoding an identity matrix, we can gain access to the precoding matrices themselves.

nLayers = 3;
nAntennas = 4;
codeBookIdx = 1;
out = ltePUSCHPrecode(eye(nLayers),nAntennas,codeBookIdx)

out = 3×4 complex

 0.5000 + 0.0000i -0.5000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i 0.5000 + 0.0000i 0.0000 + 0.0000i
 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.5000 + 0.0000i

Input Arguments
in — Transmission input layers
numeric matrix

Transmission input layers, specified as a numeric matrix of size N-by-NU. in consists of the N
modulation symbols for transmission upon NU layers. The lteLayerMap function generates such a
matrix.
Example: [1 0 0; 0 1 0; 0 0 1]

 ltePUSCHPrecode

2-919

Data Types: double
Complex Number Support: Yes

p — Number of transmission antennas
1 | 2 | 4

Number of transmission antennas, specified as an integer having the values 1, 2, or 4.
Example: 1
Data Types: double

codebook — Codebook index
scalar integer

codebook is a scalar integer specifying the codebook index to be used during precoding. This input
is ignored when p is 1. The codebook matrix corresponding to a particular index can be found in TS
36.211, Section 5.3.3A [1].
Data Types: double

ue — UE-specific settings
structure

UE-specific settings, specified as a structure having the following fields.

NTxAnts — Number of transmission antennas
1 (default) | optional | 2 | 4

Number of transmission antennas, specified as 1, 2, or 4. Optional.
Data Types: double

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified a structure. chs can contain the following field. The
PMI parameter field is only required if ue.NTxAnts is set to 2 or 4.

PMI — Precoder matrix indication
0 (default) | optional | numeric scalar (0...23)

Precoder matrix indication, specified as a numeric scalar between 0 (default) and 23. Only required if
ue.NTxAnts is set to 2 or 4. Acceptable values for PMI depend upon ue.NTxAnts and the number of
layers, NU. The scalar PMI is used during precoding.
Data Types: double

Data Types: struct

Output Arguments
out — Precoded output symbols
M-by-P numeric matrix

2 Functions

2-920

Precoded output symbols, returned as a numeric matrix of size M-by-P. Where M is the number of
symbols per antenna and P is the number of transmission antennas.
Data Types: double
Complex Number Support: Yes

Version History
Introduced in R2013b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePUSCHDeprecode | ltePUSCH | ltePUSCHDecode | ltePUSCHIndices | ltePUSCHDRS |
ltePUSCHDRSIndices | lteULPrecode | lteULPMIInfo

 ltePUSCHPrecode

2-921

https://www.3gpp.org

lteRIDecode
Rank indication channel decoding

Syntax
out = lteRIDecode(chs,in)

Description
out = lteRIDecode(chs,in) performs the block decoding on soft input data, in. The input is
assumed to be encoded using the procedure defined for RI in TS 36.212 [1], Section 5.2.2.6 for given
channel transmission configuration, chs. The function returns the decoded output, out, as a vector of
length ORI, the number of uncoded RI bits transmitted.

The block decoding will be performed separately on each soft input data using a maximum likelihood
(ML) approach, assuming that in has been demodulated and equalized to best restore the originally
transmitted values.

The RI decoder performs different type of block decoding depending upon the number of uncoded RI
bits to be recovered. For ORI less than 3 bits, the decoder assumed the bits are encoded using the
procedure defined in TS 36.212 [1], Section 5.2.2.6. For decoding 3 to 11 RI bits, the decoder
assumes the bits are block encoded using the procedure defined in TS 36.212 [1], Section 5.2.2.6.4.
For decoding greater than 11 bits, the decoder performs the inverse procedure described in TS
36.212 [1], Section 5.2.2.6.5.

Examples

Decode RI Bits for 64QAM

Decode coded rank indication (RI) soft input bits for a 64QAM channel transmission configuration.

Generate rank indication bits and initialize the channel transmission configuration structure. Encode
logical RI bits and turn logical bits into 'LLR' data. Decode the RI bits.

ri = [1;0;1];
chs.Modulation = '64QAM';
chs.QdRI = 1;
chs.ORI = length(ri);
chs.NLayers = 1;

codedRI = lteRIEncode(chs,ri);
codedRI(codedRI == 0) = -1

codedRI = 6x1 int8 column vector

 1
 -1
 1
 -1
 -1

2 Functions

2-922

 1

decRI = lteRIDecode(chs,codedRI)

decRI = 3x1 logical array

 1
 0
 1

Input Arguments
chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure. Multiple codewords can be
parameterized by two different forms of the chs structure. Each codeword can be defined by
separate elements of a 1-by-2 structure array, or the codeword parameters can be combined together
in the fields of a single scalar, or 1-by-1, structure. Any scalar field values apply to both codewords
and a scalar NLayers is the total number. See “UL-SCH Parameterization” for further details.

Modulation — Modulation format
'QPSK' | '16QAM' | '64QAM' | '256QAM' | cell array of character vectors | string array

Modulation format, specified as 'QPSK', '16QAM', '64QAM', or '256QAM'. Use double quotes for
string. It there are two blocks, use a cell array of character vectors or a string array. Each element of
the arrays is associated with a transport block.
Data Types: char | string | cell

ORI — Number of uncoded RI bits
0 (default) | optional | nonnegative integer

Number of uncoded RI bits, specified as a nonnegative integer. The RI decoder performs different
type of block decoding depending upon the number of uncoded RI bits to be recovered.

For ORI less than 3 bits, the decoder assumed the bits are encoded using the procedure defined in TS
36.212 [1], Section 5.2.2.6.

For decoding 3 to 11 RI bits, the decoder assumes the bits are block encoded using the procedure
defined in TS 36.212 [1], Section 5.2.2.6.4. For decoding greater than 11 bits, the decoder performs
the inverse procedure described in TS 36.212 [1], Section 5.2.2.6.5.
Data Types: double

NLayers — Number of transmission layers
1 (default) | optional | 2 | 3 | 4

Number of transmission layers, specified as 1, 2, 3, or 4.
Data Types: double

Data Types: struct

 lteRIDecode

2-923

in — RI input bits
numeric vector | cell array of numeric vectors

RI input bits, specified as a numeric vector or a cell array of numeric vectors. The block decoding will
be performed separately on each soft input data using a maximum likelihood (ML) approach
assuming that in has been demodulated and equalized to best restore the originally transmitted
values.
Data Types: double | cell

Output Arguments
out — Decoded output
logical column vector

Decoded output, returned as a logical column vector. The vector length is determined by the value of
ORI.
Data Types: logical

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteRIEncode | lteACKDecode | lteCQIDecode | lteULSCHDeinterleave | lteULSCHDecode

2 Functions

2-924

https://www.3gpp.org

lteRIEncode
Rank indication channel encoding

Syntax
out = lteRIEncode(chs,in)

Description
out = lteRIEncode(chs,in) returns the coded rank indication (RI) bits after performing block
coding, as defined for RI in TS 36.212 [1], Section 5.2.2.6. in should be a vector or cell array
containing up to 15 RI bits. out contains the encoded bits in the same form.

Multiple codewords can be parameterized by two different forms of the chs structure. Each
codeword can be defined by separate elements of a 1-by-2 structure array, or the codeword
parameters can be combined together in the fields of a single scalar, or 1-by-1, structure. Any scalar
field values apply to both codewords and a scalar NLayers is the total number. See “UL-SCH
Parameterization” for further details.

Since the RI bits are carried on all defined codewords, a single input will result in a cell array of
encoded outputs if multiple codewords are parameterized. This allows for easy integration with the
other functions.

The RI coder performs different types of block coding depending upon the number of RI bits in vector
in. If in consists of one element, it uses TS 36.212 [1], Table 5.2.2.6-3. If in consists of two
elements, it uses TS 36.212 [1], Table 5.2.2.6-4 for encoding. The placeholder bits, x and y in the
tables, are represented by –1 and –2, respectively.

Similarly, for 3 to 11 bits, the RI encoding is performed as per TS 36.212 [1], Section 5.2.2.6.4. For
greater than 11 bits, the encoding is performed as described in TS 36.212 [1], Section 5.2.2.6.5.

Examples

Encode RI Bits for One Codeword

Generate the coded rank indication (RI) bits for a single codeword.

riBit = 0;
chs.Modulation = '64QAM';
chs.QdRI = 1;
chs.NLayers = 1;

codedRi = lteRIEncode(chs,riBit)

codedRi = 6x1 int8 column vector

 0
 -2
 -1
 -1

 lteRIEncode

2-925

 -1
 -1

Encode RI Bits for Two Codewords

Generate the coded rank indication (RI) bits for a two codewords on 3 layers.

riBit = 0;
chs.Modulation = {'64QAM' '64QAM'};
chs.QdRI = 1;
chs.NLayers = 3;

codedRi = lteRIEncode(chs,riBit)

codedRi=1×2 cell array
 {6x1 int8} {12x1 int8}

codedRi{:}

ans = 6x1 int8 column vector

 0
 -2
 -1
 -1
 -1
 -1

ans = 12x1 int8 column vector

 0
 -2
 -1
 -1
 -1
 -1
 0
 -2
 -1
 -1
 ⋮

Input Arguments
chs — PUSCH-specific parameter structure
scalar structure | structure array

PUSCH-specific parameter structure, specified as a scalar structure or a structure array. chs
contains the following fields.

2 Functions

2-926

QdRI — Number of coded RI symbols
nonnegative numeric scalar | nonnegative numeric vector

Number of coded RI symbols, specified as a nonnegative numeric scalar or vector (Q'_RI).
Data Types: double

Modulation — Modulation format
'QPSK' | '16QAM' | '64QAM' | '256QAM' | cell array of character vectors | string array

Modulation format, specified as 'QPSK', '16QAM', '64QAM', or '256QAM'. Use double quotes for
string. It there are two blocks, use a cell array of character vectors or a string array. Each element of
the arrays is associated with a transport block.
Data Types: char | string | cell

NLayers — Number of transmission layers
1 (default) | optional | 2 | 3 | 4

Number of transmission layers, specified as a positive numeric scalar. Optional.
Data Types: double

Data Types: struct

in — RI input bits
logical vector of length 1 to 15 | cell array of logical vectors

RI input bits, specified as a logical vector of length 1 to 15 or a cell array of logical vectors. Each
vector can contain up to 15 RI bits apiece.
Data Types: cell | double

Output Arguments
out — Encoded output bits
integer column vector | cell array of integer column vectors

Encoded output bits, returned as an integer column vector or a cell array of integer column vectors,
in the same form as in. If the PUSCH-specific parameter structure chs defines multiple codewords,
out is a cell array.
Data Types: int8 | cell

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

 lteRIEncode

2-927

https://www.3gpp.org

See Also
lteRIDecode | lteACKEncode | lteCQIEncode | lteULSCHInterleave | lteULSCH

2 Functions

2-928

lteRMCDL
Downlink reference measurement channel configuration

Syntax
rmccfgout = lteRMCDL(rc)
rmccfgout = lteRMCDL(rc,duplexmode)
rmccfgout = lteRMCDL(rc,duplexmode,totsubframes)
rmccfgout = lteRMCDL(rmccfg,ncodewords)

Description
rmccfgout = lteRMCDL(rc) returns configuration structure rmccfgout for reference channel rc.
This structure uses a channel-specific default configuration. The structure contains the configuration
parameters required to generate a given reference channel waveform using the reference
measurement channel (RMC) generator tool, lteRMCDLTool. The field names and default values
comply with the definition found in TS 36.101 [1], Annex A.3.

rmccfgout = lteRMCDL(rc,duplexmode) specifies duplexmode, the duplexing mode.

rmccfgout = lteRMCDL(rc,duplexmode,totsubframes) specifies totsubframes, total
number of subframes to generate.

rmccfgout = lteRMCDL(rmccfg,ncodewords) returns a fully configured structure for the
reference channel partially, or wholly, defined by input structure rmccfg. You can specify the number
of PDSCH codewords to modulate in the ncodewords input.

Examples

Generate RMC Configuration Where Allocated Resource Blocks Vary Per SF

Create a configuration structure for reference measurement channel R.44 as specified in TS 36.101.

rc = 'R.44';

rmcOut = lteRMCDL(rc);

For this RMC, the size of the resource allocation varies per subframe. Evidence of this is seen by
viewing the PRBSet and observing that the length of resource allocation vectors in the PRBSet cell
array vary per subframe.

rmcOut.PDSCH.PRBSet

ans=1×10 cell array
 Columns 1 through 4

 {41x1 double} {50x1 double} {50x1 double} {50x1 double}

 Columns 5 through 8

 lteRMCDL

2-929

 {50x1 double} {0x0 double} {50x1 double} {50x1 double}

 Columns 9 through 10

 {50x1 double} {50x1 double}

Generate RMC Configuration Where CFI Varies Per Subframe

Create a configuration structure for reference measurement channel R.0 in TDD mode as specified in
TS 36.101. For this RMC and duplex mode combination, the value of CFI varies per subframe.

Set input arguments.

rc = 'R.0';
duplexmode = 'TDD';

Generate the configuration structure.

rmcOut = lteRMCDL(rc,duplexmode)

rmcOut = struct with fields:
 RC: 'R.0'
 NDLRB: 15
 CellRefP: 1
 NCellID: 0
 CyclicPrefix: 'Normal'
 CFI: [3 2 3 3 3 3 2 3 3 3]
 PCFICHPower: 0
 Ng: 'Sixth'
 PHICHDuration: 'Normal'
 HISet: [112x3 double]
 PHICHPower: 0
 NFrame: 0
 NSubframe: 0
 TotSubframes: 10
 Windowing: 0
 DuplexMode: 'TDD'
 PDSCH: [1x1 struct]
 OCNGPDCCHEnable: 'Off'
 OCNGPDCCHPower: 0
 OCNGPDSCHEnable: 'Off'
 OCNGPDSCHPower: 0
 OCNGPDSCH: [1x1 struct]
 Nfft: []
 SSC: 4
 TDDConfig: 1

In TDD mode, looking at the rmcOut.CFI vector, we see variation which corresponds to per
subframe CFI value adjustment.

rmcOut.CFI

ans = 1×10

2 Functions

2-930

 3 2 3 3 3 3 2 3 3 3

Generate Downlink R.11 RMC Configuration

Create a configuration structure for reference measurement channel R.11 as specified in TS 36.101.
View the contents of the configuration structure.

rmc.RC = 'R.11';
rmc.NCellID = 100;
rmc.PDSCH.TxScheme = 'SpatialMux';
rmcOut = lteRMCDL(rmc,2)

rmcOut = struct with fields:
 RC: 'R.11'
 NDLRB: 50
 CellRefP: 2
 NCellID: 100
 CyclicPrefix: 'Normal'
 CFI: 2
 PCFICHPower: 0
 Ng: 'Sixth'
 PHICHDuration: 'Normal'
 HISet: [112x3 double]
 PHICHPower: 0
 NFrame: 0
 NSubframe: 0
 TotSubframes: 10
 Windowing: 0
 DuplexMode: 'FDD'
 PDSCH: [1x1 struct]
 OCNGPDCCHEnable: 'Off'
 OCNGPDCCHPower: 0
 OCNGPDSCHEnable: 'Off'
 OCNGPDSCHPower: 0
 OCNGPDSCH: [1x1 struct]
 Nfft: []

Display the contents of the PDSCH substructure.

rmcOut.PDSCH

ans = struct with fields:
 TxScheme: 'SpatialMux'
 Modulation: {'16QAM' '16QAM'}
 NLayers: 2
 Rho: 0
 RNTI: 1
 RVSeq: [2x4 double]
 RV: [0 0]
 NHARQProcesses: 8
 NTurboDecIts: 5
 PRBSet: [50x1 double]
 TargetCodeRate: 0.5000
 ActualCodeRate: [2x10 double]

 lteRMCDL

2-931

 TrBlkSizes: [2x10 double]
 CodedTrBlkSizes: [2x10 double]
 DCIFormat: 'Format2'
 PDCCHFormat: 2
 PDCCHPower: 0
 CSIMode: 'PUSCH 3-1'
 PMIMode: 'Wideband'
 PMISet: 0

Display the contents of the OCNGPDSCH substructure.

rmcOut.OCNGPDSCH

ans = struct with fields:
 RNTI: 0
 Modulation: 'QPSK'
 TxScheme: 'TxDiversity'

Override Default Downlink R.13 RMC Configuration

Create a new customized parameter set by overriding selected values of an existing preset RMC. To
define a single codeword full-band 10MHz PDSCH using 4 CRS port spatial multiplexing and 64QAM
modulation, begin by initializing an RMC configuration structure to R.13. Looking at TS 36.101, Table
A.3.1.1-1, see the RMC R.13 matches desired configuration except the default QPSK modulation must
be adjusted.

Create an R.13 RMC configured structure and display rmc.PDSCH.

rmcOverride.RC = 'R.13';
rmc = lteRMCDL(rmcOverride,1);
rmc.PDSCH

ans = struct with fields:
 TxScheme: 'SpatialMux'
 Modulation: {'QPSK'}
 NLayers: 1
 Rho: 0
 RNTI: 1
 RVSeq: [0 1 2 3]
 RV: 0
 NHARQProcesses: 8
 NTurboDecIts: 5
 PRBSet: [50x1 double]
 TargetCodeRate: 0.3333
 ActualCodeRate: [0.3032 0.3450 0.3450 0.3450 0.3450 0 0.3450 0.3450 ...]
 TrBlkSizes: [3624 4392 4392 4392 4392 0 4392 4392 4392 4392]
 CodedTrBlkSizes: [12032 12800 12800 12800 12800 0 12800 12800 12800 12800]
 DCIFormat: 'Format2'
 PDCCHFormat: 2
 PDCCHPower: 0
 CSIMode: 'PUSCH 1-2'
 PMIMode: 'Wideband'
 PMISet: 0

2 Functions

2-932

Override the default modulation and execute the lteRMCDL function. Inspect rmc.PDSCH, PDSCH
transport block sizes and physical channel capacities are updated to maintain the R=1/3 coding rate
when the modulation is overridden.

rmcOverride.PDSCH.Modulation = '64QAM';
rmc = lteRMCDL(rmcOverride,1);
rmc.PDSCH

ans = struct with fields:
 TxScheme: 'SpatialMux'
 Modulation: {'64QAM'}
 NLayers: 1
 Rho: 0
 RNTI: 1
 RVSeq: [0 0 1 2]
 RV: 0
 NHARQProcesses: 8
 NTurboDecIts: 5
 PRBSet: [50x1 double]
 TargetCodeRate: 0.3333
 ActualCodeRate: [0.4255 0.4000 0.4000 0.4000 0.4000 0 0.4000 0.4000 ...]
 TrBlkSizes: [15264 15264 15264 15264 15264 0 15264 15264 15264 15264]
 CodedTrBlkSizes: [36096 38400 38400 38400 38400 0 38400 38400 38400 38400]
 DCIFormat: 'Format2'
 PDCCHFormat: 2
 PDCCHPower: 0
 CSIMode: 'PUSCH 1-2'
 PMIMode: 'Wideband'
 PMISet: 0

Note the RV sequence is also updated to reflect appropriate values for 64QAM modulation.

Input Arguments
rc — Reference channel
character vector | string scalar

Reference channel, specified as a character vector or string scalar. The function configures the RMC
in accordance with the reference channels defined in Annex A.3 of TS 36.101. This table lists the
supported values of this input and their associated configuration parameters.

Reference
Channel (rc)

Configuration
Transmission
Scheme
(PDSCH.TxSche
me)

Number of
Resource
Blocks

Modulation Number of
CRS Antenna
Ports

Coding Rate

'R.0' 'Port0' 1 16-QAM 1 1/2
'R.1' 'Port0' 1 16-QAM 1 1/2
'R.2' 'Port0' 50 QPSK 1 1/3
'R.3' 'Port0' 50 16-QAM 1 1/2

 lteRMCDL

2-933

Reference
Channel (rc)

Configuration
Transmission
Scheme
(PDSCH.TxSche
me)

Number of
Resource
Blocks

Modulation Number of
CRS Antenna
Ports

Coding Rate

'R.4' 'Port0' 6 QPSK 1 1/3
'R.5' 'Port0' 15 64-QAM 1 3/4
'R.6' 'Port0' 25 64-QAM 1 3/4
'R.7' 'Port0' 50 64-QAM 1 3/4
'R.8' 'Port0' 75 64-QAM 1 3/4
'R.9' 'Port0' 100 64-QAM 1 3/4
'R.10' 'TxDiversity

',
'SpatialMux'

50 QPSK 2 1/3

'R.11' 'TxDiversity
''SpatialMux
', 'CDD'

50 16-QAM 2 1/2

'R.12' 'TxDiversity
'

6 QPSK 4 1/3

'R.13' 'SpatialMux' 50 QPSK 4 1/3
'R.14' 'SpatialMux'

, 'CDD'
50 16-QAM 4 1/2

'R.25' 'Port5' 50 QPSK 1 1/3
'R.26' 'Port5' 50 16-QAM 1 1/2
'R.27' 'Port5' 50 64-QAM 1 3/4
'R.28' 'Port5' 1 16-QAM 1 1/2
'R.31-3A'
(with FDD)

'CDD' 50 64-QAM 2 0.85-0.90

'R.31-3A (with
TDD)

'CDD' 68 64-QAM 2 0.87-0.90

'R.31-4' 'CDD' 100 64-QAM 2 0.87-0.90
'R.43' (with
FDD)

'Port7-14' 50 QPSK 2 1/3

'R.43' (with
TDD)

'SpatialMux' 100 16-QAM 4 1/2

'R.44' (with
FDD)

'Port7-14' 50 QPSK 2 1/3

'R.44' (with
TDD)

'Port7-14' 50 64-QAM 2 1/2

'R.45' 'Port7-14' 50 16-QAM 2 1/2
'R.45-1' 'Port7-14' 39 16-QAM 2 1/2
'R.48' 'Port7-14' 50 QPSK 2 1/2

2 Functions

2-934

Reference
Channel (rc)

Configuration
Transmission
Scheme
(PDSCH.TxSche
me)

Number of
Resource
Blocks

Modulation Number of
CRS Antenna
Ports

Coding Rate

'R.50' (with
FDD)

'Port7-14' 50 64-QAM 2 1/2

'R.50' (with
TDD)

'Port7-14' 50 QPSK 2 1/3

'R.51' 'Port7-14' 50 16 -QAM 2 1/2
'R.68-1' (with
FDD)

'CDD' 75 256-QAM 2 0.74-0.88

'R.68-1' (with
TDD)

'CDD' 75 256-QAM 2 0.76-0.88

'R.105' (with
FDD)

'CDD' 100 1024-QAM 2 0.76-0.79

'R.105' (with
TDD)

'CDD' 100 1024-QAM 2 0.76-0.78

Custom RMCs configured for non-standard bandwidths but with the same code rate as the standard
versions.
'R.6-27RB' 'Port0' 27 64-QAM 1 3/4
'R.12-9RB' 'TxDiversity

'
9 QPSK 4 1/3

'R.11-45RB' 'CDD' 45 16-QAM 2 1/2

Data Types: char | string

duplexmode — Duplexing mode
'FDD' (default) | 'TDD'

Duplexing mode frame structure type, specified as 'FDD' or 'TDD'.

When you specify the rc input as 'R.25', 'R.26', 'R.27', or 'R.28', the default duplexing mode
is 'TDD'.
Data Types: char | string

totsubframes — Total number of subframes
10 (default) | positive integer

Total number of subframes, specified as a positive integer. this input defines the number of subframes
that form the resource grid, used by lteRMCDLTool, to generate the waveform.
Data Types: double

rmccfg — Reference channel configuration
structure

 lteRMCDL

2-935

Reference channel configuration, specified as a structure. This input defines the rmccfgout output.
If you do not specify a field, the function returns the corresponding field of the rmccfgout output as
the default value. This input contains one field, RC.

Parameter
Field

Required or
Optional

Values Description

RC Optional 'R.0' (default),
'R.1', 'R.2',
'R.3', 'R.4',
'R.5', 'R.6',
'R.7', 'R.8',
'R.9', 'R.10',
'R.11', 'R.12',
'R.13', 'R.14',
'R.25', 'R.26',
'R.27', 'R.28',
'R.31-3A',
'R.31-4', 'R.43',
'R.44', 'R.45',
'R.45-1', 'R.48',
'R.50', 'R.51',
'R.68-1', 'R.105',
'R.6-27RB',
'R.12-9RB',
'R.11-45RB'

Reference measurement channel (RMC)
number or type, as specified in Annex
A.3 of TS 36.101.

• To facilitate the transmission of
system information blocks (SIBs),
user data is usually not scheduled on
subframe 5. To schedule user data in
subframe 5, use one of these
sustained-data-rate RMCs:
'R.31-3A', 'R.31-4', 'R.68-1',
or 'R.105'.

• 'R.6-27RB', 'R.12-9RB', and
'R.11-45RB' are custom RMCs
configured for non-standard
bandwidths that maintain the same
code rate as the standardized
versions defined in Annes A.3 of TS
36.101.

Data Types: struct

ncodewords — Number of PDSCH codewords to modulate
1 | 2

Number of PDSCH codewords to modulate, specified as 1 or 2. The default used is the value defined
in TS 36.101, [1] for the RMC configuration given by RC.
Data Types: double

Output Arguments
rmccfgout — RMC configuration
structure

RMC configuration, returned as a structure. This output contains RMC-specific configuration
parameters in these fields.

2 Functions

2-936

Parameter
Field

Values Description

RC 'R.0', 'R.1', 'R.2',
'R.3', 'R.4', 'R.5',
'R.6', 'R.7', 'R.8',
'R.9', 'R.10', 'R.11',
'R.12', 'R.13', 'R.14',
'R.25', 'R.26', 'R.27',
'R.28', 'R.31-3A',
'R.31-4', 'R.43',
'R.44', 'R.45',
'R.45-1', 'R.48',
'R.50', 'R.51',
'R.68-1', 'R.105',
'R.6-27RB', 'R.12-9RB',
'R.11-45RB'

Reference measurement channel (RMC) number or
type, as specified in Annex A.3 of TS 36.101.

• To facilitate the transmission of system
information blocks (SIBs), user data is usually not
scheduled on subframe 5. To schedule user data
in subframe 5, use one of these sustained-data-
rate RMCs: 'R.31-3A', 'R.31-4', 'R.68-1',
or 'R.105'.

• 'R.6-27RB', 'R.12-9RB', and 'R.11-45RB'
are custom RMCs configured for non-standard
bandwidths that maintain the same code rate as
the standardized versions defined in Annes A.3 of
TS 36.101.

NDLRB Integer in the interval [6,
110]

Number of downlink resource blocks

CellRefP 1, 2, 4 Number of cell-specific reference signal (CRS)
antenna ports

NCellID Integer in the interval [0,
503]

Physical layer cell identity

CyclicPrefix 'Normal', 'Extended' Cyclic prefix length
CFI 1, 2, 3, real-valued vector of

length 10
Control format indicator (CFI) value. When the CFI
value does not vary between subframes, specify this
field as a scalar. Otherwise, specify this field as a
vector, where the kth element corresponds to the
CFI value of the kth subframe.

The CFI value varies between subframes for these
RMCs when you specify the duplexmode input as
'TDD' mode, the CFI varies per subframe for these
RMCs: 'R.0', 'R.5', 'R.6', 'R.6-27RB',
'R.12-9RB'.

PCFICHPower Real-valued scalar PCFICH symbol power adjustment, in dB
Ng 'Sixth', 'Half', 'One',

'Two'
HICH group multiplier

PHICHDuration 'Normal', 'Extended' PHICH duration
HISet 112-by-3 matrix Maximum PHICH groups (112), as specified in

section 6.9 of TS 36.211, with the first PHICH
sequence of each group set to ACK). For more
information, see ltePHICH.

PHICHPower Real-valued scalar PHICH symbol power, in dB
NFrame Nonnegative integer Nonnegative integer
NSubframe Nonnegative integer Subframe number
TotSubframes Nonnegative integer Total number of subframes to generate

 lteRMCDL

2-937

Parameter
Field

Values Description

Windowing Nonnegative integer Number of time-domain samples over which the
function applies windowing and overlapping of
OFDM symbols

Nfft Positive integer Number of IFFT points used in the OFDM
modulation.

DuplexMode 'FDD', 'TDD' Duplexing mode, returned as one of these values

• 'FDD' — Frequency division duplex
• 'TDD' — Time division duplex

  
CSIRSPeriod

'On', 'Off', integer in the
interval [0, 154], two-
element row vector of
nonnegative integers, cell
array

CSI-RS subframe configurations for CSI-RS
resources, returned as one of these values.

• 'On' or 'Off
• An integer in the interval [0, 154] corresponding

to the parameter ICSI-RS, specified in Table
6.10.5.3-1 of TS 36.211

• A vector of the form [TCSI-RS ∆CSI-RS], in
accordance with Table 6.10.5.3-1 of TS 36.211

• A cell array of configurations for each resource.

This field applies only when the TxScheme field is
'Port7-14'.

The following fields are present and applicable only for the 'Port7-14' transmission scheme
(TxScheme) and only required in rmccfg if CSIRSPeriod is not set to 'Off'.
  
CSIRSConfig

Nonnegative integer Array CSI-RS configuration indices. See Table
6.10.5.2-1 of TS 36.211.

  CSIRefP 1, 2, 4, 8 Array of number of CSI-RS antenna ports
These fields are present and applicable only for the 'Port7-14' transmission scheme (TxScheme)
  
ZeroPowerCSIR
SPeriod

'Off' (default), 'On',
Icsi-rs (0,...,154), [Tcsi-
rs Dcsi-rs]. You can also
specify values in a cell array
of configurations for each
resource.

Zero power CSI-RS subframe configurations for one
or more zero power CSI-RS resource configuration
index lists. Multiple zero power CSI-RS resource
lists can be configured from a single common
subframe configuration or from a cell array of
configurations for each resource list.

The following field is applicable only for 'Port7-14' transmission scheme (TxScheme) and
required only in rmccfg if CSIRSPeriod is not set to 'Off'.
  
ZeroPowerCSIR
SConfig

16-bit bitmap character
vector or string scalar
(truncated if not 16 bits or
'0' MSB extended), or a
numeric list of CSI-RS
configuration indices. You
can also specify values in a
cell array of configurations
for each resource.

Zero power CSI-RS resource configuration index
lists (TS 36.211 Section 6.10.5.2). Specify each list
as a 16-bit bitmap character vector or string scalar
(if less than 16 bits, then '0' MSB extended), or as
a numeric list of CSI-RS configuration indices from
TS 36.211 Table 6.10.5.2-1 in the '4' CSI reference
signal column. Multiple lists can be defined using a
cell array of individual lists.

2 Functions

2-938

Parameter
Field

Values Description

PDSCH Scalar structure PDSCH transmission configuration substructure
OCNGPDCCHEnab
le

'Off', 'On' Enable PDCCH OCNG

See footnote.
OCNGPDCCHPowe
r

Scalar integer, 0 (default) PDCCH OCNG power in dB

OCNGPDSCHEnab
le

'Off', 'On' Enable PDSCH OCNG

OCNGPDSCHPowe
r

Scalar integer, defaults to
PDSCH.Rho (default)

PDSCH OCNG power in dB

OCNGPDSCH Scalar structure PDSCH OCNG configuration substructure
OCNG 'Off', 'On'. 'Disable'

and 'Enable' are also
accepted.

OFDMA channel noise generator

Note This parameter will be removed in a future
release. Use the PDCCH and PDSCH-specific OCNG
parameters instead.

These fields are present and applicable only for 'TDD' duplex mode (DuplexMode).
  SSC 4 (default), integer in the

interval [0, 9]
Special subframe configuration (SSC)

  TDDConfig 0, 1 (default), 2, 3, 4, 5, 6 Uplink-downlink configuration.

See footnote.

 lteRMCDL

2-939

Parameter
Field

Values Description

1 CFI is equal to the number of symbols allocated to:

• (PDCCH - 1) for NDLRB < 10
• PDCCH for NDLRB ≥ 10

For the RMCs, the number of symbols allocated to PDCCH varies with channel bandwidth
setting,

• Two symbols for 20 MHz, 15 MHz, and 10 MHz
• Three symbols for 5 MHz and 3 MHz
• Four symbols for 1.4 MHz
• In the TDD mode, only two OFDM symbols are allocated to PDCCH in special subframes

irrespective of the channel bandwidth. Therefore, the CFI value varies per subframe for the 5
MHz, 3 MHz, and 1.4 MHz channel bandwidths. Specifically, for bandwidths where PDCCH
symbol allocation is not two in other subframes.

2 The PDCCH OCNG fills the unused PDCCH resource elements with QPSK symbols using either
single port or transmit diversity depending on the number of cell RS ports.

3 All supported RMCs use TDDConfig 1 by default. When you specify a value different then the
default, the full parameter set is configured according to the following rules.

• Preserve subframe 0 (downlink) for all TDDConfig — The values of the parameters in
subframe 0 of TDDConfig 1 is applied in all other TDDConfig.

• Preserve special subframe behaviour — The values of the parameters in special subframes of
TDDConfig 1 is applied in all other TDDConfig.

• Preserve subframe 5 (downlink) for all TDDConfig — The values of the parameters in
subframe 5 of TDDConfig 1 is applied to all other TDDConfig. For all RMCs currently
supported, subframe 5 is treated separately from other subframes. According to TS 36.101
Section A.3.1, “Unless otherwise stated, no user data is scheduled on subframes 5 in order to
facilitate the transmission of system information blocks (SIB).” Hence the RC value, if
present, determines the behaviour of subframe 5. This means that subframe 5 is not
transmitted for other RMCs, with the exception of sustained data rate RMCs R.31-3A and
R.31-4.

• All other downlink subframes use the same settings as subframe 9.

PDSCH Substructure

The substructure PDSCH relates to the physical channel configuration and contains these fields:

2 Functions

2-940

Parameter
Field

Values Description

TxScheme 'Port0', 'TxDiversity',
'CDD', 'SpatialMux',
'MultiUser', 'Port5',
'Port7-8', 'Port8',
'Port7-14'.

PDSCH transmission scheme, specified as one of the
following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay

diversity scheme
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7,

when NLayers = 1. Dual
layer transmission, ports 7
and 8, when NLayers = 2.

'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer

transmission, ports 7–14

Modulation 'QPSK', '16QAM',
'64QAM', '256QAM',
'1024QAM'

Modulation type, specified as a character vector, cell
array of character vectors, or string array. If blocks,
each cell is associated with a transport block.

NLayers Integer from 1 to 8 Number of transmission layers.
NTxAnts Nonnegative scalar integer Number of transmission antenna ports. This

argument is present only for UE-specific
demodulation reference symbols.

Note NTxAnts is provided by lteRMCDL for
information only.

Rho 0 (default), numeric scalar PDSCH resource element power allocation, in dB
RNTI 0 (default), scalar integer Radio network temporary identifier (RNTI) value (16

bits)

 lteRMCDL

2-941

Parameter
Field

Values Description

RVSeq Integer vector (0,1,2,3),
specified as a one or two
row matrix (for one or two
codewords)

Redundancy version (RV) indicator used by all HARQ
processes, returned as a numeric matrix. RVSeq is a
one- or two-row matrix for one or two codewords,
respectively. The number of columns in RVSeq
equals the number of transmissions of the transport
blocks associated with a HARQ process. The RV
sequence specified in each column is applied to the
transmission of the transport blocks. If RVSeq is a
scalar (or column vector in the case of two
codewords), then there is a single initial
transmission of each block with no retransmissions.
If RVSeq is a row vector in a two-codeword
transmission, then the same RV sequence is applied
to both codewords.

See footnote.
RV Integer vector (0,1,2,3). A

one or two column matrix
(for one or two codewords).

Specifies the redundancy version for one or two
codewords used in the initial subframe number,
NSubframe. This parameter field is only for
informational purposes and is read-only.

NHARQProcesse
s

1, 2, 3, 4, 5, 6, 7, or 8 Number of HARQ processes per component carrier

NTurboDecits 5 (default), nonnegative
scalar integer

Number of turbo decoder iteration cycles

PRBSet Integer-valued column
vector, two-column matrix,
cell array

Zero-based physical resource block (PRB) indices
corresponding to the slot-wise resource allocations
for this PDSCH. The function returns this field as
one of these values.

• An integer-valued column vector. The resource
allocation is the same in both slots of the
subframe.

• A two-column matrix or two-element cell array,
which specifies different PRBs for each slot in a
subframe.

• A cell array of length 10 (corresponding to a
frame, if the allocated physical resource blocks
vary across subframes).

This field varies per subframe for these RMCs:
'R.25' (with TDD), 'R.26' (with TDD), 'R.27'
(with TDD), 'R.43' (with FDD), 'R.44', 'R.45',
'R.48', 'R.50', 'R.51', 'R.68-1', and
'R.105'.

2 Functions

2-942

Parameter
Field

Values Description

TargetCodeRat
e

Scalar or one or two row
numeric matrix

Target code rates for one or two codewords for each
subframe in a frame. Used for calculating the
transport block sizes according to TS 36.101 [1],
Annex A.3.1.

If both TargetCodeRate and TrBlkSizes are not
provided at the input, and the RC does not have a
single ratio target code rate in TS 36.101, Table
A.3.1.1-1, TargetCodeRate == ActualCodeRate.

ActualCodeRat
e

One or two row numeric
matrix

Actual code rates for one or two codewords for each
subframe in a frame, calculated according to TS
36.101 [1], Annex A.3.1. The maximum actual code
rate is 0.93. This parameter field is only for
informational purposes and is read-only.

TrBlkSizes One or two row numeric
matrix

Transport block sizes for each subframe in a frame

See footnote.
CodedTrBlkSiz
es

One or two row numeric
matrix

Coded transport block sizes for one or two
codewords. This parameter field is for informational
purposes and is read-only.

See footnote.
DCIFormat 'Format0', 'Format1',

'Format1A', 'Format1B',
'Format1C', 'Format1D',
'Format2', 'Format2A',
'Format2B', 'Format2C',
'Format2D', 'Format3',
'Format3A', 'Format4',
'Format5', 'Format5A'

Downlink control information (DCI) format type of
the PDCCH associated with the PDSCH. See
lteDCI.

PDCCHFormat 0, 1, 2, 3 Aggregation level of PDCCH associated with PDSCH
PDCCHPower Numeric scalar PDCCH power in dB
CSIMode 'PUCCH 1-0', 'PUCCH

1-1', 'PUSCH 1-2',
'PUSCH 3-0', 'PUSCH
3-1'

CSI reporting mode

PMIMode 'Wideband' (default),
'Subband'

PMI reporting mode. PMIMode='Wideband'
corresponds to PUSCH reporting Mode 1-2 or
PUCCH reporting Mode 1-1 (PUCCH Report Type 2)
and PMIMode='Subband' corresponds to PUSCH
reporting Mode 3-1.

The following field is present only for TxScheme = 'SpatialMux'.

 lteRMCDL

2-943

Parameter
Field

Values Description

  PMISet Integer vector with element
values from 0 to 15.

Precoder matrix indication (PMI) set. It can contain
either a single value, corresponding to single PMI
mode, or multiple values, corresponding to multiple
or subband PMI mode. The number of values
depends on CellRefP, transmission layers and
TxScheme. For more information about setting PMI
parameters, see ltePMIInfo.

The following field is present only for TxScheme = 'Port7-8', 'Port8', or 'Port7-14'.
  NSCID 0 (default), 1 Scrambling identity (ID)
The following field is present only for UE-specific beamforming ('Port5', 'Port7-8', 'Port8', or
'Port7-14').
  W Numeric matrix NLayers-by-P precoding matrix, chosen according

to TS 36.101 Annex B.4. P is the number of transmit
antennas. The resulting precoding matrix with index
zero is selected from:

• The set defined in TS 36.211, Section 6.3.4 for
'Port5', 'Port7-8', and 'Port8'
transmission schemes

• or from the set associated with CSI reporting as
defined in TS 36.213, Section 7.2.4 for the
'Port7-14' transmission scheme.

W is present only for wideband UE-specific
beamforming ('Port5', 'Port7-8', 'Port8',
'Port7-14').

1 The function returns valid TrBlkSizes and CodedTrBlkSizes set to 0 when PRBSet is empty,
indicating there is no PDSCH allocation in this frame.

2 Any parameters missing at the input are initialized based on the RC field if present or 'R.0'
otherwise.

• When the RC field is specified, the RMC specified defines the subframe scheduling.
• If the RC field is absent or set to empty, all downlink subframes and special subframes (if

TDD mode) are assumed to be scheduled.
• TrBlkSizes and CodedTrBlkSizes are set according to the target code rate, the

modulation scheme, and the allocated resources.
• The value of RVSeq is set according to the modulation scheme.

OCNGPDSCH Substructure

The substructure, OCNGPDSCH, defines the OCNG patterns in associated RMCs and tests according to
TS 36.101, Section A.5. OCNGPDSCH contains these fields, which can also be customized with the full
range of PDSCH-specific values.

2 Functions

2-944

Parameter
Field

Values Description

Modulation OCNG Modulation has
same setting options as
rmccfgout.PDSCH.Modula
tion

See rmccfgout.PDSCH.Modulation

TxScheme OCNG TxScheme has same
setting options as
rmccfgout.PDSCH.TxSche
me

See rmccfgout.PDSCH.TxScheme

RNTI 0 (default), scalar integer OCNG radio network temporary identifier (RNTI)
value (16 bits)

Version History
Introduced in R2014a

IFFT size output

The output structure rmccfgout includes the Nfft field, which contains the number of IFFT points
used in the OFDM modulation.

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and
Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[3] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[4] 3GPP TS 36.321. “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control
(MAC) protocol Specification.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteRMCDLTool | lteRMCUL | lteTestModel

 lteRMCDL

2-945

https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org

lteRISelect
PDSCH rank indication calculation

Syntax
[ri,pmiset] = lteRISelect(enb,chs,hest,noiseest)

Description
[ri,pmiset] = lteRISelect(enb,chs,hest,noiseest) calculates PDSCH rank indication
(RI), given cell-wide settings,enb, channel configuration settings, chs, channel estimate resource
array hest, and receiver noise variance noiseest. For more information, see “RI Selection” on page
2-951.

Examples

Rank Indication example

This example shows how to populate an empty resource grid for RMC R.13 with cell-specific
reference signal symbols. The signal is passed through a channel and OFDM demodulated. Estimates
of the channel and noise power spectral density are used for RI and PMI calculation. A
CodebookSubset bitmap of all ones means that no codebook subset restriction is applied, allowing
any PMI/RI combination applicable for the configured transmission scheme to be selected during RI
selection.

Create empty resource grid and populate with cell specific reference symbols. Set
enb.PDSCH.CodebookSubset to all ones so the PMI selection is unconstrained

enb = lteRMCDL('R.13');
enb.PDSCH.CodebookSubset = '1111111111111111';
reGrid = lteResourceGrid(enb);
reGrid(lteCellRSIndices(enb)) = lteCellRS(enb);
[txWaveform,txInfo] = lteOFDMModulate(enb,reGrid);

Initialize the channel configuration structure (chcfg), filter the signal through a channel and
demodulate the signal.

chcfg.DelayProfile = 'EPA';
chcfg.NRxAnts = 4;
chcfg.DopplerFreq = 5;
chcfg.MIMOCorrelation = 'Low';
chcfg.SamplingRate = txInfo.SamplingRate;
chcfg.Seed = 1;
chcfg.InitPhase = 'Random';
chcfg.ModelType = 'GMEDS';
chcfg.NTerms = 16;
chcfg.NormalizeTxAnts = 'On';
chcfg.NormalizePathGains = 'On';
chcfg.InitTime = 0;

2 Functions

2-946

rxWaveform = lteFadingChannel(chcfg,txWaveform);
rxSubframe = lteOFDMDemodulate(enb,rxWaveform);

Estimate corresponding channel, including noise spectral density and reference signal subcarriers.
Use lteRISelect to calculate RI & PMI

cec.FreqWindow = 1;
cec.TimeWindow = 15;
cec.InterpType = 'cubic';
cec.PilotAverage = 'UserDefined';
cec.InterpWinSize = 1;
cec.InterpWindow = 'Centered';
[hest,noiseEst] = lteDLChannelEstimate(enb,cec,rxSubframe);
[ri,pmi] = lteRISelect(enb,enb.PDSCH,hest,noiseEst)

ri = 3

pmi = 13

Input Arguments
enb — eNodeB cell-wide settings
structure

eNodeB cell-wide settings, specified as a structure containing the following parameter fields:

Parameter
Field

Require
d or
Optiona
l

Values Description

NDLRB Required Scalar integer from 6 to
110

Number of downlink resource blocks (NRB
DL)

NCellID Required Integer from 0 to 503 Physical layer cell identity
CellRefP Required 1, 2, 4 Number of cell-specific reference signal (CRS)

antenna ports
CyclicPrefi
x

Optional 'Normal' (default),
'Extended'

Cyclic prefix length

DuplexMode Optional 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

The following parameters apply when DuplexMode is set to, TDD.
  
TDDConfig

Optional 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration

  SSC Optional 0 (default), 1, 2, 3, 4, 5,
6, 7, 8, 9

Special subframe configuration (SSC)

The following parameters apply when DuplexMode is set to 'TDD' or chs.TxScheme is set to
'Port7-14'

 lteRISelect

2-947

Parameter
Field

Require
d or
Optiona
l

Values Description

  
NSubframe

Required 0 (default), nonnegative
scalar integer

Subframe number

The following parameters apply when chs.TxScheme is set to 'Port7-14'.
  CSIRefP Required 1 (default), 2, 4, 8 Array of number of CSI-RS antenna ports
  
CSIRSConfig

Required Scalar integer Array CSI-RS configuration indices. See TS
36.211, Table 6.10.5.2-1.

  
CSIRSPeriod

Optional 'On' (default), 'Off',
Icsi-rs (0,...,154),
[Tcsi-rs Dcsi-rs].
You can also specify
values in a cell array of
configurations for each
resource.

CSI-RS subframe configurations for one or
more CSI-RS resources. Multiple CSI-RS
resources can be configured from a single
common subframe configuration or from a cell
array of configurations for each resource.

  NFrame Optional 0 (default), nonnegative
scalar integer

Frame number

chs — Channel-specific transmission configuration
structure | structure array

Channel specific transmission configuration, specified as scalar structure, or structure array
containing the following parameter fields:

Parameter
Field

Require
d or
Optiona
l

Values Description

PMIMode Optional 'Wideband' (default),
'Subband'

PMI reporting mode. PMIMode='Wideband'
corresponds to PUSCH reporting Mode 1-2 or
PUCCH reporting Mode 1-1 (PUCCH Report
Type 2) and PMIMode='Subband' corresponds
to PUSCH reporting Mode 3-1.

2 Functions

2-948

Parameter
Field

Require
d or
Optiona
l

Values Description

TxScheme Optional 'Port0',
'TxDiversity', 'CDD',
'SpatialMux' (default),
'MultiUser', 'Port5',
'Port7-8', 'Port8',
'Port7-14'.

PDSCH transmission scheme, specified as one
of the following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay

diversity scheme
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7,

when NLayers = 1. Dual
layer transmission, ports 7
and 8, when NLayers = 2.

'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer

transmission, ports 7–14

CodebookSub
set

Optional Character vector, string
scalar, or integer vector,
all ones (default)

Codebook subset restriction, specified as a
character vector or string scalar bitmap. The
default values are all ones, permitting all PMI
values. This parameter is configured by higher
layers and indicates the values of PMI that can
be reported. The bitmap, defined in TS 36.213,
Section 7.2, is arranged a_A-1,a_A-2,...a_0. For
example, the element CodebookSubset(1)
corresponds to a_A-1 and the element
CodebookSubset(end) corresponds to a_0. The
length of the bitmap is given by the
info.CodebookSubsetSize field returned by
ltePMIInfo. You can also specify the bitmap
in a hexadecimal form by adding the prefix
'0x'. Alternatively, you can specify a numeric
array identical to the pmiset output, indicating
to restrict the selection to only those pmiset
values. Specifying the parameter in this way
enables you to obtain SINR estimates against
an existing reported PMI for RI and CQI
selection. If this parameter field is defined but
is empty, no codebook subset restriction is
applied. (codebookSubsetRestriction)

 lteRISelect

2-949

Parameter
Field

Require
d or
Optiona
l

Values Description

The following parameter applies for 'Port7-14' transmission scheme with CSIRefP equal to 4, or
for 'Port7-8' or 'Port8' transmission scheme with CellRefP equal to 4.
  
AltCodebook
4Tx

Optional 'Off' (default), 'On' If set to 'On', enables the alternative codebook
for CSI reporting with four antennas defined in
TS 36.213, Tables 7.2.4-0A to 7.2.4-0D. The
default is 'Off'.
(alternativeCodeBookEnabledFor4TX-r12)

hest — Channel estimate
multidimensional array

Channel estimate, specified as a K-by-L-by-NRxAnts-by-P array where:

• K is the number of subcarriers.
• L is the number of OFDM symbols.
• NRxAnts is the number of receive antennas.
• P is the number of transmit antennas.

Data Types: double

noiseest — Receiver noise variance
numeric scalar

Receiver noise variance, specified as numeric scalar. It is an estimate of the received noise power
spectral density.
Data Types: double

Output Arguments
ri — Rank indication
scalar

Rank indication, returned as a scalar, indicates the optimal number of layers to use for transmission
to maximize SINR.

pmiset — Precoder matrix indications
scalar | column vector

Precoder matrix indications, returned as a scalar, or a column vector.

• For wideband reporting (NSubbands=1), pmiset is a scalar specifying the selected wideband
codebook index,i2.

• For the 'Port7-14' transmission scheme with eight CSI-RS ports, or for CSI reporting with the
alternative codebook for four antennas, pmiset has NSubbands+1 rows. The first row indicates
wideband codebook index, i1, and the subsequent NSubbands rows indicate the subband
codebook indices, i2.

2 Functions

2-950

• For other numbers of CSI-RS ports in the 'Port7-14' transmission scheme, and for other
transmission schemes, pmiset has NSubbands rows, each row returns the subband codebook
index for that subband.

The number of subbands, NSubbands, is a field in the info structure output by ltePMIInfo and
ltePMISelect.

More About
RI Selection

The PDSCH rank indication (RI) selection process determines the optimal number of layers (NLayers)
to use for transmission to maximize SINR. The range of NLayers to consider is calculated based on
the transmission scheme and the configured reference signal ports.

1 For ν = 1,...,NLayers,

a Use ltePMISelect, with chs.NLayers = ν, to perform PMI selection.
b Record the selected PMI and total SINR across all layers, excluding layers with SINR below

the threshold of 0 dB.
2 Select the number of transmission layers, ν, that maximizes the SINR of the transmission and

return as the rank indication, ri and corresponding PMI set, pmiset.

RI selection corresponds to:

• Report Type 3 (for reporting Mode 1-0 or Mode 1-1) on the PUCCH.
• Reporting Mode 1-2 or Mode 3-1 on the PUSCH.

For more information on RI selection, see TS 36.213 Section 7.2.

PMI Selection

PDSCH precoder matrix indication (PMI) selection calculates a PMI set, pmiset. Functions, such as
lteRMCDLTool or ltePDSCH, can use the returned pmiset to configure the PMI for downlink
transmissions they generate. PMI selection is performed using the PMI definitions specified in TS
36.213, Section 7.2.4.

• The CSI reporting codebook is used for:

• 'Port7-14' transmission scheme with eight CSI-RS ports
• CSI reporting with the alternative codebook for four antennas

(alternativeCodeBookEnabledFor4TX -r12 = true).
• The codebook for closed-loop spatial multiplexing, defined in TS 36.211 Tables 6.3.4.2.3-1 and

6.3.4.2.3-2, is used for other cases.

The PMI feedback type associated with the PMI selection process can be wideband or subband:

• PMIMode = 'Wideband' corresponds to PUSCH reporting Mode 1-2 or PUCCH reporting Mode
1-1 (PUCCH Report Type 2).

• PMIMode = 'Subband' corresponds to PUSCH reporting Mode 3-1.

PMI selection is based on the rank indicated by chs.NLayers, except for 'TxDiversity'
transmission scheme, where the rank is 1. In PUCCH reporting Mode 1-1, you can achieve codebook

 lteRISelect

2-951

subsampling for submode 2, as specified in TS 36.213, Table 7.2.2-1D, with an appropriate
chs.CodebookSubset.

Version History
Introduced in R2014b

References
[1] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer

procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and
Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
ltePMISelect | lteCQISelect | ltePMIInfo

2 Functions

2-952

https://www.3gpp.org
https://www.3gpp.org

lteRMCDLTool
Generate downlink RMC waveform

Syntax
lteRMCDLTool
[waveform,grid,rmccfgout] = lteRMCDLTool(rmccfg,trdata)
[waveform,grid,rmccfgout] = lteRMCDLTool(rc,trdata,duplexmode,totsubframes)

Description
lteRMCDLTool starts the LTE Waveform Generator app configured for parameterization and
generation of a reference measurement channel (RMC) waveform. The Reference Channel menu
lists the available RMCs with their default top-level settings.

[waveform,grid,rmccfgout] = lteRMCDLTool(rmccfg,trdata) where rmccfg specifies a
user-defined reference channel structure. The reference configuration structure with default
parameters can easily be created using lteRMCDL then modified if desired.

Note SIB1 messages and the associated PDSCH and PDCCH can be added to the output waveform
by adding the substructure rmccfg.SIB.

[waveform,grid,rmccfgout] = lteRMCDLTool(rc,trdata,duplexmode,totsubframes)
specifies the default reference measurement channel, rc, and information bits trdata. duplexmode
and totsubframes are optional input arguments, that define the duplex mode of the generated
waveform and total number of subframes that make up the grid.

Examples

Generate LTE DL RMC R.31-4

Generate a time domain signal and a 3-dimensional array of the resource elements for R.31-4 FDD as
specified in TS 36.101 Annex A.3.9.1-1. R.31-4 FDD is 20MHz, 64QAM, variable code rate and has
user data scheduled in subframe 5.

[txWaveform,txGrid,rmcCfgOut] = lteRMCDLTool('R.31-4',{[1;0] [1;0]});

Generate RMC R.3 with SIB

This example shows use of lteRMCDLTool to generate a tx waveform with SIB transmission enabled
using DCIFormat1A and localized allocation.

Specify desired RMC, initialize configuration structure and define txData. Generate txGrid and plot
it.

 lteRMCDLTool

2-953

rc = 'R.3';
rmc = lteRMCDL(rc);

txData = [1;0;0;1];
[~,txGrid,~] = lteRMCDLTool(rmc, txData);
mesh(abs(txGrid))
view(2)

To insert SIB1 message into the output waveform, initialize SIB substructure, enable SIB
transmission, adjust other defaults, and regenerate txGrid. Plot txGrid to illustrate the presence of
SIB1 message in subframe 5

rmc.SIB.Enable = 'On';
rmc.SIB.DCIFormat = 'Format1A';
rmc.SIB.AllocationType = 0;
rmc.SIB.VRBStart = 8;
rmc.SIB.VRBLength = 8;
rmc.SIB.Data = randi([0 1],144,1);

[txWaveform,txGrid,rmcCfgOut] = lteRMCDLTool(rmc, txData);
figure
mesh(abs(txGrid))
view(2)

2 Functions

2-954

Generate LTE DL RMC R.12 With 16QAM Modulation

Generate a time domain waveform, and a 3D array of the resource elements for RMC R.12 as
specified in TS 36.101. Modify the standard R.12 RMC to use 16QAM modulation scheme instead of
the default QPSK.

Create an RMC setting structure specifying R.12 for RC and 16QAM for Modulation.

rmc.RC = 'R.12';
rmc.PDSCH.Modulation = '16QAM';

Generate the tx waveform, RE grid and also output the RMC configuration structure.

txData = [1;0;0;1];
[txWaveform, txGrid, rmcCfgOut] = lteRMCDLTool(rmc, txData);

Review the rmcCgfOut structure and PDSCH substructure.

rmcCfgOut

rmcCfgOut = struct with fields:
 RC: 'R.12'
 NDLRB: 6
 CellRefP: 4
 NCellID: 0

 lteRMCDLTool

2-955

 CyclicPrefix: 'Normal'
 CFI: 3
 PCFICHPower: 0
 Ng: 'Sixth'
 PHICHDuration: 'Normal'
 HISet: [112x3 double]
 PHICHPower: 0
 NFrame: 0
 NSubframe: 0
 TotSubframes: 10
 Windowing: 0
 DuplexMode: 'FDD'
 PDSCH: [1x1 struct]
 OCNGPDCCHEnable: 'Off'
 OCNGPDCCHPower: 0
 OCNGPDSCHEnable: 'Off'
 OCNGPDSCHPower: 0
 OCNGPDSCH: [1x1 struct]
 Nfft: 128
 SerialCat: 1
 SamplingRate: 1920000

rmcCfgOut.PDSCH

ans = struct with fields:
 TxScheme: 'TxDiversity'
 Modulation: {'16QAM'}
 NLayers: 4
 Rho: 0
 RNTI: 1
 RVSeq: [0 1 2 3]
 RV: 0
 NHARQProcesses: 8
 NTurboDecIts: 5
 PRBSet: [6x1 double]
 TargetCodeRate: 0.3333
 ActualCodeRate: [0 0.3846 0.3846 0.3846 0.3846 0 0.3846 0.3846 ...]
 TrBlkSizes: [0 936 936 936 936 0 936 936 936 936]
 CodedTrBlkSizes: [0 2496 2496 2496 2496 0 2496 2496 2496 2496]
 DCIFormat: 'Format1'
 PDCCHFormat: 2
 PDCCHPower: 0
 CSIMode: 'PUCCH 1-1'
 PMIMode: 'Wideband'
 HARQProcessSequence: [0 1 2 3 4 0 5 6 7 8]

Display Uplink PRB Allocation Type 1

Display the PRB allocations associated with the sequence of subframes in a frame for DCI Format 0
and uplink resource allocation type 1.

Configure a type 1 uplink resource allocation (multi-cluster). TS 36.213, Section 8.1.2 describes the
resource indication value (RIV) determination.

2 Functions

2-956

enbue = struct('NDLRB',50);
dcistr = lteDCI(enbue,struct('DCIFormat','Format0','AllocationType',1));
dcistr.Allocation.RIV = 1;

Display an image of the PRBs used in each slot of each subframe in a frame.

• Create a subframeslots matrix full of zeros. There are 20 slots per frame, specifically two slots
per subframe and ten subframes per frame.

• Loop through assigning a PRB set of indices for each subframe. Also assign a value in
subframeslots for each occupied PRB index.

subframeslots = zeros(enbue.NDLRB,20);
for i = 0:9
 enbue.NSubframe = i;
 prbSet = lteDCIResourceAllocation(enbue,dcistr);
 prbSet = repmat(prbSet,1,2/size(prbSet,2));
 for s = 1:2
 subframeslots(prbSet(:,s)+1,2*i+s) = 20+s*20;
 end
end
imagesc(subframeslots);
axis xy;
xlabel('Subframe Slots');
ylabel('PRB Indices');

Observe from the image that the same set of PRB indices is used in each slot.

 lteRMCDLTool

2-957

Display Uplink Hopping PRB Allocation

Display the PRB allocations associated with the sequence of subframes in a frame for an uplink
resource allocation with hopping.

Configure a type 1 uplink resource allocation that has type 0 hopping and slot and subframe hopping.

enbue = struct('NDLRB',50,'NCellID',0);
dcistr = lteDCI(enbue,struct('DCIFormat','Format0','AllocationType',0,...
 'FreqHopping',1));
dcistr.Allocation.HoppingBits = 0;
dcistr.Allocation.RIV = 110;
enbue.PUSCHHopping = 'InterAndIntra';
enbue.MacTxNumber = 0;
enbue.NSubbands = 1;
enbue.PUSCHHoppingOffset = 10;

Display an image of the PRBs used in each slot of each subframe in a frame.

• Create a subframeslots matrix full of zeros. There are 20 slots per frame, specifically two slots
per subframe and ten subframes per frame.

• Loop through assigning a PRB set of indices for each subframe. Also assign a value in
subframeslots for each occupied PRB index.

subframeslots = zeros(enbue.NDLRB,20);
for i = 0:9
 enbue.NSubframe = i;
 prbSet = lteDCIResourceAllocation(enbue,dcistr);
 prbSet = repmat(prbSet,1,2/size(prbSet,2));
 for s = 1:2
 subframeslots(prbSet(:,s)+1,2*i+s) = 20+s*20;
 end
end
imagesc(subframeslots)
axis xy
xlabel('Subframe Slots')
ylabel('PRB Indices')

2 Functions

2-958

Observe from the image that the occupied PRB indices hops in odd and even slots.

Input Arguments
rc — Reference channel
character vector | string scalar

Reference channel, specified as a character vector or string scalar. The function configures the RMC
in accordance with the reference channels defined in Annex A.3 of TS 36.101. This table lists the
supported values of this input and their associated configuration parameters.

Reference
Channel (rc)

Configuration
Transmission
Scheme
(PDSCH.TxSche
me)

Number of
Resource
Blocks

Modulation Number of
CRS Antenna
Ports

Coding Rate

'R.0' 'Port0' 1 16-QAM 1 1/2
'R.1' 'Port0' 1 16-QAM 1 1/2
'R.2' 'Port0' 50 QPSK 1 1/3
'R.3' 'Port0' 50 16-QAM 1 1/2
'R.4' 'Port0' 6 QPSK 1 1/3

 lteRMCDLTool

2-959

Reference
Channel (rc)

Configuration
Transmission
Scheme
(PDSCH.TxSche
me)

Number of
Resource
Blocks

Modulation Number of
CRS Antenna
Ports

Coding Rate

'R.5' 'Port0' 15 64-QAM 1 3/4
'R.6' 'Port0' 25 64-QAM 1 3/4
'R.7' 'Port0' 50 64-QAM 1 3/4
'R.8' 'Port0' 75 64-QAM 1 3/4
'R.9' 'Port0' 100 64-QAM 1 3/4
'R.10' 'TxDiversity

',
'SpatialMux'

50 QPSK 2 1/3

'R.11' 'TxDiversity
''SpatialMux
', 'CDD'

50 16-QAM 2 1/2

'R.12' 'TxDiversity
'

6 QPSK 4 1/3

'R.13' 'SpatialMux' 50 QPSK 4 1/3
'R.14' 'SpatialMux'

, 'CDD'
50 16-QAM 4 1/2

'R.25' 'Port5' 50 QPSK 1 1/3
'R.26' 'Port5' 50 16-QAM 1 1/2
'R.27' 'Port5' 50 64-QAM 1 3/4
'R.28' 'Port5' 1 16-QAM 1 1/2
'R.31-3A'
(with FDD)

'CDD' 50 64-QAM 2 0.85-0.90

'R.31-3A (with
TDD)

'CDD' 68 64-QAM 2 0.87-0.90

'R.31-4' 'CDD' 100 64-QAM 2 0.87-0.90
'R.43' (with
FDD)

'Port7-14' 50 QPSK 2 1/3

'R.43' (with
TDD)

'SpatialMux' 100 16-QAM 4 1/2

'R.44' (with
FDD)

'Port7-14' 50 QPSK 2 1/3

'R.44' (with
TDD)

'Port7-14' 50 64-QAM 2 1/2

'R.45' 'Port7-14' 50 16-QAM 2 1/2
'R.45-1' 'Port7-14' 39 16-QAM 2 1/2
'R.48' 'Port7-14' 50 QPSK 2 1/2

2 Functions

2-960

Reference
Channel (rc)

Configuration
Transmission
Scheme
(PDSCH.TxSche
me)

Number of
Resource
Blocks

Modulation Number of
CRS Antenna
Ports

Coding Rate

'R.50' (with
FDD)

'Port7-14' 50 64-QAM 2 1/2

'R.50' (with
TDD)

'Port7-14' 50 QPSK 2 1/3

'R.51' 'Port7-14' 50 16 -QAM 2 1/2
'R.68-1' (with
FDD)

'CDD' 75 256-QAM 2 0.74-0.88

'R.68-1' (with
TDD)

'CDD' 75 256-QAM 2 0.76-0.88

'R.105' (with
FDD)

'CDD' 100 1024-QAM 2 0.76-0.79

'R.105' (with
TDD)

'CDD' 100 1024-QAM 2 0.76-0.78

Custom RMCs configured for non-standard bandwidths but with the same code rate as the standard
versions.
'R.6-27RB' 'Port0' 27 64-QAM 1 3/4
'R.12-9RB' 'TxDiversity

'
9 QPSK 4 1/3

'R.11-45RB' 'CDD' 45 16-QAM 2 1/2

Data Types: char | string

trdata — Information bits
vector | cell array containing one or two vectors

Information bits, specified as a vector or cell array containing one or two vectors of bit values. Each
vector contains the information bits stream to be coded across the duration of the generation, which
represents multiple concatenated transport blocks. If the number of bits required across all
subframes of the generation exceeds the length of the vectors provided, the txdata vector is looped
internally. This feature allows you to enter a short pattern, such as [1;0;0;1], which is repeated as
the input to the transport coding. In each subframe of generation, the number of data bits taken from
this stream comes from the elements of the rmccfgout.PDSCH.TrBlkSizes matrix.

When the trdata input contains empty vectors, there is no transport data. The transmission of
PDSCH and its corresponding PDCCH are skipped in the waveform when the trdata contains empty
vectors. The other physical channels and signals are transmitted as normal in generated waveform.
Example: [1;0;0;1]
Data Types: double | cell
Complex Number Support: Yes

duplexmode — Duplexing mode
'FDD' (default) | optional | 'TDD'

 lteRMCDLTool

2-961

Duplexing mode, specified as 'FDD' or 'TDD' to indicate the frame structure type of the generated
waveform.
Data Types: char | string

totsubframes — Total number of subframes
10 (default) | positive integer

Total number of subframes, specified as a positive integer. This argument specifies the total number
of subframes that form the resource grid.
Data Types: double

rmccfg — Reference channel configuration
structure

Reference channel configuration, specified as a structure. Create a reference configuration structure
with default parameters by using the lteRMCDL function. The reference configuration structures you
generate with the lteRMCDL function comply with those defined in Annex A.3 of [1].

To generate the waveform output in alignment with your simulation requirements, modify the output
of the lteRMCDL function. To add SIB1 messages and the associated PDSCH and PDCCH to the
output waveform, specify the rmccfg.SIB substructure. You can specify this input to include fields
contained in the rmccfgout output structure.
Data Types: struct

Output Arguments
waveform — Generated RMC time-domain waveform
numeric matrix

Generated RMC time-domain waveform, returned as a NS-by-NT numeric matrix. NS is the number of
time-domain samples and NT is the number of transmit antennas.
Data Types: double

grid — Populated resource grid
numeric 3-D array

Populated resource grid, returned as a numeric 3-D array of resource elements for several subframes
across all configured antenna ports, as described in “Represent Resource Grids”.

grid represents the populated resource grid for all the physical channels specified in TS 36.101 [1],
Annex A.3.
Data Types: double
Complex Number Support: Yes

rmccfgout — RMC configuration
structure

RMC configuration, returned as a structure. This output contains information about the OFDM-
modulated waveform and RMC-specific configuration parameters. Field definitions and settings align
with rmccfg.

2 Functions

2-962

For more information about the OFDM modulated waveform, see lteOFDMInfo. For more
information about the RMC-specific configuration parameters, see lteRMCDL.

Parameter
Field

Values Description

RC 'R.0', 'R.1', 'R.2',
'R.3', 'R.4', 'R.5',
'R.6', 'R.7', 'R.8',
'R.9', 'R.10', 'R.11',
'R.12', 'R.13', 'R.14',
'R.25', 'R.26', 'R.27',
'R.28', 'R.31-3A',
'R.31-4', 'R.43',
'R.44', 'R.45',
'R.45-1', 'R.48',
'R.50', 'R.51',
'R.68-1', 'R.105',
'R.6-27RB', 'R.12-9RB',
'R.11-45RB'

Reference measurement channel (RMC) number or
type, as specified in Annex A.3 of TS 36.101.

• To facilitate the transmission of system
information blocks (SIBs), user data is usually not
scheduled on subframe 5. To schedule user data
in subframe 5, use one of these sustained-data-
rate RMCs: 'R.31-3A', 'R.31-4', 'R.68-1',
or 'R.105'.

• 'R.6-27RB', 'R.12-9RB', and 'R.11-45RB'
are custom RMCs configured for non-standard
bandwidths that maintain the same code rate as
the standardized versions defined in Annes A.3 of
TS 36.101.

NDLRB Integer in the interval [6,
110]

Number of downlink resource blocks

CellRefP 1, 2, 4 Number of cell-specific reference signal (CRS)
antenna ports

NCellID Integer in the interval [0,
503]

Physical layer cell identity

CyclicPrefix 'Normal', 'Extended' Cyclic prefix length
CFI 1, 2, 3, real-valued vector of

length 10
Control format indicator (CFI) value. When the CFI
value does not vary between subframes, specify this
field as a scalar. Otherwise, specify this field as a
vector, where the kth element corresponds to the
CFI value of the kth subframe.

The CFI value varies between subframes for these
RMCs when you specify the duplexmode input as
'TDD' mode, the CFI varies per subframe for these
RMCs: 'R.0', 'R.5', 'R.6', 'R.6-27RB',
'R.12-9RB'.

PCFICHPower Real-valued scalar PCFICH symbol power adjustment, in dB
Ng 'Sixth', 'Half', 'One',

'Two'
HICH group multiplier

PHICHDuration 'Normal', 'Extended' PHICH duration
HISet 112-by-3 matrix Maximum PHICH groups (112), as specified in

section 6.9 of TS 36.211, with the first PHICH
sequence of each group set to ACK). For more
information, see ltePHICH.

PHICHPower Real-valued scalar PHICH symbol power, in dB
NFrame Nonnegative integer Frame number

 lteRMCDLTool

2-963

Parameter
Field

Values Description

NSubFrame Nonnegative integer Subframe number
TotSubFrames Nonnegative integer Total number of subframes to generate
Windowing Nonnegative integer Number of time-domain samples over which the

function applies windowing and overlapping of
OFDM symbols

DuplexMode 'FDD', 'TDD' Duplexing mode, returned as one of these values

• 'FDD' — Frequency division duplex
• 'TDD' — Time division duplex

  
CSIRSPeriod

'On', 'Off', integer in the
interval [0, 154], two-
element row vector of
nonnegative integers, cell
array

CSI-RS subframe configurations for CSI-RS
resources, returned as one of these values.

• 'On' or 'Off
• An integer in the interval [0, 154] corresponding

to the parameter ICSI-RS, specified in Table
6.10.5.3-1 of TS 36.211

• A vector of the form [TCSI-RS ∆CSI-RS], in
accordance with Table 6.10.5.3-1 of TS 36.211

• A cell array of configurations for each resource.

This field applies only when the TxScheme field is
'Port7-14'.

These fields are only present and applicable for 'Port7-14' transmission scheme (TxScheme) and
only required in rmccfg if CSIRSPeriod is not set to 'Off'.
  
CSIRSConfig

Nonnegative integer Array CSI-RS configuration indices. See Table
6.10.5.2-1 of TS 36.211.

  CSIRefP 1, 2, 4, 8 Array of number of CSI-RS antenna ports
These fields are only present and applicable for 'Port7-14' transmission scheme (TxScheme)
  
ZeroPowerCSIR
SPeriod

'Off' (default), 'On',
Icsi-rs (0,...,154), [Tcsi-
rs Dcsi-rs]. You can also
specify values in a cell array
of configurations for each
resource.

Zero power CSI-RS subframe configurations for one
or more zero power CSI-RS resource configuration
index lists. Multiple zero power CSI-RS resource
lists can be configured from a single common
subframe configuration or from a cell array of
configurations for each resource list.

The following field is only applicable for 'Port7-14' transmission scheme (TxScheme) and only
required in rmccfg if CSIRSPeriod is not set to 'Off'.

2 Functions

2-964

Parameter
Field

Values Description

  
ZeroPowerCSIR
SConfig

16-bit bitmap character
vector or string scalar
(truncated if not 16 bits or
'0' MSB extended), or a
numeric list of CSI-RS
configuration indices. You
can also specify values in a
cell array of configurations
for each resource.

Zero power CSI-RS resource configuration index
lists (TS 36.211 Section 6.10.5.2). Specify each list
as a 16-bit bitmap character vector or string scalar
(if less than 16 bits, then '0' MSB extended), or as
a numeric list of CSI-RS configuration indices from
TS 36.211 Table 6.10.5.2-1 in the '4' CSI reference
signal column. Multiple lists can be defined using a
cell array of individual lists.

PDSCH Scalar structure PDSCH transmission configuration substructure
SIB Scalar structure Include a SIB message by adding the SIB

substructure to the lteRMCDL function
configuration output structure, rmccfgout, after it
is generated and before using the rmccfgout
structure as input to lteRMCDLTool.

OCNGPDCCHEnab
le

'Off', 'On' Enable PDCCH OFDMA channel noise generator
(OCNG). See footnote.

OCNGPDCCHPowe
r

Scalar integer, 0 (default) PDCCH OCNG power in dB

OCNGPDSCHEnab
le

'Off', 'On' Enable PDSCH OCNG

OCNGPDSCHPowe
r

Scalar integer, defaults to
PDSCH.Rho (default)

PDSCH OCNG power in dB

OCNGPDSCH Scalar structure PDSCH OCNG configuration substructure
OCNG 'Off', 'On'. 'Disable'

and 'Enable' are also
accepted.

OFDMA channel noise generator

Note This parameter will be removed in a future
release. Use the PDCCH and PDSCH-specific OCNG
parameters instead.

The following fields are only present and applicable for 'TDD' duplex mode (DuplexMode).
  SSC 0 (default), 1, 2, 3, 4, 5, 6, 7,

8, 9
Special subframe configuration (SSC)

  TDDConfig 0, 1 (default), 2, 3, 4, 5, 6 Uplink–downlink configuration

See footnote.
SamplingRate Numeric scalar Carrier sampling rate in Hz, (NSC/NSYM) × 3.84e6,

where NSC is the number of subcarriers and NSYM is
the number of OFDM symbols in a subframe.

 lteRMCDLTool

2-965

Parameter
Field

Values Description

Nfft Scalar integer, typically one
of {128, 256, 512, 1024,
1536, 2048} for standard
channel bandwidths
{'1.4MHz', '3MHz',
'5MHz', '10MHz',
'15MHz', '20MHz'},
respectively.

Number of FFT frequency bins

1 CFI is equal to the number of symbols allocated to:

• PDCCH - 1 for NDLRB < 10
• PDCCH for NDLRB >= 10

For the RMCs, the number of symbols allocated to PDCCH varies with channel bandwidth
setting,

• 2 symbols for 20 MHz, 15 MHz, and 10 MHz
• 3 symbols for 5 MHz and 3 MHz
• 4 symbols for 1.4 MHz

In the TDD mode, only two OFDM symbols are allocated to PDCCH in subframes 1 and 6
irrespective of the channel bandwidth. Therefore, the CFI value varies per subframe for the 5
MHz and 3 MHz and 1.4 MHz channel bandwidths, that is for bandwidths where PDCCH symbol
allocation is not two for other subframes.

2 The PDCCH ONCG fills the unused PDCCH resource elements with QPSK symbols using either
single port or transmit diversity depending on the number of cell RS ports.

3 All supported RMCs use TDDConfig 1 by default. When you specify a value different then the
default, the full parameter set is configured according to the following rules.

• Preserve subframe 0 (downlink) for all TDDConfig — The values of the parameters in
subframe 0 of TDDConfig 1 is applied in all other TDDConfig.

• Preserve special subframe behaviour — The values of the parameters in special subframes of
TDDConfig 1 is applied in all other TDDConfig.

• Preserve subframe 5 (downlink) for all TDDConfig — The values of the parameters in
subframe 5 of TDDConfig 1 is applied to all other TDDConfig. For all RMCs currently
supported, subframe 5 is treated separately from other subframes. According to TS 36.101
Section A.3.1, “Unless otherwise stated, no user data is scheduled on subframes 5 in order to
facilitate the transmission of system information blocks (SIB).” Hence the RC value, if
present, determines the behaviour of subframe 5. This means that subframe 5 is not
transmitted for other RMCs, with the exception of sustained data rate RMCs R.31-3A and
R.31-4.

• All other downlink subframes use the same settings as subframe 9.

PDSCH Substructure

The substructure PDSCH relates to the physical channel configuration and contains these fields:

2 Functions

2-966

Parameter
Field

Values Description

TxScheme 'Port0', 'TxDiversity',
'CDD', 'SpatialMux',
'MultiUser', 'Port5',
'Port7-8', 'Port8',
'Port7-14'.

PDSCH transmission scheme, specified as one of the
following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay

diversity scheme
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7,

when NLayers = 1. Dual
layer transmission, ports 7
and 8, when NLayers = 2.

'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer

transmission, ports 7–14

Modulation 'QPSK', '16QAM',
'64QAM', or '256QAM'

Modulation type, specified as a character vector, cell
array of character vectors, or string array. If blocks,
each cell is associated with a transport block.

NLayers Integer from 1 to 8 Number of transmission layers.
Rho 0 (default), numeric scalar PDSCH resource element power allocation, in dB
RNTI 0 (default), scalar integer Radio network temporary identifier (RNTI) value (16

bits)
RVSeq Integer vector (0,1,2,3),

specified as a one or two
row matrix (for one or two
codewords)

Redundancy version (RV) indicator used by all HARQ
processes, returned as a numeric matrix. RVSeq is a
one- or two-row matrix for one or two codewords,
respectively. The number of columns in RVSeq
equals the number of transmissions of the transport
blocks associated with a HARQ process. The RV
sequence specified in each column is applied to the
transmission of the transport blocks. If RVSeq is a
scalar (or column vector in the case of two
codewords), then there is a single initial
transmission of each block with no retransmissions.
If RVSeq is a row vector in a two-codeword
transmission, then the same RV sequence is applied
to both codewords.

 lteRMCDLTool

2-967

Parameter
Field

Values Description

RV Integer vector (0,1,2,3). A
one or two column matrix
(for one or two codewords).

Specifies the redundancy version for one or two
codewords used in the initial subframe number,
NSubframe. This parameter field is only for
informational purposes and is read-only.

NHARQProcesse
s

1, 2, 3, 4, 5, 6, 7, or 8 Number of HARQ processes per component carrier

NTurboDecits 5 (default), nonnegative
scalar integer

Number of turbo decoder iteration cycles

PRBSet Integer column vector or
two-column matrix

Zero-based physical resource block (PRB) indices
corresponding to the slot-wise resource allocations
for this PDSCH. The function returns this field as
one of these values.

• a column vector, the resource allocation is the
same in both slots of the subframe,

• a two-column matrix, this parameter specifies
different PRBs for each slot in a subframe,

• a cell array of length 10 (corresponding to a
frame, if the allocated physical resource blocks
vary across subframes).

This field varies per subframe for these RMCs:
'R.25' (with TDD), 'R.26' (with TDD), 'R.27'
(with TDD), 'R.43' (with FDD), 'R.44', 'R.45',
'R.48', 'R.50', 'R.51', 'R.68-1', and
'R.105'.

TargetCodeRat
e

Numeric scalar or one or
two row numeric matrix

Target code rates for one or two codewords for each
subframe in a frame. Used for calculating the
transport block sizes according to TS 36.101 [1],
Annex A.3.1.

If both TargetCodeRate and TrBlkSizes are not
provided at the input, and the RC does not have a
single ratio target code rate in TS 36.101, Table
A.3.1.1-1, TargetCodeRate == ActualCodeRate.

ActualCodeRat
e

One or two row numeric
matrix

Actual code rates for one or two codewords for each
subframe in a frame, calculated according to TS
36.101 [1], Annex A.3.1. The maximum actual code
rate is 0.93. This parameter field is only for
informational purposes and is read-only.

TrBlkSizes One or two row numeric
matrix

Transport block sizes for each subframe in a frame

CodedTrBlkSiz
es

One or two row numeric
matrix

Coded transport block sizes for one or two
codewords. This parameter field is for informational
purposes and is read-only.

2 Functions

2-968

Parameter
Field

Values Description

DCIFormat 'Format0', 'Format1',
'Format1A', 'Format1B',
'Format1C', 'Format1D',
'Format2', 'Format2A',
'Format2B', 'Format2C',
'Format2D', 'Format3',
'Format3A', 'Format4',
'Format5', 'Format5A'

Downlink control information (DCI) format type of
the PDCCH associated with the PDSCH. See
lteDCI.

PDCCHFormat 0, 1, 2, 3 Aggregation level of PDCCH associated with PDSCH
PDCCHPower Numeric scalar PDCCH power in dB
CSIMode 'PUCCH 1-0', 'PUCCH

1-1', 'PUSCH 1-2',
'PUSCH 3-0', 'PUSCH
3-1'

CSI reporting mode

PMIMode 'Wideband' (default),
'Subband'

PMI reporting mode. PMIMode='Wideband'
corresponds to PUSCH reporting Mode 1-2 or
PUCCH reporting Mode 1-1 (PUCCH Report Type 2)
and PMIMode='Subband' corresponds to PUSCH
reporting Mode 3-1.

The following field is only present for 'SpatialMux' transmission scheme (TxScheme).
  PMISet Integer vector with element

values from 0 to 15.
Precoder matrix indication (PMI) set. It can contain
either a single value, corresponding to single PMI
mode, or multiple values, corresponding to multiple
or subband PMI mode. The number of values
depends on CellRefP, transmission layers and
TxScheme. For more information about setting PMI
parameters, see ltePMIInfo.

The following field is only present for 'Port7-8', 'Port8', or 'Port7-14' transmission schemes
(TxScheme).
  NSCID 0 (default), 1 Scrambling identity (ID)
The following fields are only present for UE-specific beamforming ('Port5', 'Port7-8', 'Port8',
or 'Port7-14').
  W Numeric matrix NLayers-by-P precoding matrix for the wideband

UE-specific beamforming of the PDSCH symbols. P
is the number of transmit antennas. When W is not
specified, no precoding is applied.

  NTxAnts Nonnegative scalar integer Number of transmission antennas.
HARQProcessSe
quence

1-by-LHARQ_Seq integer vector. One-based HARQ process indices for the internal
HARQ scheduling sequence. The sequence of length
LHARQ_Seq is optimized according to transport block
sizes, number of HARQ processes, duplex mode, and
when in TDD mode the UL/DL configuration.

See footnote.

 lteRMCDLTool

2-969

Parameter
Field

Values Description

1 The function returns valid TrBlkSizes and CodedTrBlkSizes set to 0 when PRBSet is empty,
indicating there is no PDSCH allocation in this frame.

2 The HARQ process sequence table is calculated according to the procedure detailed in 3GPP
Tdoc R5-095777 ("Scheduling of retransmissions and number of active HARQ processes for DL
performance RMC-s")

• For the case when NHARQProcesses = 1, the HARQProcessSequence is [1 0 0 0 0 0 0
0 0 0]. Using this HARQ process sequence, only the TrBlkSize corresponding to
subframe 0 gets transmitted. There is no transmission in other subframes, even if the
transport block sizes in other subframes are nonzero.

SIB Substructure

If the substructure SIB has been added to rmccfg, SIB1 messages and the associated PDSCH and
PDCCH can be generated. The SIB substructure includes these fields:

Parameter
Field

Values Description

Data (0,1), bit array SIB1 transport block information bits

See footnote.
VRBStart variable, see rules in TS

36.213 Section 7.1.6.3
Virtual RB allocation starting resource block, RBstart.

VRBLength variable, see rules in TS
36.213 Section 7.1.6.3

Length in terms of virtual contiguously allocated
resource blocks, LCRBs.

Enable 'On' (default), 'Off' Enable/Disable SIB generation
DCIFormat 'Format1A' (default) or

'Format1C'
Downlink control information (DCI) format

AllocationTyp
e

0 (default) or 1, single bit
flag

Localized (0) or distributed (1) allocation of virtual
resource blocks for Resource allocation type 2

The following parameter is only applicable when DCIFormat = 'Format1A'.
 N1APRB 2 or 3 Transport block set selection parameter, NPRB

1A

Indicates the column in TS 36.213, Table 7.1.7.2.1-1
for transport block size selection. The default is the
smallest transport block size, in either column 2 or 3,
that is bigger than or equal to the length of the Data
field. Also see TS 36.212 Section 5.3.3.1.3 and TS
36.213 Section 7.1.7.

The following parameter is only applicable when using distributed allocation (AllocationType =
1).
 Gap 0 or 1 Distributed allocation gap, ‘0’ for Ngap,1 or ‘1’ for

Ngap,2

2 Functions

2-970

Parameter
Field

Values Description

1 The set of valid transport block sizes is specified in TS 36.213 [4], Table 7.1.7.2.1-1. Only
columns 2 and 3 apply to the SIB DL-SCH. The Data field is padded with zeros to the closest
valid size from this table.

Note

• Per TS 36.321 [5], Section 6.1.1, the lowest order information bit of the SIB.Data field is
mapped to the most significant bit of the SIB1 transport block.

• For subframe 5, per TS 36.101 [1], Annex A.3, reference PDSCH transmissions are not scheduled
in subframe 5 except for the SIB1 associated PDSCH.

• Setting the OCNG parameter field 'On' fills all unused, unscheduled PDSCH resource elements
with QPSK modulated random data.

• The values for CFI and PRBSet can vary per subframe. If these parameters are arrays, then the
function cyclically steps through the elements of the array starting with the index given by
mod(NSubframe,length(parameter)). When parameter is PRBSet, the parameter must be a cell
array of column vectors or slot-wise matrices.

• The PHICH symbols carry a single ACK on the first PHICH instance in each PHICH group.

OCNGPDSCH Substructure

The substructure, OCNGPDSCH, defines the OCNG patterns in associated RMCs and tests according to
TS 36.101 [1], Section A.5. OCNGPDSCH contains these fields which can also be customized with the
full range of PDSCH-specific values.

Parameter
Field

Values Description

Modulation OCNG Modulation has
same setting options as
rmccfgout.PDSCH.Modula
tion

See rmccfgout.PDSCH.Modulation

TxScheme OCNG TxScheme has same
setting options as
rmccfgout.PDSCH.TxSche
me

See rmccfgout.PDSCH.TxScheme

RNTI 0 (default), scalar integer OCNG radio network temporary identifier (RNTI)
value (16 bits)

Data Types: struct

Version History
Introduced in R2014a

This function now opens the LTE Waveform Generator app
Behavior changed in R2019b

 lteRMCDLTool

2-971

In previous releases, the input-free syntaxes of this function opened the LTE Downlink RMC
Generator app. Starting in R2019b, input-free calls to this function open the LTE Waveform
Generator app for a downlink RMC waveform.

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and
Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[3] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel
coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[4] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[5] 3GPP TS 36.321. “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control
(MAC) protocol Specification.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

See Also
Apps
LTE Waveform Generator

Functions
lteRMCDL | lteRMCULTool | lteTestModelTool

2 Functions

2-972

https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org

lteRMCUL
Uplink reference measurement channel or FRC configuration

Syntax
rmccfgout = lteRMCUL(rc,duplexmode,totsubframes)
rmccfgout = lteRMCUL(rmccfg)

Description
rmccfgout = lteRMCUL(rc,duplexmode,totsubframes) returns a configuration structure for
the reference channel defined by rc using a channel-specific default configuration. duplexmode and
totsubframes are optional input parameters which define the duplexing mode and total number of
subframes to be generated.

Use rmccfgout to generate a waveform with the fixed reference channel (FRC) generator tool,
lteRMCULTool. The field names and default values of FRCs are in accordance with TS 36.104 [2],
Annex A.

rmccfgout = lteRMCUL(rmccfg) returns a fully configured structure for the reference channel
partially, or wholly, defined by the input structure, rmccfg. Any parameters missing at the input are
initialized based on the rc field, if present in rmccfg, or the reference channel 'A1-1' otherwise.

rmccfg can include the field SRS to enable SRS-related configuration parameters.

Examples

Create Uplink RMC

Using the reference measurement channel designation, create an uplink RMC configuration for RC
'A7-4'.

rmc = lteRMCUL('A7-4')

rmc = struct with fields:
 RC: 'A7-4'
 NULRB: 25
 NCellID: 0
 NFrame: 0
 NSubframe: 0
 CyclicPrefixUL: 'Normal'
 CyclicShift: 0
 Shortened: 0
 Hopping: 'Off'
 SeqGroup: 0
 TotSubframes: 10
 RNTI: 1
 NTxAnts: 1
 Windowing: 0
 DuplexMode: 'FDD'

 lteRMCUL

2-973

 PUSCH: [1x1 struct]

Create Uplink RMC Configuration

Create a configuration structure for RC A1-1 as specified in TS 36.104.

rmc.RC = 'A1-1';
rmc.NCellID = 100;
rmcOut = lteRMCUL(rmc)

rmcOut = struct with fields:
 RC: 'A1-1'
 NULRB: 6
 NCellID: 100
 NFrame: 0
 NSubframe: 0
 CyclicPrefixUL: 'Normal'
 CyclicShift: 0
 Shortened: 0
 Hopping: 'Off'
 SeqGroup: 0
 TotSubframes: 10
 RNTI: 1
 NTxAnts: 1
 Windowing: 0
 DuplexMode: 'FDD'
 PUSCH: [1x1 struct]

rmcOut.PUSCH

ans = struct with fields:
 Modulation: 'QPSK'
 NLayers: 1
 DynCyclicShift: 0
 NBundled: 0
 BetaACK: 2
 BetaCQI: 2
 BetaRI: 2
 NHARQProcesses: 8
 RVSeq: [0 2 3 1]
 RV: 0
 NTurboDecIts: 5
 OrthCover: 'On'
 PMI: 0
 PRBSet: [6x1 double]
 TargetCodeRate: 0.3333
 ActualCodeRate: [0.3611 0.3611 0.3611 0.3611 0.3611 0.3611 0.3611 ...]
 TrBlkSizes: [600 600 600 600 600 600 600 600 600 600]
 CodedTrBlkSizes: [1728 1728 1728 1728 1728 1728 1728 1728 1728 1728]

2 Functions

2-974

Customize Uplink RMC

Create a new customized parameter set by overriding selected values of an existing preset RMC.
Define a full-band 5MHz PUSCH using 64QAM modulation and 1/3 rate.

Looking at TS 36.104 Annex A reference measurement channels, A1-3 matches this criteria but with
QPSK modulation.

Create a configuration structure for RC A1-3 as specified in TS 36.104.

rmc.RC = 'A1-3';
rmcout = lteRMCUL(rmc,1);
rmcout.PUSCH

ans = struct with fields:
 Modulation: 'QPSK'
 NLayers: 1
 DynCyclicShift: 0
 NBundled: 0
 BetaACK: 2
 BetaCQI: 2
 BetaRI: 2
 NHARQProcesses: 8
 RVSeq: [0 2 3 1]
 RV: 0
 NTurboDecIts: 5
 OrthCover: 'On'
 PMI: 0
 PRBSet: [25x1 double]
 TargetCodeRate: 0.3333
 ActualCodeRate: [0.3111 0.3111 0.3111 0.3111 0.3111 0.3111 0.3111 ...]
 TrBlkSizes: [2216 2216 2216 2216 2216 2216 2216 2216 2216 2216]
 CodedTrBlkSizes: [7200 7200 7200 7200 7200 7200 7200 7200 7200 7200]

Override the PUSCH modulation, setting it to 64QAM. Create a new configuration structure. Inspect
rmcout to see the modulation is 64QAM and the PUSCH transport block sizes and physical channel
capacities have been updated to maintain the same 1/3 code rate.

rmc.PUSCH.Modulation = '64QAM';
rmcOverrideOut = lteRMCUL(rmc,1);
rmcOverrideOut

rmcOverrideOut = struct with fields:
 RC: 'A1-3'
 NULRB: 25
 NCellID: 0
 NFrame: 0
 NSubframe: 0
 CyclicPrefixUL: 'Normal'
 CyclicShift: 0
 Shortened: 0
 Hopping: 'Off'
 SeqGroup: 0
 TotSubframes: 10
 RNTI: 1
 NTxAnts: 1
 Windowing: 0

 lteRMCUL

2-975

 DuplexMode: 'FDD'
 PUSCH: [1x1 struct]

rmcOverrideOut.PUSCH

ans = struct with fields:
 Modulation: '64QAM'
 NLayers: 1
 DynCyclicShift: 0
 NBundled: 0
 BetaACK: 2
 BetaCQI: 2
 BetaRI: 2
 NHARQProcesses: 8
 RVSeq: [0 2 3 1]
 RV: 0
 NTurboDecIts: 5
 OrthCover: 'On'
 PMI: 0
 PRBSet: [25x1 double]
 TargetCodeRate: 0.3333
 ActualCodeRate: [0.3378 0.3378 0.3378 0.3378 0.3378 0.3378 0.3378 ...]
 TrBlkSizes: [7224 7224 7224 7224 7224 7224 7224 7224 7224 7224]
 CodedTrBlkSizes: [21600 21600 21600 21600 21600 21600 21600 21600 ...]

Input Arguments
rc — Reference channel number
'A1-1' | 'A1-2' | 'A1-3' | 'A1-4' | 'A1-5' | 'A2-1' | 'A2-2' | 'A2-3' | 'A3-1' | 'A3-2' |
'A3-3' | 'A3-4' | 'A3-5' | 'A3-6' | 'A3-7' | 'A4-1' | 'A4-2' | 'A4-3' | 'A4-4' | 'A4-5' |
'A4-6' | 'A4-7' | 'A4-8' | 'A5-1' | 'A5-2' | 'A5-3' | 'A5-4' | 'A5-5' | 'A5-6' | 'A5-7' |
'A7-1' | 'A7-2' | 'A7-3' | 'A7-4' | 'A7-5' | 'A7-6' | 'A8-1' | 'A8-2' | 'A8-3' | 'A8-4' |
'A8-5' | 'A8-6' | 'A11-1' | 'A3-2-9RB' | 'A4-3-9RB'

Reference channel number, specified as a character vector or string scalar. Use double quotes or
string. This argument represents the reference measurement channel (RMC) number, or fixed
reference channel (FRC), as described in TS 36.104[2]. See “UL Reference Channel Options” on page
2-981 for a list of the default top-level configuration associated with the available uplink reference
channels.
Data Types: char | string

duplexmode — Duplexing mode
'FDD' (default) | optional | 'TDD'

Duplexing mode, specified as 'FDD' or 'TDD'. It represents the frame structure type.
Data Types: char | string

totsubframes — Total number of subframes
10 (default) | optional | positive numeric scalar

Total number of subframes, specified as a numeric scalar. This argument specifies the total number of
subframes that form the resource grid.

2 Functions

2-976

Data Types: double

rmccfg — Reference channel configuration
structure

Reference channel configuration, specified as a structure. The structure defines any, or all, of the
fields or subfields contained in the output structure, rmccfgout. Any undefined fields are given
appropriate default values.

Parameter
Field

Required
or
Optional

Values Description

RC Optional 'A1-1' (default), 'A1-2',
'A1-3', 'A1-4', 'A1-5',
'A2-1', 'A2-2', 'A2-3',
'A3-1', 'A3-2', 'A3-3',
'A3-4', 'A3-5', 'A3-6',
'A3-7', 'A4-1', 'A4-2',
'A4-3', 'A4-4', 'A4-5',
'A4-6', 'A4-7', 'A4-8',
'A5-1', 'A5-2', 'A5-3',
'A5-4', 'A5-5', 'A5-6',
'A5-7', 'A7-1', 'A7-2',
'A7-3', 'A7-4', 'A7-5',
'A7-6', 'A8-1', 'A8-2',
'A8-3', 'A8-4', 'A8-5',
'A8-6', 'A11-1',
'A3-2-9RB', 'A4-3-9RB'

Reference measurement channel (RMC)
number or type, as specified in TS 36.104
Annex A.

[2].

SRS Optional 'off' (default), 'on' Enable SRS related configuration
parameters (set SRS to 'on') for RMCs
which optionally support SRS, or a complete
or part SRS structure. If absent, no SRS
configuration is created.

Data Types: struct

Output Arguments
rmccfgout — Configuration parameters
structure

Configuration Parameters Structure

Configuration parameters, returned as a structure. rmccfgout contains the following fields.

 lteRMCUL

2-977

Parameter
Field

Values Description

RC 'A1-1' (default), 'A1-2',
'A1-3', 'A1-4', 'A1-5',
'A2-1', 'A2-2', 'A2-3',
'A3-1', 'A3-2', 'A3-3',
'A3-4', 'A3-5', 'A3-6',
'A3-7', 'A4-1', 'A4-2',
'A4-3', 'A4-4', 'A4-5',
'A4-6', 'A4-7', 'A4-8',
'A5-1', 'A5-2', 'A5-3',
'A5-4', 'A5-5', 'A5-6',
'A5-7', 'A7-1', 'A7-2',
'A7-3', 'A7-4', 'A7-5',
'A7-6', 'A8-1', 'A8-2',
'A8-3', 'A8-4', 'A8-5',
'A8-6', 'A11-1',
'A3-2-9RB', 'A4-3-9RB'

Reference channel number

NULRB Scalar integer from 6 to 110 Number of uplink resource blocks. (NRB
UL)

NCellID Integer from 0 to 503 Physical layer cell identity
NFrame 0 (default), nonnegative scalar

integer
Frame number

NSubFrame 0 (default), nonnegative scalar
integer

Initial subframe number

CyclicPrefixU
L

'Normal' (default),
'Extended'

Cyclic prefix length

CyclicShift 0, 1, 2, 3, 4, 5, 6, 7 Cyclic shift. This argument yields nDMRS
(1) .

Shortened 0 (default), 1 Subframe shortened flag. If the function sets the
flag to 1, the last symbol of the subframe is not
used. Subframes with possible SRS transmission
require this flag to be set.

Hopping 'Off' (default), 'Group', or
'Sequence'

Hopping type

SeqGroup 0 (default), integer from 0 to 29 PUSCH sequence group assignment (ΔSS).
TotSubFrames 10 (default)

Positive scalar integer

Total number of subframes to generate

This argument specifies the total number of
subframes that form the resource grid.

RNTI 1 (default)

Scalar integer

Radio network temporary identifier (RNTI) value
(16 bits)

NTxAnts 1, 2, 4 Number of transmission antennas.
Windowing Nonnegative scalar integer The number of time-domain samples over which

windowing and overlapping of SC-FDMA symbols
is applied

2 Functions

2-978

Parameter
Field

Values Description

DuplexMode 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

It represents the frame structure type.
PUSCH Structure PUSCH transmission configuration
SRS Structure Sounding Reference Signal (SRS) configuration

PUSCH Substructure

The substructure PUSCH relates to the physical channel configuration and contains these fields:

Parameter
Field

Values Description

Modulation 'QPSK', '16QAM', '64QAM', or
'256QAM'

Modulation format

NLayers 1, 2, 3, 4 Number of transmission layers.
DynCyclicShi
ft

0, 1, 2, 3, 4, 5, 6, 7 Cyclic shift for DM-RS (yields nDMRS
(2)).

NBundled 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 HARQ-ACK bundling scrambling sequence index
BetaACK Scalar integer Modulation and coding scheme (MCS) offset for

HARQ-ACK bits, returned as a scalar integer.
BetaCQI Scalar integer Modulation and coding scheme (MCS) offset for

CQI and PMI bits
BetaRI Scalar integer Modulation and coding scheme (MCS) offset for

RI bits
NHARQProcess
es

1, 2, 3, 4, 5, 6, 7, 8 Number of HARQ processes per component
carrier

RVSeq Numeric matrix Redundancy version (RV) indicator used by all
HARQ processes, returned as a numeric matrix.
RVSeq is a one- or two-row matrix for one or two
codewords, respectively. The number of columns
in RVSeq equals the number of transmissions of
the transport blocks associated with a HARQ
process. The RV sequence specified in each
column is applied to the transmission of the
transport blocks. If RVSeq is a scalar (or column
vector in the case of two codewords), then there
is a single initial transmission of each block with
no retransmissions. If RVSeq is a row vector in a
two-codeword transmission, then the same RV
sequence is applied to both codewords.

See footnote.

 lteRMCUL

2-979

Parameter
Field

Values Description

RV Numeric matrix Redundancy version (RV) indicator in initial
subframe, returned as a numeric matrix. This
argument is a one- or two-column vector that
specifies the redundancy version for one or two
codewords used in the initial subframe number,
NSubframe. This parameter field is only for
informational purposes and is read-only.

NTurboDecIts Positive scalar integer Number of turbo decoder iteration cycles
OrthCover 'Off' (default), 'On' Orthogonal cover sequence flag.

Applies ('On'), or does not apply ('Off'),
orthogonal cover sequence w (Activate-DMRS-
with OCC).

PMI Integer from 0 to 23 Scalar precoder matrix indication (PMI) to be
used during precoding

PRBSet Integer matrix Physical resource block set of indices, returned
as an integer matrix. This argument is a 1- or 2-
column matrix that contains the 0-based physical
resource block indices (PRBs) corresponding to
the resource allocations for this PUSCH.

TargetCodeRa
te

Scalar or vector Target code rates for each subframe in a frame.
Used for calculating the transport block sizes
according to TS 36.101[1], Annex A.2.1.2.

If TargetCodeRate is not provided and
TrBlkSizes is provided at the input,
TargetCodeRate == ActualCodeRate.

ActualCodeRa
te

Numeric vector Actual code rates for each subframe in a frame.
The maximum actual code rate is 0.93. This
parameter field is only for informational purposes
and is read-only.

TrBlkSizes Numeric vector Transport block sizes for each subframe in a
frame

See footnote.
CodedTrBlkSi
zes

Numeric vector Coded transport block sizes for each a subframe
in a frame, returned as a numeric vector. This
parameter field is only for informational purposes
and is read-only.

See footnote.
1 The values of RVSeq, TrBlkSizes, and CodedTrBlkSizes are set according to the modulation

scheme and TargetCodeRate.

SRS Substructure

The substructure SRS contains these fields:

2 Functions

2-980

Parameter
Field

Values Description

NTxAnts 1 (default), 2, 4 Number of transmission antennas.
BWConfig 0, 1, 2, 3, 4, 5, 6, 7 Cell-specific SRS Bandwidth Configuration value

(CSRS)
BW 0, 1, 2, 3 UE-specific SRS Bandwidth value (BSRS)
ConfigIdx Integer from 0 to 644 Configuration index (ISRS) for UE-specific

periodicity (TSRS) and subframe offset (Toffset).
TxComb 0 or 1 Transmission comb. Controls SRS positions; SRS

is transmitted in 6 carriers per resource block on
odd (1) and even (0) resource indices.

HoppingBW 0, 1, 2, 3 SRS Frequency hopping configuration index (bhop)
FreqPosition Integer from 0 to 23 Frequency domain position (nRRC)
CyclicShift 0 (default), integer from 0 to 7 UE-specific cyclic shift (nSRS

cs)

SeqGroup 0 (default), integer from 0 to 29 SRS sequence group number (u)
SeqIdx 0 or 1 Base sequence number (v)
SubframeConf
ig

Integer from 0 to 15 Sounding reference signal (SRS) subframe
configuration

The following fields are present only when DuplexMode is set to 'TDD'.
 
NF4RachPream
bles

0, 1, 2, 3, 4, 5, 6 Number of RACH preamble frequency resources
of Format 4 in UpPTS

 OffsetIdx 0 or 1 Choice of SRS Subframe Offset in the case of 2
ms SRS periodicity. This parameter indexes the
two SRS Subframe Offset entries in the row
specified by the ConfigIdx parameter in table
8.2-2 of TS 36.213 for the SRS Configuration
Index.

More About
UL Reference Channel Options

Initialization choices available for the uplink reference channel and associated top-level configuration
defaults include:

 lteRMCUL

2-981

Reference channels Reference channels
(continued)

Reference channels
(continued)

A1-1 (6 RB, QPSK, R=1/3)

A1-2 (15 RB, QPSK,
R=1/3)

A1-3 (25 RB, QPSK,
R=1/3)

A1-4 (3 RB, QPSK, R=1/3)

A1-5 (9 RB, QPSK, R=1/3)

A2-1 (6 RB, 16QAM,
R=2/3)

A2-2 (15 RB, 16QAM,
R=2/3)

A2-3 (25 RB, 16QAM,
R=2/3)

A3-1 (1 RB, QPSK, R=1/3)

A3-2 (6 RB, QPSK, R=1/3)

A3-3 (15 RB, QPSK,
R=1/3)

A3-4 (25 RB, QPSK,
R=1/3)

A3-5 (50 RB, QPSK,
R=1/3)

A3-6 (75 RB, QPSK,
R=1/3)

A3-7 (100 RB, QPSK,
R=1/3)

A4-1 (1 RB, 16QAM,
R=3/4)

A4-2 (1 RB, 16QAM,
R=3/4)

A4-3 (6 RB, 16QAM,
R=3/4)

A4-4 (15 RB, 16QAM,
R=3/4)

A4-5 (25 RB, 16QAM,
R=3/4)

A4-6 (50 RB, 16QAM,
R=3/4)

A4-7 (75 RB, 16QAM,
R=3/4)

A4-8 (100 RB, 16QAM,
R=3/4)

A5-1 (1 RB, 64QAM,
R=5/6)

A5-2 (6 RB, 64QAM,
R=5/6)

A5-3 (15RB, 64QAM,
R=5/6)

A5-4 (25 RB, 64QAM,
R=5/6)

A5-5 (50 RB, 64QAM,
R=5/6)

A5-6 (75 RB, 64QAM,
R=5/6)

A5-7 (100 RB, 64QAM,
R=5/6)

A7-1 (3 RB, 16QAM,
R=3/4)

A7-2 (6 RB, 16QAM,
R=3/4)

A7-3 (12 RB, 16QAM,
R=3/4)

A7-4 (25 RB, 16QAM,
R=3/4)

A7-5 (25 RB, 16QAM,
R=3/4)

A7-6 (25 RB, 16QAM,
R=3/4)

A8-1 (3 RB, QPSK, R=1/3)

A8-2 (6 RB, QPSK, R=1/3)

A8-3 (12 RB, QPSK,
R=1/3)

A8-4 (25 RB, QPSK,
R=1/3)

A8-5 (25 RB, QPSK,
R=1/3)

A8-6 (25 RB, QPSK,
R=1/3)

A11-1 (3 RB, QPSK,
R=11/27)

A17-1 (6 RB, 256QAM,
R=5/6)

A17-2 (15 RB, 256QAM,
R=5/6)

A17-3 (25 RB, 256QAM,
R=5/6)

A17-4 (50 RB, 256QAM,
R=5/6)

A17-5(75 RB, 256QAM,
R=5/6)

A17-6 (100 RB, 256QAM,
R=5/6)

A3-2-9RB (9 RB, QPSK,
R=1/3)

A4-3-9RB (9 RB, 16QAM,
R=3/4)

2 Functions

2-982

The fields in the output configuration structure, rmccfgout, are initialized in accordance with the
reference channels defined in TS 36.104, Annex A.

• 'A3-2-9RB', and 'A4-3-9RB' are custom RMC configured for non-standard bandwidths but
with the same code rate as the standardized versions.

• 'A11-1' enables TTI bundling and the corresponding HARQ pattern (enhanced HARQ pattern for
FDD).

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.104. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio
Transmission and Reception.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

[3] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteRMCULTool | lteRMCDL | lteTestModel

 lteRMCUL

2-983

https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org

lteRMCULTool
Uplink RMC or FRC waveform generation

Syntax
lteRMCULTool
[waveform,grid,rmccfgout] = lteRMCULTool(rc,trdata)
[waveform,grid,rmccfgout] = lteRMCULTool(rc,trdata,duplexmode,totsubframes)
[waveform,grid,rmccfgout] = lteRMCULTool(rmccfg,trdata)
[waveform,grid,rmccfgout] = lteRMCULTool(rmccfg,trdata,cqi,ri,ack)

Description
lteRMCULTool starts the LTE Waveform Generator app for the parameterization and generation of
a reference measurement channel (RMC) waveform. For a list of the default top-level configuration
associated with the available uplink reference channels, see “UL Reference Channel Options” on page
2-994.

[waveform,grid,rmccfgout] = lteRMCULTool(rc,trdata) specifies the reference channel,
rc, and information bits, trdata.

[waveform,grid,rmccfgout] = lteRMCULTool(rc,trdata,duplexmode,totsubframes)
also accepts optional input arguments to define the duplex mode of the generated waveform and total
number of subframes that make up the grid.

[waveform,grid,rmccfgout] = lteRMCULTool(rmccfg,trdata) where rmccfg specifies a
reference channel structure. The reference channel structure with default parameters can easily be
created with the function lteRMCUL then modified as desired.

[waveform,grid,rmccfgout] = lteRMCULTool(rmccfg,trdata,cqi,ri,ack) where support
for control information transmission on PUSCH is specified in vectors cqi, ri, and ack. Together,
these three fields form an uplink control information (UCI) message. If these particular control
information bits are not present in this transmission, cqi, ri, and ack can be empty vectors. The UCI
is encoded for PUSCH transmission using the processing defined in TS 36.212 [3], Section 5.2.4,
consisting of UCI coding and channel interleaving. The vectors cqi, ri, and ack are not treated as
data streams. Thus, each subframe contains the same CQI, RI, and ACK information bits.

Examples

Generate Uplink LTE FRC A3-2

Generate a time domain signal and a 3-dimensional array of the resource elements for A3-2 as
specified in TS 36.104 Annex A. The A3-2 fixed reference channel (FRC) settings include: FDD,
1.4MHz, QPSK, and 1/3 code rate.

rmc = lteRMCUL('A3-2');
[waveform,grid,rmccfgout] = lteRMCULTool(rmc,1);

Inspect the FRC configuration settings.

2 Functions

2-984

rmccfgout

rmccfgout = struct with fields:
 RC: 'A3-2'
 NULRB: 6
 NCellID: 0
 NFrame: 0
 NSubframe: 0
 CyclicPrefixUL: 'Normal'
 CyclicShift: 0
 Shortened: 0
 Hopping: 'Off'
 SeqGroup: 0
 TotSubframes: 10
 RNTI: 1
 NTxAnts: 1
 Windowing: 0
 DuplexMode: 'FDD'
 PUSCH: [1x1 struct]
 SamplingRate: 1920000
 Nfft: 128

rmccfgout.PUSCH

ans = struct with fields:
 Modulation: 'QPSK'
 NLayers: 1
 DynCyclicShift: 0
 NBundled: 0
 BetaACK: 2
 BetaCQI: 2
 BetaRI: 2
 NHARQProcesses: 8
 RVSeq: [0 2 3 1]
 RV: 0
 NTurboDecIts: 5
 OrthCover: 'On'
 PMI: 0
 PRBSet: [6x1 double]
 TargetCodeRate: 0.3333
 ActualCodeRate: [0.3611 0.3611 0.3611 0.3611 0.3611 0.3611 ...]
 TrBlkSizes: [600 600 600 600 600 600 600 600 600 600]
 CodedTrBlkSizes: [1728 1728 1728 1728 1728 1728 1728 1728 1728 1728]
 HARQProcessSequence: [1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 ...]

rmccfgout.PUSCH.ActualCodeRate

ans = 1×10

 0.3611 0.3611 0.3611 0.3611 0.3611 0.3611 0.3611 0.3611 0.3611 0.3611

The actual code rate of 0.3611 is slightly higher then the target code rate of 1/3.

 lteRMCULTool

2-985

Generate Uplink RMC Waveform

Generate a time-domain signal and a 2-D array of the resource elements for a modified A1-1 fixed
reference channel.

Initialize the frc configuration structure and change the modulation scheme to '16QAM'. Generate
the txWaveform, txGrid, and output the configuration structure. Create a spectrum analyzer object,
setting the sampling rate. Plot the waveform.

frc = lteRMCUL('A1-1');
frc.PUSCH.Modulation = '16QAM';

[txWaveform,txGrid,rmcCfgOut] = lteRMCULTool(frc,[1;0;0;1]);

saScope = spectrumAnalyzer(SampleRate=rmcCfgOut.SamplingRate);
saScope(txWaveform)

Customized Uplink RMC configuration

Create a new customized parameter set by overriding selected values of an existing preset RMC to
define a full-band, 5MHz, PUSCH using 64QAM modulation, and 1/3 coding rate.

Begin with TS 36.104 Annex A, RMC A1-3, which matches this criteria but with QPSK modulation.

2 Functions

2-986

rmcOverride.RC = 'A1-3';
rmc = lteRMCUL(rmcOverride,1);
rmc.PUSCH

ans = struct with fields:
 Modulation: 'QPSK'
 NLayers: 1
 DynCyclicShift: 0
 NBundled: 0
 BetaACK: 2
 BetaCQI: 2
 BetaRI: 2
 NHARQProcesses: 8
 RVSeq: [0 2 3 1]
 RV: 0
 NTurboDecIts: 5
 OrthCover: 'On'
 PMI: 0
 PRBSet: [25x1 double]
 TargetCodeRate: 0.3333
 ActualCodeRate: [0.3111 0.3111 0.3111 0.3111 0.3111 0.3111 0.3111 ...]
 TrBlkSizes: [2216 2216 2216 2216 2216 2216 2216 2216 2216 2216]
 CodedTrBlkSizes: [7200 7200 7200 7200 7200 7200 7200 7200 7200 7200]

Override the PUSCH modulation. lteRMCUL returns recomputed PUSCH transport block sizes and
physical channel capacities to maintain the coding rate of R=1/3.

rmcOverride.PUSCH.Modulation = '64QAM';
rmc = lteRMCUL(rmcOverride,1);
rmc.PUSCH

ans = struct with fields:
 Modulation: '64QAM'
 NLayers: 1
 DynCyclicShift: 0
 NBundled: 0
 BetaACK: 2
 BetaCQI: 2
 BetaRI: 2
 NHARQProcesses: 8
 RVSeq: [0 2 3 1]
 RV: 0
 NTurboDecIts: 5
 OrthCover: 'On'
 PMI: 0
 PRBSet: [25x1 double]
 TargetCodeRate: 0.3333
 ActualCodeRate: [0.3378 0.3378 0.3378 0.3378 0.3378 0.3378 0.3378 ...]
 TrBlkSizes: [7224 7224 7224 7224 7224 7224 7224 7224 7224 7224]
 CodedTrBlkSizes: [21600 21600 21600 21600 21600 21600 21600 21600 ...]

 lteRMCULTool

2-987

Input Arguments
rc — Reference measurement channel
'A1-1' | 'A1-2' | 'A1-3' | 'A1-4' | 'A1-5' | 'A2-1' | 'A2-2' | 'A2-3' | 'A3-1' | 'A3-2' |
'A3-3' | 'A3-4' | 'A3-5' | 'A3-6' | 'A3-7' | 'A4-1' | 'A4-2' | 'A4-3' | 'A4-4' | 'A4-5' |
'A4-6' | 'A4-7' | 'A4-8' | 'A5-1' | 'A5-2' | 'A5-3' | 'A5-4' | 'A5-5' | 'A5-6' | 'A5-7' |
'A7-1' | 'A7-2' | 'A7-3' | 'A7-4' | 'A7-5' | 'A7-6' | 'A8-1' | 'A8-2' | 'A8-3' | 'A8-4' |
'A8-5' | 'A8-6' | 'A11-1' | 'A3-2-9RB' | 'A4-3-9RB'

Reference channel, specified as a character vector or string scalar. Use double quotes for string. This
argument identifies the reference measurement channel (RMC) number, as specified in TS 36.104 [2].
See “UL Reference Channel Options” on page 2-994 for a list of the default top-level configuration
associated with the available uplink reference channels.
Data Types: char | string

trdata — Information bits
column vector | cell array of one or two column vectors

Information bits, specified as a column vector or a cell array containing one or two column vectors of
bit values. Each vector contains the information bits stream to be coded across the duration of the
generation, which represents multiple concatenated transport blocks. Internally these vectors are
looped if the number of bits required across all subframes of the generation exceeds the length of the
vectors provided. Looping on the information bits allows you to enter a short pattern, such as
[1;0;0;1], that is repeated as the input to the transport coding. The TrBlkSizes matrix field of
rmccfgout.PUSCH defines the number of data bits taken from the information bit stream for each
subframe of generation.
Data Types: double | cell

duplexmode — Duplexing mode
'FDD' (default) | optional | 'TDD'

Duplexing mode, specified as 'FDD' or 'TDD' to indicate the frame structure type of the generated
waveform.
Data Types: char | string

totsubframes — Total number of subframes
10 (default) | optional | positive numeric scalar

Total number of subframes, specified as a numeric scalar. Optional. This argument specifies the total
number of subframes that form the resource grid.
Data Types: double

rmccfg — Reference channel configuration
structure

Reference channel configuration, specified as a structure. The structure defines any (or all) of the
fields or subfields. The reference configuration structure with default parameters can easily be
created using the lteRMCUL function. lteRMCUL generates the various FRC configuration structures,
as defined in TS 36.104 [2], Annex A.

You can specify rmccfg to include fields that are contained in the output structure, rmccfgout.

2 Functions

2-988

Data Types: struct

cqi — CQI information bits
numeric vector

CQI information bits, specified as a numeric vector. CQI stands for channel quality information. cqi
can be empty if these particular control information bits are not present in the transmission. cqi is
not treated as a data stream, and thus each subframe contains the same CQI information bits.
Data Types: double

ri — RI information bits
numeric vector

RI information bits, specified as a numeric vector. RI stands for rank indication. ri can be empty if
these particular control information bits are not present in the transmission. ri is not treated as a
data stream, and thus each subframe contains the same RI information bits.
Data Types: double

ack — ACK information bits
numeric vector

ACK information bits, specified as a numeric vector. ACK stands for acknowledgment in automatic
repeat request (ARQ) protocols. ack can be empty if these particular control information bits are not
present in the transmission. ack is not treated as a data stream, and thus each subframe contains the
same ACK information bits.
Data Types: double

Output Arguments
waveform — Generated RMC time-domain waveform
numeric matrix

Generated RMC time-domain waveform, returned as a T-by-P numeric matrix. T is the number of
time-domain samples and P is the number of antennas.

grid is a 3-D array of resource elements for the generated subframes across all configured antenna
ports, as described in “Represent Resource Grids”. rmccfgout is a structure containing information
about the SC-FDMA modulated waveform and RMC configuration parameters.
Data Types: double

grid — Populated resource grid
numeric 3-D array

Populated resource grid, returned as a numeric 3-D array of resource elements for several subframes
across all configured antenna ports, as described in “Represent Resource Grids”.

grid represents the populated resource grid for all the physical channels specified in TS 36.104 [2],
Annex A
Data Types: double
Complex Number Support: Yes

 lteRMCULTool

2-989

rmccfgout — Configuration parameters
structure

Configuration Parameters Structure

Configuration parameters, returned as a structure. rmccfgout contains the following fields.

Parameter
Field

Values Description

RC 'A1-1' (default), 'A1-2',
'A1-3', 'A1-4', 'A1-5',
'A2-1', 'A2-2', 'A2-3',
'A3-1', 'A3-2', 'A3-3',
'A3-4', 'A3-5', 'A3-6',
'A3-7', 'A4-1', 'A4-2',
'A4-3', 'A4-4', 'A4-5',
'A4-6', 'A4-7', 'A4-8',
'A5-1', 'A5-2', 'A5-3',
'A5-4', 'A5-5', 'A5-6',
'A5-7', 'A7-1', 'A7-2',
'A7-3', 'A7-4', 'A7-5',
'A7-6', 'A8-1', 'A8-2',
'A8-3', 'A8-4', 'A8-5',
'A8-6', 'A11-1',
'A3-2-9RB', 'A4-3-9RB'

Reference channel number

NULRB Scalar integer from 6 to 110 Number of uplink resource blocks. (NRB
UL)

NCellID Integer from 0 to 503 Physical layer cell identity
NFrame 0 (default), nonnegative scalar

integer
Frame number

NSubFrame 0 (default), nonnegative scalar
integer

Initial subframe number

CyclicPrefixU
L

'Normal' (default),
'Extended'

Cyclic prefix length

CyclicShift 0, 1, 2, 3, 4, 5, 6, 7 Cyclic shift. This argument yields nDMRS
(1) .

Shortened 0 (default), 1 Subframe shortened flag. If the function sets the
flag to 1, the last symbol of the subframe is not
used. Subframes with possible SRS transmission
require this flag to be set.

Hopping 'Off' (default), 'Group', or
'Sequence'

Hopping type

SeqGroup 0 (default), integer from 0 to 29 PUSCH sequence group assignment (ΔSS).
TotSubFrames 10 (default)

Positive scalar integer

Total number of subframes to generate

This argument specifies the total number of
subframes that form the resource grid.

2 Functions

2-990

Parameter
Field

Values Description

RNTI 1 (default)

Scalar integer

Radio network temporary identifier (RNTI) value
(16 bits)

NTxAnts 1, 2, 4 Number of transmission antennas.
Windowing Nonnegative scalar integer The number of time-domain samples over which

windowing and overlapping of SC-FDMA symbols
is applied

DuplexMode 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

It represents the frame structure type.
PUSCH Structure PUSCH transmission configuration
SRS Structure Sounding Reference Signal (SRS) configuration
SamplingRate Numeric scalar Carrier sampling rate in Hz, NSC / NSYM × 3.84e6,

where NSC is the number of subcarriers and NSYM
is the number of SC-FDMA symbols in a
subframe.

Nfft Scalar integer, typically one of
{128, 256, 512, 1024, 1536,
2048} for standard channel
bandwidths {'1.4MHz',
'3MHz', '5MHz', '10MHz',
'15MHz', '20MHz'},
respectively.

Number of FFT frequency bins

PUSCH Substructure

The substructure PUSCH relates to the physical channel configuration and contains these fields:

Parameter
Field

Values Description

Modulation 'QPSK', '16QAM', '64QAM', or
'256QAM'

Modulation format

NLayers 1, 2, 3, 4 Number of transmission layers.
DynCyclicShi
ft

0, 1, 2, 3, 4, 5, 6, 7 Cyclic shift for DM-RS (yields nDMRS
(2)).

NBundled 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 HARQ-ACK bundling scrambling sequence index
BetaACK Scalar integer Modulation and coding scheme (MCS) offset for

HARQ-ACK bits
BetaCQI Scalar integer Modulation and coding scheme (MCS) offset for

CQI and PMI bits

 lteRMCULTool

2-991

Parameter
Field

Values Description

BetaRI Scalar integer Modulation and coding scheme (MCS) offset for
RI bits

NHARQProcess
es

1, 2, 3, 4, 5, 6, 7, 8 Number of HARQ processes per component
carrier

RVSeq Numeric matrix Redundancy version (RV) indicator used by all
HARQ processes, returned as a numeric matrix.
RVSeq is a one- or two-row matrix for one or two
codewords, respectively. The number of columns
in RVSeq equals the number of transmissions of
the transport blocks associated with a HARQ
process. The RV sequence specified in each
column is applied to the transmission of the
transport blocks. If RVSeq is a scalar (or column
vector in the case of two codewords), then there
is a single initial transmission of each block with
no retransmissions. If RVSeq is a row vector in a
two-codeword transmission, then the same RV
sequence is applied to both codewords.

RV Numeric matrix Redundancy version (RV) indicator in initial
subframe, returned as a numeric matrix. This
argument is a one- or two-column vector that
specifies the redundancy version for one or two
codewords used in the initial subframe number,
NSubframe. This parameter field is only for
informational purposes and is read-only.

NTurboDecIts Positive scalar integer Number of turbo decoder iteration cycles
OrthCover 'Off' (default), 'On' Orthogonal cover sequence flag.

Applies ('On'), or does not apply ('Off'),
orthogonal cover sequence w (Activate-DMRS-
with OCC).

PMI Integer from 0 to 23 Scalar precoder matrix indication (PMI) to be
used during precoding

PRBSet Integer matrix Physical resource block set of indices, returned
as an integer matrix. This argument is a 1- or 2-
column matrix that contains the 0-based physical
resource block indices (PRBs) corresponding to
the resource allocations for this PUSCH.

TargetCodeRa
te

Numeric scalar or vector Target code rates for each subframe in a frame.
Used for calculating the transport block sizes
according to TS 36.101 [1], Annex A.2.1.2.

If TargetCodeRate is not provided and
TrBlkSizes is provided at the input,
TargetCodeRate == ActualCodeRate.

2 Functions

2-992

Parameter
Field

Values Description

ActualCodeRa
te

Numeric vector Actual code rates for each subframe in a frame.
The maximum actual code rate is 0.93. This
parameter field is only for informational purposes
and is read-only.

TrBlkSizes Numeric vector Transport block sizes for each subframe in a
frame

CodedTrBlkSi
zes

Numeric vector Coded transport block sizes for each a subframe
in a frame, returned as a numeric vector. This
parameter field is only for informational purposes
and is read-only.

HARQProcessS
equence

1-by-LHARQ_Seq integer vector. One-based HARQ process indices for the internal
HARQ scheduling sequence, based on same
transport block size in all active subframes.

See footnote.
1 When creating the HARQ process sequence, TTI bundling is considered. The length of the HARQ

process sequence,
LHARQ_Seq = 10 × lcm(NHARQProcesses × ttiPerBundle,sum(activesfs)) / sum(activesfs). The
number of TTI per bundle, ttiPerBundle = 4. The sum(activesfs) is the number of active
subframes. For FDD, all subframes are active and for TDD, all uplink subframes are active. The
uplink supports NHARQProcesses allowed by the standard and also the transport block sizes
are the same for all the active subframes.

SRS Substructure

The substructure SRS contains these fields:

Parameter
Field

Values Description

NTxAnts 1 (default), 2, 4 Number of transmission antennas.
BWConfig 0, 1, 2, 3, 4, 5, 6, 7 Cell-specific SRS Bandwidth Configuration value

(CSRS)
BW 0, 1, 2, 3 UE-specific SRS Bandwidth value (BSRS)
ConfigIdx Integer from 0 to 644 Configuration index (ISRS) for UE-specific

periodicity (TSRS) and subframe offset (Toffset).
TxComb 0 or 1 Transmission comb. Controls SRS positions; SRS

is transmitted in 6 carriers per resource block on
odd (1) and even (0) resource indices.

HoppingBW 0, 1, 2, 3 SRS Frequency hopping configuration index (bhop)
FreqPosition Integer from 0 to 23 Frequency domain position (nRRC)
CyclicShift 0 (default), integer from 0 to 7 UE-specific cyclic shift (nSRS

cs)

SeqGroup 0 (default), integer from 0 to 29 SRS sequence group number (u)
SeqIdx 0 or 1 Base sequence number (v)

 lteRMCULTool

2-993

Parameter
Field

Values Description

SubframeConf
ig

Integer from 0 to 15 Sounding reference signal (SRS) subframe
configuration

The following fields are present only when DuplexMode is set to 'TDD'.
 
NF4RachPream
bles

0, 1, 2, 3, 4, 5, 6 Number of RACH preamble frequency resources
of Format 4 in UpPTS

 OffsetIdx 0 or 1 Choice of SRS Subframe Offset in the case of 2
ms SRS periodicity. This parameter indexes the
two SRS Subframe Offset entries in the row
specified by the ConfigIdx parameter in table
8.2-2 of TS 36.213 for the SRS Configuration
Index.

More About
UL Reference Channel Options

Initialization choices available for the uplink reference channel and associated top-level configuration
defaults include:

2 Functions

2-994

Reference channels Reference channels
(continued)

Reference channels
(continued)

A1-1 (6 RB, QPSK, R=1/3)

A1-2 (15 RB, QPSK,
R=1/3)

A1-3 (25 RB, QPSK,
R=1/3)

A1-4 (3 RB, QPSK, R=1/3)

A1-5 (9 RB, QPSK, R=1/3)

A2-1 (6 RB, 16QAM,
R=2/3)

A2-2 (15 RB, 16QAM,
R=2/3)

A2-3 (25 RB, 16QAM,
R=2/3)

A3-1 (1 RB, QPSK, R=1/3)

A3-2 (6 RB, QPSK, R=1/3)

A3-3 (15 RB, QPSK,
R=1/3)

A3-4 (25 RB, QPSK,
R=1/3)

A3-5 (50 RB, QPSK,
R=1/3)

A3-6 (75 RB, QPSK,
R=1/3)

A3-7 (100 RB, QPSK,
R=1/3)

A4-1 (1 RB, 16QAM,
R=3/4)

A4-2 (1 RB, 16QAM,
R=3/4)

A4-3 (6 RB, 16QAM,
R=3/4)

A4-4 (15 RB, 16QAM,
R=3/4)

A4-5 (25 RB, 16QAM,
R=3/4)

A4-6 (50 RB, 16QAM,
R=3/4)

A4-7 (75 RB, 16QAM,
R=3/4)

A4-8 (100 RB, 16QAM,
R=3/4)

A5-1 (1 RB, 64QAM,
R=5/6)

A5-2 (6 RB, 64QAM,
R=5/6)

A5-3 (15RB, 64QAM,
R=5/6)

A5-4 (25 RB, 64QAM,
R=5/6)

A5-5 (50 RB, 64QAM,
R=5/6)

A5-6 (75 RB, 64QAM,
R=5/6)

A5-7 (100 RB, 64QAM,
R=5/6)

A7-1 (3 RB, 16QAM,
R=3/4)

A7-2 (6 RB, 16QAM,
R=3/4)

A7-3 (12 RB, 16QAM,
R=3/4)

A7-4 (25 RB, 16QAM,
R=3/4)

A7-5 (25 RB, 16QAM,
R=3/4)

A7-6 (25 RB, 16QAM,
R=3/4)

A8-1 (3 RB, QPSK, R=1/3)

A8-2 (6 RB, QPSK, R=1/3)

A8-3 (12 RB, QPSK,
R=1/3)

A8-4 (25 RB, QPSK,
R=1/3)

A8-5 (25 RB, QPSK,
R=1/3)

A8-6 (25 RB, QPSK,
R=1/3)

A11-1 (3 RB, QPSK,
R=11/27)

A17-1 (6 RB, 256QAM,
R=5/6)

A17-2 (15 RB, 256QAM,
R=5/6)

A17-3 (25 RB, 256QAM,
R=5/6)

A17-4 (50 RB, 256QAM,
R=5/6)

A17-5(75 RB, 256QAM,
R=5/6)

A17-6 (100 RB, 256QAM,
R=5/6)

A3-2-9RB (9 RB, QPSK,
R=1/3)

A4-3-9RB (9 RB, 16QAM,
R=3/4)

 lteRMCULTool

2-995

The fields in the output configuration structure, rmccfgout, are initialized in accordance with the
reference channels defined in TS 36.104, Annex A.

• 'A3-2-9RB' and 'A4-3-9RB' are custom RMC configured for non-standard bandwidth but with
the same code rate as the standardized version.

• 'A11-1' enables TTI bundling and the corresponding HARQ pattern (enhanced HARQ pattern for
FDD).

Version History
Introduced in R2014a

This function now opens the LTE Waveform Generator app
Behavior changed in R2019b

In previous releases, the input-free syntaxes of this function opened the LTE Uplink RMC
Generator app. Starting in R2019b, input-free calls to this function open the LTE Waveform
Generator app for an uplink RMC waveform.

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.104. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio
Transmission and Reception.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

[3] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel
coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
Apps
LTE Waveform Generator

Functions
lteRMCUL | lteRMCDLTool | lteTestModelTool

2 Functions

2-996

https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org

lteRateMatchConvolutional
Convolutional rate matching

Syntax
out = lteRateMatchConvolutional(in,outlen)

Description
out = lteRateMatchConvolutional(in,outlen) rate matches the input data vector, in, to
create an output vector, out, of length outlen. This function includes the stages of subblock
interleaving, bit collection and bit selection, and pruning defined for convolutionally encoded data.
For more information, see TS 36.212 [1], Section 5.1.4.2. The input data is assumed to comprise a
concatenation of 3 subblocks, each of which is then interleaved prior to virtual circular buffer
creation. No special processing is given to input filler bits.

Examples

Perform Convolutional Rate Matching

Perform convolutional rate matching of a coded block vector of length 132, with the output length set
to 50.

rateMatched = lteRateMatchConvolutional(ones(132,1),50);
size(rateMatched)

ans = 1×2

 50 1

Input Arguments
in — Input data
numeric column vector

Input data, specified as a column vector. Input data is assumed to comprise a concatenation of 3
subblocks each of which is then interleaved prior to virtual circular buffer creation. No special
processing is given to input filler bits.
Example: ones(5,1)
Data Types: double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

outlen — Output vector length
nonnegative scalar integer

Output vector length, specified as a nonnegative scalar integer.
Data Types: double

 lteRateMatchConvolutional

2-997

Output Arguments
out — Rate matched output
numeric column vector

Rate matched output, returned as numeric column vector.
Data Types: double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteRateRecoverConvolutional | lteConvolutionalEncode | lteBCH | lteDCIEncode |
lteRateMatchTurbo

2 Functions

2-998

https://www.3gpp.org

lteRateMatchTurbo
Turbo rate matching

Syntax
out = lteRateMatchTurbo(in,outlen,rv)
out = lteRateMatchTurbo(in,outlen,rv,chs)

Description
out = lteRateMatchTurbo(in,outlen,rv) performs rate matching of input data in to create
the output vector out with length outlen. The function performs subblock interleaving, bit
collection and bit selection, and pruning defined for turbo encoded data. For more information, see
Section 5.1.4.1 of [1].

The specified rv controls the redundancy version of the output. The bit selection stage assumes a
quadrature phase-shift keying (QPSK) transmission mapped onto a single layer and no restriction on
the number of soft bits, as in an uplink shared channel (UL-SCH).

out = lteRateMatchTurbo(in,outlen,rv,chs) allows additional control of the bit selection
stage through selection of parameters for the soft buffer size and physical channel configuration in
the chs input structure.

Examples

Perform Turbo Rate Matching

Rate match an input vector of 132 bits to a length of 100 with the RV parameter set to 0.

codedBlklen = 132;
invec = ones(codedBlklen,1);
outlen = 100;
rv = 0;

rmatched = lteRateMatchTurbo(invec,outlen,rv);
size(rmatched)

ans = 1×2

 100 1

Input Arguments
in — Input data
vector | cell array of vectors

Input data, specified as a vector or a cell array of vectors, assumed to be code blocks.

 lteRateMatchTurbo

2-999

If you specify this input as a cell array, the function rate matches each vector separately and
concatenates the results a single output vector out. The length of each nonempty input vector must
be an integer multiple of 3.

The function treats negative values in this input as <NULL> filler buts inserted during code block
segmentation, and does not process them during rate matching.
Example: ones(132,1)
Data Types: double | cell

outlen — Output vector length
nonnegative integer

Output vector length, specified as a nonnegative integer.
Data Types: double

rv — Redundancy version control
0 | 1 | 2 | 3

Redundancy version control, specified as 0, 1, 2, or 3.
Data Types: double

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure. It allows additional control of the bit
selection stage through parameters for the soft buffer size and physical channel configuration.

For downlink turbo coded transport channels, you can control the soft buffer dimensions by including
either NIR or the combined set of NSoftbits, TxScheme, and DuplexMode. If DuplexMode is
'TDD', also specify TDDConfig. If included, NIR, takes precedence for controlling the soft buffer
dimensions. When neither of these optional chs fields (NIR or the set including NSoftbits) are
present, the function assumes an uplink turbo coded transport channel and places no limit on the
number of soft bits.

chs can contain the following fields.

Modulation — Modulation scheme
'QPSK' | '16QAM' | '64QAM' | '256QAM' | '1024QAM'

Modulation scheme, specified as 'QPSK', '16QAM', '64QAM', '256QAM', or '1024QAM'.
Data Types: char | string

NLayers — Number of transmission layers for transport block
1 (default) | positive integer

Number of transmission layers for transport block, specified as a positive integer in the interval [1,
8]. Not necessary if TxScheme is set to 'Port0', 'TxDiversity', or 'Port5'.
Data Types: double

TxScheme — Transmission scheme
'Port0' (default) | 'TxDiversity' | 'CDD' | 'SpatialMux' | 'MultiUser' | 'Port5' |
'Port7-8' | 'Port8' | 'Port7-14' | optional

2 Functions

2-1000

PDSCH transmission scheme, specified as one of the following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay diversity scheme
'SpatialMux' Closed loop spatial multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7, when NLayers = 1. Dual

layer transmission, ports 7 and 8, when NLayers = 2.
'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer transmission, ports 7–14

Data Types: char | string

NIR — Soft buffer size for entire input transport block
nonnegative integer

Soft buffer size for entire input transport block, specified as a nonnegative integer.
Data Types: double

NSoftbits — Total number of soft channel bits
nonnegative integer

Total number of soft channel bits, specified as a nonnegative integer.
Data Types: double

DuplexMode — Duplex mode
'FDD' (default) | optional | 'TDD'

Duplex mode, specified as 'FDD' or 'TDD'.
Data Types: char | string

TDDConfig — Uplink or downlink configuration
0 (default) | optional | nonnegative integer

Uplink or downlink configuration, specified as a nonnegative scalar integer in the interval [0, 6].
Optional. Only required if DuplexMode is set to 'TDD'.
Data Types: double

Data Types: struct

Output Arguments
out — Turbo rate matched output
numeric column vector

Turbo rate matched output, returned as a numeric column vector.

 lteRateMatchTurbo

2-1001

Data Types: double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

Version History
Introduced in R2013b

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteRateRecoverTurbo | lteTurboEncode | lteDLSCH | lteULSCH |
lteRateMatchConvolutional

2 Functions

2-1002

https://www.3gpp.org

lteRateRecoverConvolutional
Convolutional rate matching recovery

Syntax
out = lteRateRecoverConvolutional(in,outlen)

Description
out = lteRateRecoverConvolutional(in,outlen) performs rate recovery of the input data
vector, in, to create an output vector, out, of length outlen. This function is the inverse of the rate
matching operation for convolutionally encoded data. For more information, see
lteRateMatchConvolutional. This function includes the inverses of the subblock interleaving, bit
collection and bit selection, and pruning stages. This function also implements additive soft
combining of the input data elements in the case where repetition occurred during the original rate
matching.

Examples

Perform Convolutional Rate Recovery

Perform rate recovery after rate matching. The returned vector has the same length as the input to
rate matching.

codedBlklen = 132;
rateMatched = lteRateMatchConvolutional(ones(codedBlklen ,1),50);
rateRecovered = lteRateRecoverConvolutional(rateMatched,codedBlklen);
size(rateRecovered)

ans = 1×2

 132 1

The output variable, rateRecovered, is a vector of the same length as the input to rate matching.

Input Arguments
in — Input data
numeric column vector

Input data, specified as a numeric column vector.
Data Types: double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

outlen — Output vector length
nonnegative scalar integer

Output vector length, specified as a nonnegative scalar integer.

 lteRateRecoverConvolutional

2-1003

Example: 50
Data Types: double

Output Arguments
out — Rate recovered output
numeric column vector

Rate recovered output, returned as a numeric column vector.
Data Types: double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

Version History
Introduced in R2014a

See Also
lteRateMatchConvolutional | lteConvolutionalDecode | lteBCHDecode | lteDCIDecode |
lteRateRecoverTurbo

2 Functions

2-1004

lteRateRecoverTurbo
Turbo rate recovery

Syntax
out = lteRateRecoverTurbo(in,trblklen,rv)
out = lteRateRecoverTurbo(in,trblklen,rv,chs,cbsbuffers)

Description
out = lteRateRecoverTurbo(in,trblklen,rv) performs rate recovery of the input vector, in,
creating a cell array of vectors, out. out represents the turbo encoded code blocks before
concatenation. This function is the inverse of the rate matching operation for turbo encoded data. For
more information, see lteRateMatchTurbo and TS 36.212, Section 5.1.4.1 [1]. This function
includes the inverses of the subblock interleaving, bit collection, and bit selection and pruning stages.
The dimensions of out are deduced from trblklen, which represents the length of the original
encoded transport block. This parameterization is required to recover the original number of code
blocks, their encoded lengths, and the locations of any filler bits. The parameter rv controls the
redundancy version of the output. The bit selection recovery assumes a QPSK transmission mapped
onto a single layer. It also assumes no restriction on the number of soft bits, as in an uplink UL-SCH
transport channel.

out = lteRateRecoverTurbo(in,trblklen,rv,chs,cbsbuffers) specifies two additional
inputs. The chs input structure allows additional control of the bit selection recovery stage through
parameters for the soft buffer size and physical channel configuration. The cbsbuffers input allows
combining with pre-existing soft information for the HARQ process.

Examples

Perform Turbo Rate Recovery

Create a codeword from a transport block then rate recover the codeword back into a set of coded
code blocks. The transport block is originally segmented into a single code block so the
rateRecovered output variable is a cell array containing a single turbo coded code block.

Define the transport block length prior to CRC and turbo coding, code word length, redundancy
version, and CRC polynomial. Use these parameters to perform coding operations.

trBlkLen = 135;
codewordLen = 450;
rv = 0;
crcPoly = '24A';

trblockwithcrc = lteCRCEncode(zeros(trBlkLen,1),crcPoly);
codeblocks = lteCodeBlockSegment(trblockwithcrc);
turbocodedblocks = lteTurboEncode(codeblocks);
codeword = lteRateMatchTurbo(turbocodedblocks,codewordLen,rv);
rateRecovered = lteRateRecoverTurbo(codeword,trBlkLen,rv)

 lteRateRecoverTurbo

2-1005

rateRecovered = 1x1 cell array
 {492x1 int8}

rateRecovered is a cell array with a single coded code block of size indicated above.

Further turbo decoding, desegmentation and CRC decoding of rateRecovered would result in a
decoded transport block of length equal to the original transport block. Note that the trBlkLen
parameter of the lteRateRecoverTurbo function is the transport block length before CRC and
turbo coding, not the length after turbo coding or rate matching.

Input Arguments
in — Input data
numeric vector

Input data, specified as a numeric vector.
Data Types: double

trblklen — Length of original encoded transport block before encoding
numeric value

Length of the original encoded transport block before encoding, specified as a numeric value.
Data Types: double

rv — Redundancy version used to recover data
0 | 1 | 2 | 3

Redundancy version used to recover data, specified as 0, 1, 2, or 3.
Data Types: double

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure. It allows additional control of the bit
selection stage through parameters for the soft buffer size and physical channel configuration.

For downlink turbo coded transport channels, you can control the soft buffer dimensions by including
either NIR or the combined set of NSoftbits, TxScheme, and DuplexMode. If DuplexMode is
'TDD', also specify TDDConfig. If included, NIR, takes precedence for controlling the soft buffer
dimensions. When neither of these optional chs fields (NIR or the set including NSoftbits) are
present, the function assumes an uplink turbo coded transport channel and places no limit on the
number of soft bits.

chs can contain the following fields.

Modulation — Modulation scheme
'QPSK' | '16QAM' | '64QAM' | '256QAM' | '1024QAM'

Modulation scheme, specified as 'QPSK', '16QAM', '64QAM', '256QAM', or '1024QAM'.
Data Types: char | string

2 Functions

2-1006

NLayers — Number of transmission layers for transport block
1 (default) | 2 | 3 | 4

Number of transmission layers for transport block, specified as 1 (default), 2, 3, or 4. Not necessary if
TxScheme is set to 'Port0', 'TxDiversity', or 'Port5'.
Data Types: double

TxScheme — Transmission scheme
'Port0' (default) | optional | 'TxDiversity' | 'CDD' | 'SpatialMux' | 'MultiUser' | 'Port5'
| 'Port7-8' | 'Port8' | 'Port7-14'

PDSCH transmission scheme, specified as one of the following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay diversity scheme
'SpatialMux' Closed loop spatial multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port 7, when NLayers = 1. Dual

layer transmission, ports 7 and 8, when NLayers = 2.
'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer transmission, ports 7–14

Data Types: char | string

NIR — Soft buffer size for entire input transport block
nonnegative integer

Soft buffer size for entire input transport block, specified as a nonnegative integer.
Data Types: double

NSoftbits — Total number of soft channel bits
nonnegative integer

Total number of soft channel bits, specified as a nonnegative integer.
Data Types: double

DuplexMode — Duplex mode
'FDD' (default) | optional | 'TDD'

Duplex mode, specified as 'FDD' or 'TDD'.
Data Types: char | string

TDDConfig — Uplink or downlink configuration
0 (default) | optional | nonnegative scalar integer (0...6)

 lteRateRecoverTurbo

2-1007

Uplink or downlink configuration, specified as a nonnegative scalar integer from 0 through 6.
Optional. Only required if DuplexMode is set to 'TDD'.
Data Types: double

Data Types: struct

cbsbuffers — Code block soft information buffers
cell array of numeric vectors | empty cell array | cell array of numeric scalar elements

Code block soft information buffers, specified as a cell array. This input argument represents any pre-
existing code block-oriented soft information to be additively combined with the recovered turbo
encoded code blocks. It allows the direct soft combining of consecutive HARQ retransmissions and is
typically returned by a previous call to the function to recover an earlier transmission of the same
transport block. The cbsbuffers cell array either:

• dimensionally matches the output code blocks, out
• can be empty to represent the processing of an initial HARQ transmission
• or can be scalar to add a constant offset to all the deinterleaved soft data in a code block.

Data Types: cell

Output Arguments
out — Turbo encoded code blocks before concatenation
cell array of numeric column vectors

Turbo encoded code blocks before concatenation, returned as a cell array of numeric column vectors.
The dimensions of out are deduced from trblklen, which represents the length of the original
encoded transport block.
Data Types: cell

Version History
Introduced in R2013b

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteRateMatchTurbo | lteTurboDecode | lteDLSCHInfo | lteULSCHInfo | lteDLSCHDecode |
lteULSCHDecode | lteRateRecoverConvolutional

2 Functions

2-1008

https://www.3gpp.org

lteResourceGrid
Subframe resource array

Syntax
grid = lteResourceGrid(cfg)
grid = lteResourceGrid(cfg,p)

Description
grid = lteResourceGrid(cfg) returns an empty resource array generated from the
configuration settings structure, cfg. To create a resource array specifically for downlink or uplink,
use lteDLResourceGrid or lteULResourceGrid, respectively.

For more information on the resource grid and the multidimensional array used to represent the
resource elements for one subframe across all configured antenna ports, see “Represent Resource
Grids”.

grid = lteResourceGrid(cfg,p) returns a resource array, where p directly specifies the number
of antenna planes in the array.

Examples

Create Downlink Subframe Resource Array

Create an empty resource array that represents the downlink resource elements for 10MHz
bandwidth, one subframe, and two antennas.

griddl = lteResourceGrid(struct('NDLRB',50,'CellRefP',2,'CyclicPrefix','Normal'));
size(griddl)

ans = 1×3

 600 14 2

Create Uplink Subframe Resource Array

Create an empty resource array that represents the uplink resource elements for 10MHz bandwidth,
one subframe, and two antennas.

gridul = lteResourceGrid(struct('NULRB',50,'NTxAnts',2,'CyclicPrefixUL','Normal'));
size(gridul)

ans = 1×3

 600 14 2

 lteResourceGrid

2-1009

Create Downlink Subframe Resource Array Using Optional Antenna Plane Input

Create an empty resource array that represents the downlink resource elements for 20 MHz
bandwidth, one subframe, extended cyclic prefix, and four antennas planes.

cfg = struct('NDLRB',100,'CyclicPrefix','Extended');
p = 4;
griddl = lteResourceGrid(cfg,p);
size(griddl)

ans = 1×3

 1200 12 4

Input Arguments
cfg — Configuration settings
scalar structure

Configuration settings, specified as a scalar structure. To create a downlink resource array, cfg must
contain the NDLRB and CellRefP fields. To create an uplink resource array, cfg must contain the
NULRB field. The presence of field NDLRB takes precedence over the field NULRB.

For the downlink, these fields are applicable.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource blocks
(NRB

DL)
CellRefP Required 1, 2, 4 Number of cell-specific reference

signal (CRS) antenna ports
CyclicPrefix Optional 'Normal' (default),

'Extended'
Cyclic prefix length

For the uplink, these fields are applicable.

Parameter Field Required or
Optional

Values Description

NULRB Required scalar integer from 6 to 110 Number of uplink resource blocks.
(NRB

UL)
CyclicPrefixUL Optional 'Normal' (default),

'Extended'
Current cyclic prefix length

NTxAnts Optional 1 (default), 2, 4 Number of transmission antennas.

p — Number of antenna planes in the output array
nonnegative scalar integer

2 Functions

2-1010

Number of antenna planes in the output array, specified as a nonnegative scalar integer.
Data Types: double

Output Arguments
grid — Empty multidimensional resource grid
3-D numeric array

Empty multidimensional resource grid, returned as an N-by-M-by-P numeric array. N is the number of
subcarriers (12×NULRB). M is the number of OFDM or SC-FDMA symbols in a subframe, 14 for
normal cyclic prefix and 12 for extended cyclic prefix. P is the number of transmit antenna ports,
cfg.CellRefP in the downlink and cfg.NTxAnts in the uplink.
Data Types: double

Version History
Introduced in R2014a

See Also
lteResourceGridSize | lteDLResourceGrid | lteSLResourceGrid | lteULResourceGrid |
lteOFDMModulate | lteSCFDMAModulate

 lteResourceGrid

2-1011

lteResourceGridSize
Size of subframe resource array

Syntax
d = lteResourceGridSize(cfg)
d = lteResourceGridSize(cfg,p)

Description
d = lteResourceGridSize(cfg) returns a three-element row vector of dimension lengths for the
resource array generated from the settings structure, cfg. To get the dimension lengths specifically
for a downlink or uplink resource array, use the function lteDLResourceGridSize or
lteULResourceGridSize respectively. For more information on the resource grid and the
multidimensional array used to represent the resource elements for one subframe across all
configured antenna ports, see “Represent Resource Grids”.

d = lteResourceGridSize(cfg,p) returns a three-element row vector, where p directly specifies
the number of antenna planes in the array.

Examples

Get Downlink Subframe Resource Array Size

Get the downlink subframe resource array size from a downlink configuration structure. Then, use
the returned vector to directly create a MATLAB™ array.

cfgdl = struct('NDLRB',6,'CellRefP',2,'CyclicPrefix','Normal');
griddl = zeros(lteResourceGridSize(cfgdl));
size(griddl)

ans = 1×3

 72 14 2

The output grid, griddl, is a resource array. This resource array could be obtained in a similar
manner using the lteResourceGrid function.

Get Uplink Subframe Resource Array Size

Configure UE-specific settings.

cfgul = struct(NULRB=6,NTxAnts=2,CyclicPrefixUL="Normal");

Get the uplink subframe resource array size.

d = lteResourceGridSize(cfgul);

2 Functions

2-1012

Generate an uplink resource array of the appropriate size.

gridul = zeros(d);

Get Uplink Subframe Resource Array Size for Specified Antenna Planes

Configure UE-specific settings.

ue = struct(NULRB=25,CyclicPrefixUL="Normal");

Get the uplink subframe resource array size for the specified configuration and four antenna planes.

p = 4;
d = lteResourceGridSize(ue,p);

Create a resource array of the appropriate size.

gridul = zeros(d);

Input Arguments
cfg — Configuration settings
scalar structure

Configuration settings, specified as a scalar structure. To create a downlink resource array, cfg must
contain the NDLRB and CellRefP fields. To create an uplink resource array, cfg must contain the
NULRB field. If both NDLRB and NULRB fields are defined, the presence of the field NDLRB takes
precedence over the field NULRB.

For the downlink, these fields are applicable.

Parameter Field Required or
Optional

Values Description

NDLRB Required Scalar integer from 6 to 110 Number of downlink resource blocks
(NRB

DL)
CellRefP Required 1, 2, 4 Number of cell-specific reference

signal (CRS) antenna ports
CyclicPrefix Optional 'Normal' (default),

'Extended'
Cyclic prefix length

For the uplink, these fields are applicable.

Parameter Field Required or
Optional

Values Description

NULRB Required scalar integer from 6 to 110 Number of uplink resource blocks.
(NRB

UL)
CyclicPrefixUL Optional 'Normal' (default),

'Extended'
Current cyclic prefix length

 lteResourceGridSize

2-1013

Parameter Field Required or
Optional

Values Description

NTxAnts Optional 1 (default), 2, 4 Number of transmission antennas.

p — Number of antenna planes
positive scalar integer

Number of antenna planes, specified as a positive scalar integer.
Data Types: double

Output Arguments
d — Dimension lengths of resource grid
numeric vector

Dimension lengths, returned as a three-element row vector [N M P]. N is the number of subcarriers
(12×NULRB). M is the number of OFDM or SC-FDMA symbols in a subframe, 14 for normal cyclic
prefix and 12 for extended cyclic prefix. P is the number of transmit antenna ports, cfg.CellRefP in
the downlink and cfg.NTxAnts in the uplink.
Data Types: double

Version History
Introduced in R2014a

See Also
lteResourceGrid | lteDLResourceGridSize | lteULResourceGridSize

2 Functions

2-1014

lteSCFDMADemodulate
Demodulate using SC-FDMA

Syntax
grid = lteSCFDMADemodulate(ue,waveform)
grid = lteSCFDMADemodulate(ue,waveform,cpfraction)

grid = lteSCFDMADemodulate(ue,chs,waveform)
grid = lteSCFDMADemodulate(ue,chs,waveform,cpfraction)

Description
grid = lteSCFDMADemodulate(ue,waveform) returns the resource array grid by performing
single-carrier frequency-division multiple access (SC-FDMA) demodulation of waveform, the time-
domain waveform, for user-equipment-specific (UE-specific) settings ue. You can use this syntax for
LTE demodulation or NB-IoT multitone demodulation, depending on the fields you specify in ue.

The demodulation calculates one fast Fourier transform (FFT) operation per received SC-FDMA
symbol. It recovers the received subcarrier values, which are then used to construct each column of
grid. The FFT is positioned partway through the cyclic prefix to allow for a degree of channel delay
spread while avoiding the overlap between adjacent orthogonal frequency-division multiplexing
(OFDM) symbols. The input FFT is also shifted by half a subcarrier. The particular position of the FFT
chosen here avoids the SC-FDMA symbol overlapping used in the lteSCFDMAModulate function.
Since the FFT is performed away from the original zero-phase point on the transmitted subcarriers, a
phase correction is applied to each subcarrier after the FFT.

grid = lteSCFDMADemodulate(ue,waveform,cpfraction) performs SC-FDMA demodulation
of the input waveform with the specified position of demodulation with respect to cyclic prefix
cpfraction.

grid = lteSCFDMADemodulate(ue,chs,waveform) performs SC-FDMA demodulation of the
input waveform and the narrowband PUSCH (NPUSCH) information specified by chs. You can use
this syntax for LTE, single-tone NB-IoT, and multitone NB-IoT configurations. When you use this
syntax without configuring ue for NB-IoT, the function ignores chs.

grid = lteSCFDMADemodulate(ue,chs,waveform,cpfraction) performs SC-FDMA
demodulation of the waveform for the specified NPUSCH information and demodulation position. You
can use this syntax for LTE, single-tone NB-IoT, and multitone NB-IoT configurations. When you use
this syntax without configuring ue for NB-IoT, the function ignores chs.

Examples

Perform SC-FDMA Demodulation

Perform SC-FDMA demodulation of uplink fixed reference channel (FRC) A3-2.

Initialize UE-specific settings as the fixed reference channel A3-2 by specifying the relevant
configuration in the lteRMCUL function.

 lteSCFDMADemodulate

2-1015

ue = lteRMCUL('A3-2');

Specify the waveform to be demodulated by using the lteRMCULTool function. Get the resource
array by performing SC-FDMA demodulation.

waveform = lteRMCULTool(ue,randi([0,1],ue.PUSCH.TrBlkSizes(1),1));
grid = lteSCFDMADemodulate(ue,waveform);

Perform NB-IoT Uplink Single-Tone SC-FDMA Demodulation

Perform NB-IoT uplink single-tone SC-FDMA demodulation with 3.75-kHz subcarrier spacing.

Specify the number of slots for waveform generation.

NSlots = 10;

Initialize the required cell-wide settings by specifying the NB-IoT subcarrier spacing as a field in the
structure ue.

ue.NBULSubcarrierSpacing = '3.75kHz';

Specify the zero-based NB-IoT subcarrier indices field as a scalar, indicating single-tone SC-FDMA
demodulation. This configuration requires specification of the modulation type, number of slots per
resource unit (RU), number of RUs, and number of repetitions for a codeword.

chs.NBULSubcarrierSet = 41; % Indicate single-tone demodulation
chs.Modulation = 'BPSK'; % Specify modulation type as BPSK
chs.NULSlots = 4; % Set four slots per RU
chs.NRU = 1; % Specify one RU
chs.NRep = 4; % Repeat codeword four times

Set the input grid to start from the third time slot in an NPUSCH bundle.

chs.SlotIdx = 2;

Specify a random array of bits and map the values to BPSK-modulated symbols by using the
lteSymbolModulate function. Perform uplink precoding on the modulated symbols by using the
lteULPrecode function.

bits = randi([0,1],7*NSlots,1);
symbols = lteSymbolModulate(bits,chs.Modulation);
precodedSymbols = lteULPrecode(symbols,1,'Subcarrier');

Initialize the resource element (RE) grid using the precoded symbols.

reGrid = zeros(48,7*NSlots);
NSC = length(chs.NBULSubcarrierSet);
reGrid(chs.NBULSubcarrierSet+1,:) = reshape(precodedSymbols,NSC,[]);

Generate the time-domain waveform for demodulation by using the lteSCFDMAModulate function.

[waveform,info] = lteSCFDMAModulate(ue,chs,reGrid);

Get the resource array by performing SC-FDMA demodulation on the waveform.

grid = lteSCFDMADemodulate(ue,chs,waveform);

2 Functions

2-1016

Perform NB-IoT Uplink Multitone SC-FDMA Demodulation

Perform NB-IoT uplink multitone SC-FDMA demodulation with 15 kHz subcarrier spacing for a
chosen cyclic prefix fraction.

Specify the number of slots for waveform generation.

NSlots = 10;

Initialize the required cell-wide settings by specifying the NB-IoT subcarrier spacing as a field in the
structure ue.

ue.NBULSubcarrierSpacing = '15kHz';

Specify the zero-based NB-IoT subcarrier indices field as a vector, indicating multitone SC-FDMA
demodulation, and the modulation type.

chs.NBULSubcarrierSet = 0:2; % Indicate multitone demodulation
chs.Modulation = 'QPSK'; % Specify modulation type as QPSK

Specify a random array of bits and map the values to QPSK-modulated symbols by using the
lteSymbolModulate function. Perform uplink precoding on the modulated symbols by using the
lteULPrecode function.

bits = randi([0,1],7*NSlots*2*length(chs.NBULSubcarrierSet),1);
symbols = lteSymbolModulate(bits,chs.Modulation);
precodedSymbols = lteULPrecode(symbols,length(chs.NBULSubcarrierSet),'Subcarrier');

Initialize the RE grid using the precoded symbols.

grid = repmat(lteNBResourceGrid(ue),1,NSlots);
NSC = length(chs.NBULSubcarrierSet);
grid(chs.NBULSubcarrierSet+1,:) = reshape(precodedSymbols,NSC,[]);

Generate the time-domain waveform for demodulation by using the lteSCFDMAModulate function.

[waveform,info] = lteSCFDMAModulate(ue,chs,grid);

Specify the cyclic prefix fraction and get the resource array by performing SC-FDMA demodulation
on the waveform.

cpfraction = 0.3;
grid = lteSCFDMADemodulate(ue,chs,waveform,cpfraction);

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure. The fields you specify in ue and chs determine whether
the function performs SC-FDMA demodulation for an LTE or NB-IoT configuration. To choose an LTE
configuration, specify the NULRB field. To choose an NB-IoT configuration, specify the

 lteSCFDMADemodulate

2-1017

NBULSubcarrierSpacing field. The CyclicPrefixUL field is optional and is applicable only for an
LTE configuration.

NULRB — Number of uplink resource blocks
integer in the interval [6, 110]

Number of uplink resource blocks, NRB
UL, specified as an integer in the interval [6, 110]. To return SC-

FDMA modulation information for an LTE configuration, you must specify this field.
Data Types: double

CyclicPrefixUL — Cyclic prefix length
'Normal' (default) | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'. This field is optional.

Dependencies

This field applies only when you choose an LTE configuration by specifying the NULRB field.
Data Types: char | string

NBULSubcarrierSpacing — NB-IoT subcarrier spacing
'3.75kHz' | '15kHz'

NB-IoT subcarrier spacing, specified as '3.75kHz' or '15kHz'. To set a subcarrier spacing of 3.75
kHz, specify NBULSubcarrierSpacing as '3.75kHz'. To set a subcarrier spacing of 15 kHz,
specify NBULSubcarrierSpacing as '15kHz'.

To use lteSCFDMADemodulate for NB-IoT demodulation, you must specify this field. To indicate an
LTE configuration, omit this field.

Note For a subcarrier spacing of 3.75 kHz, lteSCFDMADemodulate supports only single-tone NB-
IoT configurations.

Data Types: char | string

Data Types: struct

chs — NPUSCH information
structure

NPUSCH information, specified as a structure. For an NB-IoT configuration, you can set additional
uplink-specific parameters by specifying the NB-IoT-specific fields in chs. Except for the
NBULSubcarrierSet field, the fields in chs are applicable either when NBULSubcarrierSpacing
is '3.75kHz' or when ue.NBULSubcarrierSpacing is '15kHz' and
length(chs.NBULSubcarrierSet) is 1.

NBULSubcarrierSet — NB-IoT uplink subcarrier indices
vector of nonnegative integers (default) | nonnegative integer

NB-IoT uplink subcarrier indices, specified as a vector of nonnegative integers in the interval [0, 11]
or a nonnegative integer in the interval [0, 47]. The indices are in zero-based form. To use
lteSCFDMADemodulate for single-tone NB-IoT demodulation, you must specify

2 Functions

2-1018

NBULSubcarrierSet as a scalar. If you do not specify NBULSubcarrierSet,
lteSCFDMADemodulate performs multi-tone NB-IoT demodulation by default. If you specify the
NBULSubcarrierSpacing field as '15kHz', this field is required.
Data Types: double

Modulation — Modulation type
'BPSK' | 'QPSK'

Modulation type, specified as 'BPSK' or 'QPSK'. For binary phase shift keying (BPSK), specify
Modulation as 'BPSK'. For quadrature phase shift keying (QPSK), specify Modulation as 'QPSK'.
Data Types: char | string

NULSlots — Number of slots per resource unit
positive integer

Number of slots per resource unit (RU), specified as a positive integer. To use
lteSCFDMADemodulate for single-tone NB-IoT demodulation, you must specify this field.
Data Types: double

NRU — Number of RUs
positive integer

Number of RUs, specified as a positive integer. To use lteSCFDMADemodulate for single-tone NB-
IoT demodulation, you must specify this field.
Data Types: double

NRep — Number of repetitions for codeword
nonnegative integer

Number of repetitions for a codeword, specified as a nonnegative integer. To use
lteSCFDMADemodulate for single-tone NB-IoT demodulation, you must specify this field.
Data Types: double

SlotIdx — Relative slot index in NPUSCH bundle
0 (default) | nonnegative integer

Relative slot index in an NPUSCH bundle, specified as a nonnegative integer. This field determines
the zero-based relative slot index in a bundle of time slots for transmission of a transport block or
control information bit.
Data Types: double

Data Types: struct

waveform — Time-domain waveform
complex-valued matrix

Time-domain waveform, specified as a complex-valued matrix. The sampling rate of waveform must
be the same as used in the lteSCFDMAModulate modulator function for the number of resource
blocks specified in the NULRB field of ue. The waveform must be time-aligned such that the first
sample is the first sample of the cyclic prefix of the first SC-FDMA symbol in a subframe.
Data Types: double

 lteSCFDMADemodulate

2-1019

Complex Number Support: Yes

cpfraction — Cyclic prefix fraction
scalar in the interval [0, 1]

Cyclic prefix fraction, specified as a scalar in the interval [0, 1]. This argument specifies the position
of the demodulation with respect to the cyclic prefix. A value of 0 represents the start of the cyclic
prefix. A value of 1 represents the end of the cyclic prefix.

• For LTE demodulation, the default value is 0.55.
• For NB-IoT demodulation with 3.75-kHz subcarrier spacing, the default value is 0.18.
• For NB-IoT demodulation with 15-kHz subcarrier spacing, the default value is 0.22.

The default value allows for the default level of windowing in the lteSCFDMAModulate function.
Data Types: double

Output Arguments
grid — Output resource array
complex-valued matrix

Output resource array, returned as a complex-valued matrix.
Data Types: double
Complex Number Support: Yes

Version History
Introduced in R2014a

See Also
lteSCFDMAModulate | lteSCFDMAInfo | lteULFrameOffset | lteULFrameOffsetPUCCH1 |
lteULFrameOffsetPUCCH2 | lteULFrameOffsetPUCCH3 | lteULChannelEstimate |
lteULPerfectChannelEstimate | lteULChannelEstimatePUCCH1 |
lteULChannelEstimatePUCCH2 | lteULChannelEstimatePUCCH3

2 Functions

2-1020

lteSCFDMAModulate
Modulate using SC-FDMA

Syntax
[waveform,info] = lteSCFDMAModulate(ue,grid)
[waveform,info] = lteSCFDMAModulate(ue,grid,windowing)

[waveform,info] = lteSCFDMAModulate(ue,chs,grid)
[waveform,info] = lteSCFDMAModulate(ue,chs,grid,windowing)

Description
[waveform,info] = lteSCFDMAModulate(ue,grid) performs single-carrier frequency-division
multiple access (SC-FDMA) modulation for user-equipment-specific (UE-specific) settings ue. The
function returns waveform, an SC-FDMA-modulated waveform, and its corresponding information
info. You can use this syntax for LTE and multitone narrowband Internet of Things (NB-IoT)
configurations.

The function calculates the inverse fast Fourier transform (IFFT), half-subcarrier shifts, and cyclic
prefix insertions. The function also optionally performs raised-cosine windowing and overlapping of
adjacent SC-FDMA symbols in resource array grid. For a block diagram that illustrates the steps in
SC-FDMA modulation, see “Algorithms” on page 2-1029.

[waveform,info] = lteSCFDMAModulate(ue,grid,windowing) performs SC-FDMA
modulation for the chosen number of windowed and overlapped samples, windowing, used in the
time-domain windowing. If you specify the Windowing field in ue, the function ignores it, and the
output Windowing field of info is as specified in windowing. You can use this syntax for LTE and
multitone NB-IoT configurations.

[waveform,info] = lteSCFDMAModulate(ue,chs,grid) performs SC-FDMA modulation for
channel transmission configuration chs. You can use this syntax for LTE, single-tone NB-IoT, and
multitone NB-IoT configurations. When you use this syntax without configuring ue for NB-IoT, the
function ignores chs.

[waveform,info] = lteSCFDMAModulate(ue,chs,grid,windowing) performs SC-FDMA
modulation for the specified channel transmission configuration and number of windowed and
overlapped samples. You can use this syntax for LTE, single-tone NB-IoT, and multitone NB-IoT
configurations. When you use this syntax without configuring ue for NB-IoT, the function ignores chs.

Examples

Perform SC-FDMA Modulation

Perform SC-FDMA modulation of one subframe of random uniformly distributed noise.

Initialize UE-specific settings for the specified number of resource blocks.

ue = struct('NULRB',50);

 lteSCFDMAModulate

2-1021

Obtain the size of the resource array.

d = lteULResourceGridSize(ue);

Get the resource grid by mapping a randomly generated vector of bits to the relevant modulation
symbols, specifying QPSK modulation.

grid = reshape(lteSymbolModulate(randi([0,1],prod(d)*2,1),'QPSK'),d);

Perform SC-FDMA modulation for the specified UE-specific settings and resource grid.

waveform = lteSCFDMAModulate(ue,grid);

Perform SC-FDMA Modulation for Multitone NB-IoT with Windowing

Perform SC-FDMA modulation of ten time slots of uniformly distributed noise, specifying a multitone
NB-IoT downlink configuration and a windowing value.

Initialize the UE-specific settings by specifying the NB-IoT uplink subcarrier spacing.

ue.NBULSubcarrierSpacing = '15kHz';

Get the resource grid for the specified number of time slots.

NSlots = 10; % Number of slots in the generated waveform
dims = [12 7*NSlots];
grid = reshape(lteSymbolModulate(randi([0,1],prod(dims)*2,1),'QPSK'),dims);

Specify a windowing value of 6.

windowing = 6;

Perform SC-FDMA modulation and display the first five symbols of the modulated waveform.

waveform = lteSCFDMAModulate(ue,grid,windowing);
disp(waveform(1:5));

 0.0152 + 0.0178i
 0.0126 + 0.0159i
 0.0092 + 0.0130i
 0.0052 + 0.0092i
 0.0006 + 0.0047i

Perform SC-FDMA Modulation for Multitone NB-IoT Configuration

Perform SC-FDMA modulation of ten time slots of uniformly distributed noise, specifying a multitone
NB-IoT downlink configuration.

Initialize the UE-specific settings by specifying the NB-IoT uplink subcarrier spacing.

ue.NBULSubcarrierSpacing = '15kHz';

Get the resource grid for the specified number of time slots.

2 Functions

2-1022

NSlots = 10; % Number of slots in the generated waveform
dims = [12 7*NSlots];
grid = reshape(lteSymbolModulate(randi([0,1],prod(dims)*2,1),'QPSK'),dims);

Perform SC-FDMA modulation and display the first five symbols of the modulated waveform.

waveform = lteSCFDMAModulate(ue,grid);
disp(waveform(1:5));

 0.0152 + 0.0178i
 0.0126 + 0.0159i
 0.0092 + 0.0130i
 0.0052 + 0.0092i
 0.0006 + 0.0047i

Perform SC-FDMA Modulation for Single-Tone NB-IoT Configuration

Perform SC-FDMA modulation for 20 time slots of uniformly distributed noise, specifying a single-
tone NB-IoT configuration with 15 kHz subcarrier spacing.

Initialize UE-specific settings, specifying an NB-IoT configuration with a subcarrier spacing of 15
kHz.

ue.NBULSubcarrierSpacing = '15kHz';

Set the channel transmission configuration, specifying the fields required for the chosen NB-IoT
configuration.

chs = struct('NULSlots',16,'NRU',2,'NRep',4,'SlotIdx',120, ...
 'NBULSubcarrierSet',0,'Modulation','QPSK');

Get the narrowband resource grid for the 20 time slots.

NSlots = 20;
grid = repmat(lteNBResourceGrid(ue),1,NSlots);
grid(chs.NBULSubcarrierSet+1,:) = lteSymbolModulate(randi([0,1],size(grid,2)*2,1),'QPSK').';

Perform SC-FDMA modulation and display the first five symbols in the modulated time-domain
waveform.

waveform = lteSCFDMAModulate(ue,chs,grid);
disp(waveform(1:5));

 0.0074 + 0.0026i
 0.0078 + 0.0006i
 0.0077 - 0.0015i
 0.0070 - 0.0035i
 0.0058 - 0.0052i

Input Arguments
ue — UE-specific settings
structure

 lteSCFDMAModulate

2-1023

UE-specific settings, specified as a structure. The fields you specify in ue and chs determine whether
the function performs SC-FDMA modulation for an LTE or NB-IoT configuration. To choose an NB-IoT
configuration, specify the NBULSubcarrierSpacing field. To choose an LTE configuration, omit the
NBULSubcarrierSpacing field. The Windowing field is optional, and you can specify it for either an
LTE or NB-IoT configuration. The CyclicPrefixUL field is optional and is applicable only for an LTE
configuration..

Windowing — Number of windowing samples
nonnegative integer

Number of time-domain samples over which the function applies windowing and overlapping of SC-
FDMA symbols, specified as a nonnegative integer. This field is optional.

Note If you do not specify Windowing, lteSCFDMAModulate returns the Windowing field of info
as a default value chosen as a function of NULRB (for LTE uplink configurations) or
NBULSubcarrierSpacing (for NB-IoT uplink configurations). This behavior compromises between
the effective duration of the cyclic prefix (and therefore the channel delay spread tolerance) and the
spectral characteristics of the transmitted signal (not considering any additional FIR filtering). If
Windowing is zero, issues identified in the description of grid concerning concatenation of slots
before SC-FDMA modulation do not apply.

The number of samples used for windowing depends on the cyclic prefix length (normal or extended)
and the number of resource blocks. The default is chosen in accordance with the maximum values
implied in TS 36.104, Tables E.5.1-1 and E.5.1-2 [1]. For a larger value of Windowing, the effective
duration of the cyclic prefix is reduced but the transmitted signal spectrum has smaller out-of-band
emissions.

Number of Resource Blocks NRB Windowing Samples for Normal
Cyclic Prefix

Windowing Samples for
Extended Cyclic Prefix

6 4 4
15 6 6
25 4 4
50 6 6
75 8 8
100 8 8

Data Types: double

CyclicPrefixUL — Cyclic prefix length
'Normal' (default) | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'. This field is optional.

Dependencies

This field applies only when you choose an LTE configuration by omitting the
NBULSubcarrierSpacing field.
Data Types: char | string

2 Functions

2-1024

NBULSubcarrierSpacing — NB-IoT subcarrier spacing
'3.75kHz' | '15kHz'

NB-IoT subcarrier spacing, specified as '3.75kHz' or '15kHz'. To set a subcarrier spacing of 3.75
kHz, specify this field as '3.75kHz'. To set a subcarrier spacing of 15 kHz, specify this field as
'15kHz'.

To use lteSCFDMAModulate for NB-IoT modulation, you must specify this field. To indicate an LTE
configuration, omit this field.

Note For a subcarrier spacing of 3.75 kHz, lteSCFDMAModulate supports only single-tone NB-IoT
configurations.

Data Types: char | string

grid — Resource grid
numeric array

Resource grid, specified as a numeric array of size M-by-N-by-P, where:

• M is the number of subcarriers.
• N is the number of SC-FDMA symbols.
• P is the number of transmission antennas.

You can specify grid to contain REs for various time slots across all configured antenna ports, as
described in “Represent Resource Grids”. Alternatively, you can specify grid to contain multiple such
matrices concatenated across the second dimension to give multiple slots. The antenna planes in
grid are each OFDM modulated to give the columns of the waveform output.

For an LTE uplink configuration, M must be a multiple of 12, since the number of resource blocks is
NRB = M/12, up to a maximum of 2048. For an NB-IoT downlink or uplink configuration with the
NBULSubcarrierSpacing field of ue set to '15kHz', M = 12. For an NB-IoT uplink configuration
with NBULSubcarrierSpacing set to '3.75kHz', M = 48. Specify N as a multiple of the number of
symbols in a slot L, where L = 14 for normal cyclic prefix and L = 12 for extended cyclic prefix. You
can specify P as 1, 2, or 4.

The grid can span multiple time slots. Windowing and overlapping are applied between all adjacent
SC-FDMA symbols, including the last of one slot and the first of the next. Therefore, a different result
is obtained than when lteSCFDMAModulate is called on individual slots and those time-domain
waveforms are concatenated. The resulting waveform in the latter case has discontinuities at the
start and end of each slot. It is recommended that all slots for SC-FDMA modulation first be
concatenated before calling lteSCFDMAModulate on the resulting multislot array. However, you can
perform OFDM modulation on individual slots and create the resulting multislot time-domain
waveform by manually overlapping.
Data Types: double
Complex Number Support: Yes

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure. For an NB-IoT configuration, you can set
additional uplink-specific parameters by specifying the NB-IoT-specific fields in chs. Except for the

 lteSCFDMAModulate

2-1025

NBULSubcarrierSet field, the fields in chs are applicable either when the
NBULSubcarrierSpacing field of ue is '3.75kHz' or when NBULSubcarrierSpacing is '15kHz'
and length(chs.NBULSubcarrierSet) is 1.

NBULSubcarrierSet — NB-IoT uplink subcarrier indices
vector of nonnegative integers (default) | nonnegative integer

NB-IoT uplink subcarrier indices, specified as a vector of nonnegative integers in the interval [0, 11]
or a nonnegative integer in the interval [0, 47]. The indices are in zero-based form. To use
lteSCFDMAModulate for single-tone NB-IoT modulation, you must specify NBULSubcarrierSet as
a scalar. If you do not specify NBULSubcarrierSet, lteSCFDMAModulate performs multitone NB-
IoT modulation by default. If you specify the NBULSubcarrierSpacing field of ue as '15kHz', this
field is required.
Data Types: double

Modulation — Modulation type
'BPSK' | 'QPSK'

Modulation type, specified as 'BPSK' or 'QPSK'. For binary phase shift keying (BPSK), specify
Modulation as 'BPSK'. For quadrature phase shift keying (QPSK), specify Modulation as 'QPSK'.
Data Types: char | string

NULSlots — Number of slots per RU
positive integer

Number of slots per resource unit (RU), specified as a positive integer. To use lteSCFDMAModulate
for single-tone NB-IoT modulation, you must specify this field.
Data Types: double

NRU — Number of RUs
positive integer

Number of RUs, specified as a positive integer. To use lteSCFDMAModulate for single-tone NB-IoT
modulation, you must specify this field.
Data Types: double

NRep — Number of repetitions for codeword
nonnegative integer

Number of repetitions for a codeword, specified as a nonnegative integer. To use
lteSCFDMAModulate for single-tone NB-IoT modulation, you must specify this field.
Data Types: double

SlotIdx — Relative slot index in NPUSCH bundle
0 (default) | nonnegative integer

Relative slot index in a narrowband physical uplink shared channel (NPUSCH) bundle, specified as a
nonnegative integer. This field determines the zero-based relative slot index in a bundle of time slots
for transmission of a transport block or control information bit.
Data Types: double

Data Types: struct

2 Functions

2-1026

windowing — Number of windowed and overlapped samples
nonnegative integer

Number of windowed and overlapped samples, specified as a nonnegative integer. This argument
controls the number of windowed and overlapped samples used in time-domain windowing. If you
specify this input, the function uses the value you specify for SC-FMDA modulation (instead of the
Windowing field of the ue input) and returns it as the value of the Windowing field in the info
output.
Data Types: double

Output Arguments
waveform — SC-FDMA-modulated waveform
complex-valued matrix

SC-FDMA-modulated waveform, returned as a complex-valued matrix. The dimensions of waveform
are T-by-P, where T is the number of time-domain samples, and P is the number of transmission
antennas. The dimension T is given by T = 15K/NFFT, where NFFT is the IFFT size, and K is the number
of time slots in the grid input. When M ≥ 72, NFFT is a function of the number of resource blocks
(NRB), and NRB = M/12.

NRB N FFT

6 128
15 256
25 512
50 1024
75 2048
100 2048

When M = 12 or the NBULSubcarrierSpacing field is '15kHz' (NB-IoT downlink or NB-IoT uplink
with 15-kHz subcarrier spacing), NFFT = 128. When the NBULSubcarrierSpacing field is
'3.75kHz' (NB-IoT uplink with 3.75-kHz subcarrier spacing), NFFT = 512. When M ≥ 72, NFFT is the
smallest power of 2 greater than or equal to 12NRB/0.85. This value is the smallest FFT that spans all
subcarriers and results in a bandwidth occupancy (12NRB/NFFT) of no more than 85%.
Data Types: double
Complex Number Support: Yes

info — Information about SC-FDMA modulated waveform
structure

Information about SC-FDMA modulated waveform, returned as a structure containing these fields.

NBULGapSamples — Number of padded gap samples
positive integer

Number of padded gap samples at the end of each time slot, returned as a positive integer. When the
NBULSubcarrierSpacing field is '3.75kHz', NBULGapSamples is 144. Otherwise,
NBULGapSamples is 0.

 lteSCFDMAModulate

2-1027

Dependencies

This argument is returned only when the NBULSubcarrierSpacing field of ue is specified.
Data Types: double

CyclicPrefixLengths — Cyclic prefix length
vector of positive integers

Cyclic prefix length, in number of time-domain samples, returned as a vector of positive integers.
Each entry represents the cyclic prefix length of the corresponding orthogonal frequency-division
multiplexing (OFDM) symbol in a time slot. The function returns CyclicPrefixLengths in
accordance with the specified input fields shown in these tables.

LTE Configuration

Nfft CyclicPrefixLengths when
CyclicPrefixUL is set to

'Normal'

CyclicPrefixLengths when
CyclicPrefixUL is set to

'Extended')
128 [10 9 9 9 9 9 9 10 9 9 9 9 9 9] [32 32 32 32 32 32 32 32 32 32

32 32]
256 [20 18 18 18 18 18 18 20 18 18

18 18 18 18]
[64 64 64 64 64 64 64 64 64 64
64 64]

512 [40 36 36 36 36 36 36 40 36 36
36 36 36 36]

[128 128 128 128 128 128 128
128 128 128 128 128]

1024 [80 72 72 72 72 72 72 80 72 72
72 72 72 72]

[256 256 256 256 256 256 256
256 256 256 256 256]

2048 [160 144 144 144 144 144 144
160 144 144 144 144 144 144]

[512 512 512 512 512 512 512
512 512 512 512 512]

NB-IoT Configuration

Nfft NBULSubcarrierSpacing CyclicPrefixLengths
128 '15kHz' [10 9 9 9 9 9 9 10 9 9 9 9 9 9]
512 '3.75kHz' [16 16 16 16 16 16 16 16 16 16

16 16 16 16]

Note As shown in the tables, for values of Nfft less than 2048, the entries of
CyclicPrefixLengths are given by multiplying the cyclic prefix lengths when Nfft is 2048 by
Nfft/2048.

Data Types: int32

Windowing — Number of time-domain samples
nonnegative integer

Number of time-domain samples over which the function applies windowing and overlapping of SC-
FDMA symbols, returned as a nonnegative integer.
Data Types: double

2 Functions

2-1028

Nfft — Number of FFT points
positive integer

Number of FFT points, NFFT, returned as a positive integer.
Data Types: double

SamplingRate — Sampling rate of time-domain waveform
positive scalar

Sampling rate of time-domain waveform, returned as a positive scalar. When the
NBULSubcarrierSpacing field is '15kHz' or unspecified, the sampling rate of the waveform is
(30.72 MHz / 2048) × NFFT, where NFFT is the number of fast Fourier transform (FFT) points. When
you indicate an NB-IoT configuration by specifying ue.NBULSubcarrierSpacing, the sampling rate
is 1.92 MHz.
Data Types: double

Data Types: struct

Algorithms
SC-FDMA Modulation Processing

This diagram shows the processing performed by SC-FDMA modulation.

 lteSCFDMAModulate

2-1029

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.104. “Base Station (BS) radio transmission and reception.” 3rd Generation

Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal
Terrestrial Radio Access (E-UTRA). URL: https://www.3gpp.org.

See Also
lteSCFDMADemodulate | lteSCFDMAInfo | lteULResourceGridSize | lteULResourceGrid |
lteFadingChannel | lteHSTChannel | lteMovingChannel

2 Functions

2-1030

https://www.3gpp.org

lteSCFDMAInfo
Get SC-FDMA modulation information

Syntax
info = lteSCFDMAInfo(ue)

Description
info = lteSCFDMAInfo(ue) returns the structure info, which contains information related to the
single-carrier frequency-division multiplexing (SC-FDMA) modulation performed by the
lteSCFDMAModulate function for the user-equipment-specific (UE-specific) settings structure, ue.

Examples

Get SC-FDMA Modulation Information

Initialize UE-specific settings by setting the number of resource blocks.

ue = struct('NULRB',50);

Get SC-FDMA modulation information and display the sampling rate.

info = lteSCFDMAInfo(ue);
disp(info.SamplingRate);

 15360000

Get Sampling Rate of NB-IoT Uplink Waveform

Get the sampling rate of an NB-IoT uplink waveform with 3.75-kHz subcarrier spacing after SC-
FDMA modulation.

Specify the NB-IoT uplink subcarrier spacing.

ue.NBULSubcarrierSpacing = '3.75kHz';

Get the SC-FDMA modulation information and display the sampling rate of the time-domain
waveform.

info = lteSCFDMAInfo(ue);
disp(info.SamplingRate);

 1920000

 lteSCFDMAInfo

2-1031

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure. The fields you specify in ue determine whether the
function returns SC-FDMA modulation information for an LTE or NB-IoT configuration. To choose an
LTE configuration, specify the NULRB field. To choose an NB-IoT configuration, specify the
NBULSubcarrierSpacing field. The CyclicPrefixUL field is optional and is applicable only for an
LTE configuration. The Windowing field is optional, and you can specify it for either an LTE or NB-
IoT configuration.

NULRB — Number of uplink resource blocks
integer in the interval [6, 110]

Number of uplink resource blocks, NRB
UL, specified as an integer in the interval [6, 110]. To return SC-

FDMA modulation information for an LTE configuration, you must specify this field.
Data Types: double

CyclicPrefixUL — Cyclic prefix length
'Normal' (default) | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'. This field is optional.
Dependencies

This field applies only when you choose an LTE configuration by specifying the NULRB field.
Data Types: char | string

NBULSubcarrierSpacing — NB-IoT uplink subcarrier spacing
'3.75kHz' | '15kHz'

NB-IoT uplink subcarrier spacing, specified as '3.75kHz' or '15kHz'. To set a subcarrier spacing of
3.75 kHz, specify NBULSubcarrierSpacing as '3.75kHz'. To set a subcarrier spacing of 15 kHz,
specify NBULSubcarrierSpacing as '15kHz'.

To return SC-FDMA modulation information for an NB-IoT configuration, you must specify this field.
To indicate an LTE configuration, omit this field.

Note For a subcarrier spacing of 3.75 kHz, lteSCFDMAInfo supports only single-tone NB-IoT
configurations.

Data Types: char | string

Windowing — Number of windowing samples
nonnegative integer

Number of time-domain samples over which the function applies windowing and overlapping of SC-
FDMA symbols, specified as a nonnegative integer. This field is optional.

Note If you do not specify this input, the function returns the Windowing field of the info output
as a default value chosen as a function of NULRB (for LTE configurations) or

2 Functions

2-1032

NBULSubcarrierSpacing (for NB-IoT configurations). This behavior compromises between the
effective duration of the cyclic prefix (and therefore the channel delay spread tolerance) and the
spectral characteristics of the transmitted signal (not considering any additional FIR filtering).

For more information, see the lteSCFDMAModulate function.

Data Types: double

Data Types: struct

Output Arguments
info — Information related to SC-FDMA modulation
structure

Information related to SC-FDMA modulation, returned as a structure containing these fields.

NBULGapSamples — Number of padded gap samples
positive integer

Number of padded gap samples at the end of each time slot, returned as a positive integer. When the
NBULSubcarrierSpacing field is '3.75kHz', NBULGapSamples is 144. Otherwise,
NBULGapSamples is 0.

Dependencies

This argument is returned only when the NBULSubcarrierSpacing field of ue is specified.
Data Types: double

CyclicPrefixLengths — Cyclic prefix length
vector of positive integers

Cyclic prefix length, in number of time-domain samples, returned as a vector of positive integers.
Each entry represents the cyclic prefix length of the corresponding orthogonal frequency-division
multiplexing (OFDM) symbol in a time slot. The function returns CyclicPrefixLengths in
accordance with the specified input fields shown in these tables.

 lteSCFDMAInfo

2-1033

LTE Configuration

Nfft CyclicPrefixLengths when
CyclicPrefixUL is set to

'Normal'

CyclicPrefixLengths when
CyclicPrefixUL is set to

'Extended')
128 [10 9 9 9 9 9 9 10 9 9 9 9 9 9] [32 32 32 32 32 32 32 32 32 32

32 32]
256 [20 18 18 18 18 18 18 20 18 18

18 18 18 18]
[64 64 64 64 64 64 64 64 64 64
64 64]

512 [40 36 36 36 36 36 36 40 36 36
36 36 36 36]

[128 128 128 128 128 128 128
128 128 128 128 128]

1024 [80 72 72 72 72 72 72 80 72 72
72 72 72 72]

[256 256 256 256 256 256 256
256 256 256 256 256]

2048 [160 144 144 144 144 144 144
160 144 144 144 144 144 144]

[512 512 512 512 512 512 512
512 512 512 512 512]

NB-IoT Configuration

Nfft NBULSubcarrierSpacing CyclicPrefixLengths
128 '15kHz' [10 9 9 9 9 9 9 10 9 9 9 9 9 9]
512 '3.75kHz' [16 16 16 16 16 16 16 16 16 16

16 16 16 16]

Note As shown in the tables, for values of Nfft less than 2048, the entries of
CyclicPrefixLengths are given by multiplying the cyclic prefix lengths when Nfft is 2048 by
Nfft/2048.

Data Types: int32

Windowing — Number of time-domain samples
nonnegative integer

Number of time-domain samples over which the function applies windowing and overlapping of SC-
FDMA symbols, returned as a nonnegative integer.
Data Types: double

Nfft — Number of FFT points
positive integer

Number of FFT points, NFFT, returned as a positive integer.
Data Types: double

SamplingRate — Sampling rate of time-domain waveform
positive scalar

Sampling rate of time-domain waveform, returned as a positive scalar. When the
NBULSubcarrierSpacing field is '15kHz' or unspecified, the sampling rate of the waveform is
(30.72 MHz / 2048) × NFFT, where NFFT is the number of fast Fourier transform (FFT) points. When

2 Functions

2-1034

you indicate an NB-IoT configuration by specifying ue.NBULSubcarrierSpacing, the sampling rate
is 1.92 MHz.
Data Types: double

Data Types: struct

Version History
Introduced in R2014a

See Also
lteSCFDMAModulate | lteSCFDMADemodulate | lteULResourceGridSize | lteOFDMInfo

 lteSCFDMAInfo

2-1035

lteSCI
Sidelink control information format structure and bit payload

Syntax
[sciout,bitsout] = lteSCI(ue)
[sciout,bitsout] = lteSCI(ue,sciin)
[sciout,bitsout] = lteSCI(ue,bitsin)
[sciout,bitsout] = lteSCI(___ ,opts)

Description
[sciout,bitsout] = lteSCI(ue) returns a sidelink control information (SCI) message structure,
sciout, and the SCI message bit vector, bitsout, for the settings specified in the user equipment
structure.

This function creates and manipulates SCI format 0 messages, defined in TS 36.212 [1], Section 5.4.3.
You can use lteSCI to create a default SCI message, to blindly decode SCI format types, and to
determine the sizes of the bit fields.

By default, all returned fields are set to zero.

[sciout,bitsout] = lteSCI(ue,sciin) returns the SCI structure fields and bit vector using
settings specified in SCI input structure sciin. Fields not defined in sciin are set to defaults
specified by ue. You can use this syntax to initialize SCI field values, in particular the frequency
hopping bit, which affects the fields that the format uses.

[sciout,bitsout] = lteSCI(ue,bitsin) returns the SCI structure fields and bit vector using
settings specified in bit input vector bitsin. The input bit vector is returned as the SCI information
bit payload, where bitsout == bitsin.

[sciout,bitsout] = lteSCI(___ ,opts) formats the returned structure using options specified
by opts.

Examples

Create SCI Message

Create a format 0 SCI message structure.

Create a UE settings structure.

ue = struct('NSLRB','15MHz');

Generate an SCI message and view the returned SCI message structure contents.

[sci0,bits] = lteSCI(ue);
sci0

sci0 = struct with fields:
 SCIFormat: 'Format0'

2 Functions

2-1036

 FreqHopping: 0
 Allocation: [1x1 struct]
 TimeResourcePattern: 0
 ModCoding: 0
 TimeAdvance: 0
 NSAID: 0

allocfields = sci0.Allocation

allocfields = struct with fields:
 RIV: 0

Create SCI Message with Distributed VRB Allocation Type

Create a format 0 SCI message structure with the distributed VRB allocation type. The allocation
message fields are contained in the Allocation substructure. To create the appropriate set of fields
at the output, the FreqHopping field is initialized at the input to the function.

Create a UE settings structure and define FreqHopping using an input SCI message structure.

ue = struct('NSLRB',50);
sciin = struct('FreqHopping',1);

Generate an SCI message and view the returned SCI message structure contents.

[sci0,bits] = lteSCI(ue,sciin);
sci0

sci0 = struct with fields:
 SCIFormat: 'Format0'
 FreqHopping: 1
 Allocation: [1x1 struct]
 TimeResourcePattern: 0
 ModCoding: 0
 TimeAdvance: 0
 NSAID: 0

allocfields = sci0.Allocation

allocfields = struct with fields:
 HoppingBits: 0
 RIV: 0

Recover SCI Message from Bit Vector

Recover the contents of a format 0 SCI message bit vector.

Create a UE settings structure.

ue = struct('NSLRB',50);

 lteSCI

2-1037

Generate an SCI message structure.

[sci0,bits] = lteSCI(ue);
sci0

sci0 = struct with fields:
 SCIFormat: 'Format0'
 FreqHopping: 0
 Allocation: [1x1 struct]
 TimeResourcePattern: 0
 ModCoding: 0
 TimeAdvance: 0
 NSAID: 0

Change the ModCoding setting to 22 and generate an SCI bits vector.

sci0.ModCoding = 22;
[~,bits_new] = lteSCI(ue,sci0);

Use the new bits to recover the new SCI message. View the new SCI message structure and confirm
that the ModCoding setting is now 22.

[sci0_new,~] = lteSCI(ue,bits_new)

sci0_new = struct with fields:
 SCIFormat: 'Format0'
 FreqHopping: 0
 Allocation: [1x1 struct]
 TimeResourcePattern: 0
 ModCoding: 22
 TimeAdvance: 0
 NSAID: 0

View SCI Message Field Sizes

Create a format 0 SCI message structure. Use the opts input to view the message field sizes and to
exclude fields with zero length.

Create a UE settings structure.

ue = struct('NSLRB','5MHz');
opts = {'fieldsizes','excludeunusedfields'}

opts = 1x2 cell
 {'fieldsizes'} {'excludeunusedfields'}

Generate an SCI message and view the field sizes of the returned SCI message structure contents.

[sci0,bits] = lteSCI(ue,opts);
sci0

sci0 = struct with fields:
 SCIFormat: 'Format0'

2 Functions

2-1038

 FreqHopping: 1
 Allocation: [1x1 struct]
 TimeResourcePattern: 7
 ModCoding: 5
 TimeAdvance: 11
 NSAID: 8

allocfields = sci0.Allocation

allocfields = struct with fields:
 RIV: 9

Inspect the returned structure to see the bit length of each field in the SCI message.

fieldsLength = sci0.FreqHopping + sci0.Allocation.RIV + ...
 sci0.TimeResourcePattern + sci0.ModCoding + sci0.TimeAdvance + ...
 sci0.NSAID

fieldsLength = uint64
 41

bitsLength = size(bits,1)

bitsLength = 41

isequal(fieldsLength,bitsLength)

ans = logical
 1

The sum of the field sizes matches the length of the returned bits output.

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a structure containing these parameter fields:

PSSCHNSubchannels — Number of sub-channels in the V2X PSSCH resource pool
1 (default) | integer scalar from 1 to 110 | optional

Number of sub-channels in the V2X PSSCH resource pool, specified as an integer scalar from 1 to
110. You must specify this input when you set the sciin to 'Format1'.
Data Types: double

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

 lteSCI

2-1039

opts — Formatting options for output SCI structure
character vector | cell array of character vectors | string array

Formatting options for output SCI structure, specified as a character vector, cell array of character
vectors, or a string array. You can specify a format for the Field content and Fields to include. For
convenience, you can specify several options as a single character vector or string scalar by a space-
separated list of values placed inside the quotes. Values for opts when specified as a character
vector include (use double quotes for string):

Category Options Description
Field content 'fieldvalues' (default) Set the fields to zero or to their input

values.
'fieldsizes' Sets the field values to their bit sizes

and adds the Padding field to sciout.
Padding indicates the number of
padding bits appended.

Fields to include 'includeallfields' (default) sciout includes all possible fields for
the requested SCI format.

'excludeunusedfields' sciout excludes zero-length fields for
the given parameter set.

Example: 'fieldsizes excludeunusedfields', "fieldsizes excludeunusedfields",
{'fieldsizes','excludeunusedfields'}, or ["fieldsizes","excludeunusedfields"]
specify the same formatting options.
Data Types: char | string | cell

sciin — SCI message settings
structure

SCI message settings, specified as a structure containing any fields returned in sciout. See sciout
for the specific fields output for each SCIFormat. SCI format 0 message is defined in TS 36.212 [1],
Section 5.4.3.1. It can contain the following field:

SCIFormat — SCI format type
'Format0' (default) | 'Format1'

SCI format type, specified as 'Format0' or 'Format1'.
Data Types: char | string

Data Types: struct

bitsin — Input bits
column vector

Input bits, specified as a column vector. bitsin is treated as the SCI message bit payload, that is,
bitsout == bitsin. The length of bitsin must align with the number of resource blocks,
ue.NSLRB. Use lteSCIInfo to determine SCI message length for the specified ue settings.
Data Types: double

2 Functions

2-1040

Output Arguments
sciout — SCI message structure
structure

SCI message structure, returned as a structure whose fields match the associated SCI format
contents.

The field names associated with sciout depend on the SCI format field in sciin. By default, all
values are set to zero. However, if any of the SCI fields are already present in the input sciin, their
values are carried forward into sciout. The input field values appear in the associated bit positions
in bitsout. Carrying the values forward allows for easy initialization of SCI field values. sciout also
carries forward the NSLRB field specified in sciin.

This table presents the fields associated with each SCI format, as defined in TS 36.212 [1], Section
5.4.3.1.

SCI Formats sciout Fields Size Description
'Format0' SCIFormat - 'Format0'

FreqHopping 1 bit PSSCH frequency hopping flag
Allocation from 5 to 13 bits,

log2

NRB
SL × NRB

SL + 1
2

Resource block assignment and
hopping resource allocation
substructure, type 0 or type 1
allocation

TimeResourcePat
tern

7 bits Time resource pattern (ITRP)

ModCoding 5 bits Modulation and coding scheme
(IMCS)

TimeAdvance 11 bits Timing advance indication
NSAID 8 bits Group destination ID, as defined by

higher layers
Padding 0 bits Always zero for SCI Format 0

'Format1' SCIFormat - 'Format1'
Priority 3 bits Per packet priority
ResourceReserva
tion

4 bits Resource reservation

 lteSCI

2-1041

SCI Formats sciout Fields Size Description
RIV from 0 to 13 bits,

log2

Nsubchannel
SL × Nsubchannel

SL + 1
2

Resource indication value

TimeGap 4 bits Time gap between initial
transmission and retransmission

ModCoding 5 bits Modulation and coding scheme
RetransmissionI
dx

1 bit Retransmission index

bitsout — SCI message in bit payload form
column vector of binary values

SCI message in bit payload form, returned as a column vector. bitsout represents the set of
message fields mapped to the information bit payload (including any zero-padding).

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteSCIEncode | lteSCIDecode | lteSCIInfo | lteDCI

2 Functions

2-1042

https://www.3gpp.org

lteSCIDecode
SCI decoding

Syntax
[scibits,err] = lteSCIDecode(scilen,softbits)
[scibits,err] = lteSCIDecode(ue,softbits)

Description
[scibits,err] = lteSCIDecode(scilen,softbits) recovers a sidelink control information
(SCI) message and also returns the cyclic redundancy check indication, given the SCI vector length
and input vector of soft bits. For more information, see “SCI Message Decoding” on page 2-1045.

[scibits,err] = lteSCIDecode(ue,softbits) uses a UE settings structure to determine the
SCI message length.

Examples

Decode Format 0 SCI Message

Decode an SCI format 0 message given the SCI message length. Use the length of an SCI format 0
message, determined using the lteSCIInfo function, to create and encode an SCI message.

Create a UE settings structure with 10-MHz bandwidth and normal cyclic prefix length.

ue = struct('NSLRB',50,'CyclicPrefixSL','Normal');

Determine the SCI message length with the lteSCIInfo function. Encode the SCI message.

sciInfo = lteSCIInfo(ue);
scilen = sciInfo.Format0;
sciBits = zeros(scilen,1);
cw = lteSCIEncode(ue,sciBits);

Decode the SCI message payload bit vector.

[sciBits,crcErr] = lteSCIDecode(scilen,cw);
crcErr

crcErr = logical
 0

The cyclic redundancy check returns a zero, indicating that the decoded SCI message has no errors.

 lteSCIDecode

2-1043

Decode Format 0 SCI Message Using UE Settings

Decode an SCI format 0 message using UE settings. Encode a bit vector representing an SCI
information payload, and then decode and error-check the result. Use a UE settings structure to
create and encode an SCI message.

Create a UE settings structure with 5 MHz bandwidth and extended cyclic prefix length. Generate
and encode an SCI format 0 message.

ue = struct('NSLRB','5MHz','CyclicPrefixSL','Extended');

[~,sciBits] = lteSCI(ue);
cw = lteSCIEncode(ue,sciBits);

Decode the SCI message payload bit vector, cw. Use the UE settings structure to determine the SCI
message length.

[sciBits,crcErr] = lteSCIDecode(ue,cw);
crcErr

crcErr = logical
 0

The cyclic redundancy check returns a zero, indicating that the decoded SCI message has no errors.

Input Arguments
scilen — Length of recovered SCI message vector
positive integer

Length of recovered SCI message vector, specified as a positive integer. This argument is normally
equal to the length of the SCI format 0 message for the sidelink bandwidth. Use lteSCIInfo to
determine the expected SCI message length.
Data Types: double

softbits — Floating-point soft bits
column vector

Floating-point soft bits, specified as a column vector. The length of softbits is nominally 288 bits
for normal cyclic prefix or 240 extended cyclic prefix, matching the bit capacity of the PSCCH
(ignoring the SC-FDMA guard symbol). For V2X sidelink, the nominal input length is 480 bits.
Otherwise, the number of soft bits must be a multiple of 2 and should be a multiple of 12 or 10 for
D2D normal and V2X normal/D2D extended cyclic prefix respectively, corresponding to the number of
data SC-FDMA symbols in a PSCCH subframe.
Data Types: double | int8

ue — User equipment settings
structure

User equipment settings, specified as a structure containing these parameter fields:

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

2 Functions

2-1044

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

Data Types: struct

Output Arguments
scibits — Recovered SCI message bits
column vector of binary values

Recovered SCI message bits, returned as a column vector. For more information, see “SCI Message
Decoding” on page 2-1045.

err — CRC error status
0 | 1

CRC error status, returned as 0 for no errors or 1 when the CRC fails.

More About
SCI Message Decoding

Sidelink control information (SCI) message decoding performs the inverse SCI processing operation
as specified in TS 36.212 [1], Section 5.4.3. Specifically, lteSCIDecode performs PUSCH
deinterleaving, rate recovery, and Viterbi and CRC decoding to recover the SCI message bit vector
(scibits) from an input vector of received soft bits previously coded by the SCI processing.
lteSCIDecode also returns the CRC error status, signaled by 0 for no errors and 1 when CRC fails.

If scilen is provided as an input argument, the function uses it for the length of the SCI information
payload to be recovered. Otherwise the function computes the length, using the fields in ue that
specify the bandwidth (NSLRB) and cyclic prefix length (CyclicPrefixSL).

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

 lteSCIDecode

2-1045

https://www.3gpp.org

See Also
lteSCIEncode | lteSCI | lteSCIInfo | ltePSCCHDecode

2 Functions

2-1046

lteSCIEncode
SCI encoding

Syntax
cw = lteSCIEncode(ue,scibits)
cw = lteSCIEncode(ue,scibits,outlen)

Description
cw = lteSCIEncode(ue,scibits) returns the codeword resulting from the sidelink control
information (SCI) encoding of the input bit vector, scibits, given the field settings in the user
equipment structure, ue. As defined in TS 36.212 [1], Section 5.4.3, the encoding process includes 16
bit CRC attachment, tail biting convolutional coding, rate matching and PUSCH interleaving. This
processing takes in an SCI message generated with lteSCI. The codeword returned is ready for
transmission on the ltePSCCH physical channel.

cw = lteSCIEncode(ue,scibits,outlen) rate matches the returned codeword to the output
length provided by outlen.

Examples

Encode Format 0 SCI Message

Create an SCI format 0 message structure, modify selected information field values, and generate the
new SCI message and payload bits. Encode the SCI message payload bits.

Create a UE settings structure and SCI message structure.

ue = struct('NSLRB',50,'CyclicPrefixSL','Normal');
sci0 = lteSCI(ue);

Modify the SCI message structure settings and generate an SCI message bit vector.

sci0.FreqHopping = 1;
sci0.ModCoding = 3;
[sci0,scibits] = lteSCI(ue,sci0);

Generate an encoded SCI message codeword.

cw = lteSCIEncode(ue,scibits);

Encode Format 0 SCI Message of Specified Length

Create an SCI format 0 message structure, and generate the new SCI message and payload bits.
Encode the SCI message payload bits in a codeword of length specified by outlen.

Create a UE settings structure and SCI message structure.

 lteSCIEncode

2-1047

ue = struct('NSLRB',50,'CyclicPrefixSL','Extended');
[sci0,scibits] = lteSCI(ue);

Generate an encoded SCI message codeword of length specified by outlen.

outlen = 144;
cw = lteSCIEncode(ue,scibits,outlen);
size(cw)

ans = 1×2

 144 1

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a structure containing this parameter field:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

Data Types: struct

scibits — SCI message bit vector
column vector

SCI message bit vector, specified as a column vector. scibits are the SCI processing input bits to be
transmitted on a single PSCCH.
Data Types: double | int8

outlen — Codeword length
nonnegative integer | optional

Codeword length, specified as a nonnegative integer. outlen must be a multiple of 2. It should be a
multiple of 12 for D2D normal cyclic prefix and a multiple of 10 for extended cyclic prefix and V2X.
The output length is meant to match the number of data-carrying SC-FDMA symbols in a PSCCH
subframe and align with the dimensions of the PUSCH interleaver stage.

2 Functions

2-1048

Output Arguments
cw — Codeword
288 bit or 240 bit column vector | column vector with zero rows | column vector with length equal to
outlen

Codeword resulting from SCI processing, returned as a column vector of binary values. cw is the
result of SCI processing the input vector, scibits. The output codeword matches the normal or
extended cyclic prefix bit capacity available in the ltePSCCHIndices output, not accounting for the
sidelink SC-FDMA guard symbol. Depending on the function syntax used and input configuration, the
length of cw is:

• 288 bits for nonempty data input and normal cyclic prefix
• 240 bits for nonempty data input and extended cyclic prefix and for V2X
• An empty 0-by-1 matrix for an empty data input
• Rate-matched to outlen

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteSCI | lteSCIDecode | lteSCIInfo | ltePSCCH | lteDCIEncode

 lteSCIEncode

2-1049

https://www.3gpp.org

lteSCIInfo
SCI message information

Syntax
info = lteSCIInfo(ue)

Description
info = lteSCIInfo(ue) returns an information structure indicating the payload sizes for SCI
message formats. Release 12 defines a single SCI format 0, and Release 14 defines an additional
format 1 for V2X sidelink. The output structure contains two fields with the message lengths for each
format.

To access the individual bit field sizes for the specified format, use lteSCI.

Examples

Get SCI Message Information

Get the information payload size of SCI message format 0 and format 1 for UE settings configuration
with 10 MHz channel bandwidth.

A channel bandwidth of 10 MHz requires 50 resource blocks, NSLRB = 50.

ue = struct('NSLRB',50);
sci0length = lteSCIInfo(ue)

sci0length = struct with fields:
 Format0: 43
 Format1: 32

Get SCI Message Information for Standard Bandwidths

Get the information payload size of SCI message format 0 for standard bandwidths.

cbw = {'1.4MHz' '3MHz' '5MHz' '10MHz' '15MHz' '20MHz'};
disp('Bandwidth SCI Message Length (bits)')

Bandwidth SCI Message Length (bits)

for ii = 1:size(cbw,2)
 ue = struct('NSLRB',cbw(1,ii));
 sci0length = lteSCIInfo(ue);
 bw = cbw{1,ii};
 fprintf('%6s %3d\n',bw, sci0length.Format0)
end

2 Functions

2-1050

1.4MHz 37
 3MHz 39
 5MHz 41
 10MHz 43
 15MHz 44
 20MHz 45

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a structure containing this parameter field:

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

Output Arguments
info — Payload size for the SCI message format
structure

Payload size for the SCI message format, returned as a structure with the following parameter fields:

Format0 — Format 0 payload size
integer

Format 0 payload size, returned as an integer indicating the SCI message length used for the
scheduling of PSSCH.
Data Types: double

Format1 — Format 1 payload size
integer

Format 1 payload size, returned as an integer indicating the SCI message length used for the
scheduling of V2X PSSCH.
Data Types: double

Version History
Introduced in R2016b

See Also
lteSCI | lteSCIEncode | lteSCIDecode | lteDCIInfo

 lteSCIInfo

2-1051

lteSCIResourceAllocation
SCI message physical resource blocks allocation

Syntax
prbset = lteSCIResourceAllocation(ue,scistr)

Description
prbset = lteSCIResourceAllocation(ue,scistr) returns a column vector containing the
zero-based physical resource block (PRB) indices for the specified UE settings and as defined by the
resource allocation substructure of the sidelink control information (SCI) message structure. The PRB
indices created are for a single PSSCH transmission in a subframe within the PSSCH subframe pool.

For more information, see “SCI Resource Allocation” on page 2-1060.

Examples

Allocate Nonhopping PSSCH Subframe Pool PRBs

Display the PRB allocations associated with the sequence of subframes in a PSSCH subframe pool.

Configure a nonhopping allocation of 3 PRBs according to the RIV calculation specified in TS 36.213,
Section 8.1.1.

ue = struct('NSLRB',50);
sci = struct('FreqHopping',0);
sci.Allocation.RIV = 110;

Display an image of the PRBs used in each slot of each subframe in a pool of 10 PSSCH subframes.

subframeslots = zeros(ue.NSLRB,20);
for i = 0:9
 ue.NSubframePSSCH = i;
 prbSet = lteSCIResourceAllocation(ue,sci);
 prbSet = repmat(prbSet,1,2/size(prbSet,2));
 for s = 1:2
 subframeslots(prbSet(:,s)+1,2*i+s) = 20+s*20;
 end
end
imagesc(subframeslots)
axis xy
xlabel('PSSCH Subframe Pool')
ylabel('PRB Indices')

2 Functions

2-1052

Allocate Type 2 Hopping PSSCH Subframe Pool PRBs

Configure a type 2 hopping allocation of 3 PRBs. Display the PRB allocations that are associated with
the sequence of subframes in a PSSCH subframe pool.

Configure UE and SCI settings structures for a type 2 hopping allocation of 3 PRBs.

ue = struct('NSLRB',50);
ue.PSSCHHoppingParameter = 10;
ue.NSubbands = 2;
ue.PSSCHHoppingOffset = 1;
sci = struct('FreqHopping',1);
sci.Allocation.RIV = 110;
sci.Allocation.HoppingBits = 3;

Display an image of the PRBs used in each slot of each subframe in a pool of 10 PSSCH subframes.

subframeslots = zeros(ue.NSLRB,20);
for i = 0:9
 ue.NSubframePSSCH = i;
 prbSet = lteSCIResourceAllocation(ue,sci);
 prbSet = repmat(prbSet,1,2/size(prbSet,2));
 for s = 1:2
 subframeslots(prbSet(:,s)+1,2*i+s) = 20+s*20;
 end
end
imagesc(subframeslots)
axis xy
xlabel('PSSCH Subframe Pool')
ylabel('PRB Indices')

 lteSCIResourceAllocation

2-1053

Allocate Type 1 Hopping PSSCH Subframe Pool PRBs

Configure a type 1 hopping allocation of 3 PRBs. Display the PRB allocations that are associated with
the sequence of subframes in a PSSCH subframe pool.

Configure UE and SCI settings structures for a type 1 hopping allocation of 3 PRBs.

ue = struct('NSLRB',50);
sci = struct('FreqHopping',1);
sci.Allocation.RIV = 110;
sci.Allocation.HoppingBits = 1;

Display an image of the PRBs used in each slot of each subframe in a pool of 10 PSSCH subframes.

subframeslots = zeros(ue.NSLRB,20);
for i = 0:9
 ue.NSubframePSSCH = i;
 prbSet = lteSCIResourceAllocation(ue,sci);
 prbSet = repmat(prbSet,1,2/size(prbSet,2));
 for s = 1:2
 subframeslots(prbSet(:,s)+1,2*i+s) = 20+s*20;
 end
end
imagesc(subframeslots)
axis xy

2 Functions

2-1054

xlabel('PSSCH Subframe Pool')
ylabel('PRB Indices')

Allocate Type 1 Hopping PSSCH Pool Restricting PRBs

Configure PRB pool restriction for transmission mode 2. Display the PRB allocations that are
associated with the sequence of subframes in a PSSCH subframe pool.

Configure a UE settings structure with specified PRB indices. Default settings are used for other UE
and SCI fields.

ue = struct('NSLRB',50);
ue.PRBPool = (30:49);
sci = struct('FreqHopping',1);

Display an image of the PRBs used in each slot of each subframe in a pool of 10 PSSCH subframes.

subframeslots = zeros(ue.NSLRB,20);
for i = 0:9
 ue.NSubframePSSCH = i;
 prbSet = lteSCIResourceAllocation(ue,sci);
 prbSet = repmat(prbSet,1,2/size(prbSet,2));
 for s = 1:2
 subframeslots(prbSet(:,s)+1,2*i+s) = 20+s*20;
 end

 lteSCIResourceAllocation

2-1055

end
imagesc(subframeslots)
axis xy
xlabel('PSSCH Subframe Pool')
ylabel('PRB Indices')

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

NSubframePSSCH — PSSCH subframe number
integer scalar | optional

PSSCH subframe number in PSSCH subframe pool, specified as an integer scalar. (nssf
PSSCH)

2 Functions

2-1056

Note This parameter is required for SCI format 0 and frequency hopping.
(scistr.SCIFormat = 'Format0' and scistr.FreqHopping = 1)

Data Types: double

PSSCHHoppingParameter — PSSCH hopping parameter
0 (default) | integer scalar from 0 to 510 | optional

PSSCH hopping parameter, specified as an integer scalar from 0 to 510. (SL-HoppingConfigComm-
r12 {hoppingParameter-r12})

All values ≥ 504 are treated as 510.

Note This parameter is required for SCI format 0 and frequency hopping.
(scistr.SCIFormat = 'Format0' and scistr.FreqHopping = 1)

Data Types: double

NSubbands — Number of subbands
1 (default) | 2 | 4 | optional

Number of subbands, specified as 1, 2, or 4. (SL-HoppingConfigComm-r12 {numSubbands-r12})

Note This parameter is required for SCI format 0 and frequency hopping.
(scistr.SCIFormat = 'Format0' and scistr.FreqHopping = 1)

Data Types: double

PSSCHHoppingOffset — PSSCH hopping offset
0 (default) | integer scalar from 0 to 110 | optional

PSSCH hopping offset, specified as an integer scalar from 0 to 110. (SL-HoppingConfigComm-r12
{rb-Offset-r12})

Note This parameter is required for SCI format 0 and frequency hopping.
(scistr.SCIFormat = 'Format0' and scistr.FreqHopping = 1)

Data Types: double

PRBPool — PSSCH resource block pool
optional | zero-based integer vector | optional

PSSCH resource block pool (sidelink transmission mode 2), specified as a zero-based integer vector of
indices giving the PRBs in the pool. If PRBPool is absent or empty, the pool is assumed to be the full
transmission bandwidth.

Note This parameter is required for SCI format 0 and frequency hopping.
(scistr.SCIFormat = 'Format0' and scistr.FreqHopping = 1)

 lteSCIResourceAllocation

2-1057

Data Types: double

PSSCHNSubchannels — Number of sub-channels in the V2X PSSCH resource pool
1 (default) | integer scalar from 1 to 110 | optional

Number of sub-channels in the V2X PSSCH resource pool, specified as an integer scalar from 1 to
110.

Note This parameter is required for SCI format 1. (scistr.SCIFormat = 'Format1')

Data Types: double

PSSCHSubchannelsSize — Number of PRB in each sub-channel
4 (default) | integer scalar from 1 to 110 | optional

Number of PRB in each sub-channel, specified as an integer scalar from 1 to 110.

Note This parameter is required for SCI format 1. (scistr.SCIFormat = 'Format1')

Data Types: double

PSSCHSubchannelsPRBStart — First PRB index associated with first sub-channel of the
resource pool
0 (default) | integer scalar from 1 to 109 | optional

First PRB index associated with first sub-channel of the resource pool, specified as an integer scalar
from 1 to 109.

Note This parameter is required for SCI format 1. (scistr.SCIFormat = 'Format1')

Data Types: double

PSSCHAdjacency — Whether PSCCH and PSSCH are transmitted in adjacent PRB
'On' (default) | 'Off' | optional

Whether PSCCH and PSSCH are transmitted in adjacent PRB, specified as 'On' or 'Off'.

Note This parameter is required for SCI format 1. (scistr.SCIFormat = 'Format1')

Data Types: double

FirstSubchannelIdx — First sub-channel index of PSSCH resource allocation
0 (default) | integer scalar from 1 to 109 | optional

First sub-channel index of PSSCH resource allocation, specified as an integer scalar from 1 to 109.

Note This parameter is required for SCI format 1. (scistr.SCIFormat = 'Format1')

2 Functions

2-1058

Data Types: double

Data Types: struct

scistr — Sidelink control information settings
structure

Sidelink control information settings, specified as a parameter structure containing these PRB
allocation fields:

SCIFormat — SCI format type
'Format0' (default) | 'Format1'

SCI format type, specified as 'Format0' or 'Format1'.
Data Types: char | string

FreqHopping — Frequency hopping flag
0 (default) | 1

Frequency hopping flag, specified as 0 for nonhopping allocation type or 1 for hopping allocation
type. When scistr.FreqHopping = 1, the hopping allocation type is signalled by
scistr.Allocation.HoppingBits.

Note This parameter is required for SCI format 0. (scistr.SCIFormat = 'Format0')

Data Types: double

Allocation — Resource allocation parameter substructure
structure | optional

Resource allocation parameter substructure, specified as a structure.

HoppingBits — Hopping bits
0 (default) | bit vector with 0, 1, or 2 bits

Hopping bits, specified as a bit vector with 0, 1, or 2 bits. The HoppingBits parameter signals the
hopping type. For more information, see “SCI Resource Allocation” on page 2-1060.

Note This parameter is required for SCI format 0. (scistr.SCIFormat = 'Format0')

Data Types: double

RIV — Resource indication value
0 (default) | bit vector with 5 to 13 bits

Resource indication value, specified as a bit vector with 5 to 13 bits. The resource indication value
assignment for sidelink follows the specifications for uplink, as modified in TS 36.213 [2], Sections
14.1.1.2 and 14.1.1.4. For more information, see “SCI Resource Allocation” on page 2-1060.

Note This parameter is required for SCI format 0. (scistr.SCIFormat = 'Format0')

 lteSCIResourceAllocation

2-1059

Data Types: double

Data Types: struct

RIV — Resource indication value
bit vector with 0 to 13 bits | optional

Resource indication value, specified as a bit vector with 0 to 13 bits. The resource indication value
assignment for sidelink follows the specifications for uplink, as modified in TS 36.213 [2], Sections
14.1.1.2 and 14.1.1.4. For more information, see “SCI Resource Allocation” on page 2-1060.

Note This parameter is required for SCI format 1. (scistr.SCIFormat = 'Format1')

Data Types: double

Data Types: struct

Output Arguments
prbset — Physical resource block indices
nonnegative integer column vector | nonnegative integer column matrix

Physical resource block indices, returned as a nonnegative integer column vector or N-by-2 integer
matrix of zero-based indices.

• When the allocation type defines one set of PRB indices to use in the first and second slots of the
subframe, prbset is returned as an integer column vector.

• When the allocation type defines a different set of PRB indices in the first and second slots of the
subframe, prbset is returned as two-column integer matrix.

The PRB indices created are for a single PSSCH transmission in a subframe within the PSSCH
subframe pool.

More About
SCI Resource Allocation

Sidelink control information (SCI) resource allocation mapping is described in TS 36.211 [1], Section
9.3.6. The sciout structure returned by lteSCI can be directly used as the scistr structure input
to lteSCIResourceAllocation. Using lteSCI creates a properly formatted SCI format 0
message, ensuring that the field values adhere to the underlying field bit lengths. The scistr field
values are read modulo to the SCI message bit lengths. Any fields missing from scistr default to 0.
PSSCH allocations are based on uplink resource allocation type 0 (see lteDCI, DCI format 0). In
these allocations, the same single contiguous PRB allocation must be used for both slots in the
subframe. As with uplink, for sidelink:

• A FreqHopping value of 1 signals a hopping allocation type. There are two types of hopping: type
1 PUSCH hopping and type 2 PUSCH hopping (frequency hopping with a predefined pattern).
scistr.Allocation.HoppingBits signals the hopping type, as specified in TS 36.213 [2], Table
8.4-2.

• A FreqHopping value of 0 signals a nonhopping allocation type

2 Functions

2-1060

Alternatively, you can use lteDCIResourceAllocation with a DCI format 5 message and the same
message fields to generate the PSSCH allocations. This PSSCH allocation represents sidelink
transmission mode 1, with the eNodeB using a DCI format 5 message to provide the transmitting UE
with a PSSCH resource allocation.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteSCI | ltePSCCH | lteSLSCH | lteDCIResourceAllocation

 lteSCIResourceAllocation

2-1061

https://www.3gpp.org
https://www.3gpp.org

lteSLBCH
Sidelink broadcast channel

Syntax
cw = lteSLBCH(ue,trblk)

Description
cw = lteSLBCH(ue,trblk) returns a column vector of sidelink broadcast channel (SL-BCH)
transport channel coded bits for the specified UE settings structure and transport block payload. The
encoding process includes 16-bit CRC calculation and attachment, tail-biting convolutional encoding,
rate matching, and PUSCH interleaving, as defined in TS 36.212 [1], Section 5.4.1. This transport
channel carries the lteSLMIB RRC message. The sidelink BCH codeword output, cw, is ready for
transmission on the physical sidelink broadcast channel using ltePSBCH.

Examples

Generate SL-BCH Codeword

Generate an SL-BCH coded vector of length 1152, corresponding to the SL-BCH codeword for normal
cyclic prefix.

Create UE-specific configuration structure with 10 MHz bandwidth and normal cyclic prefix.

ue.NSLRB = 50;
ue.CyclicPrefixSL = 'Normal';

Generate the MIB-SL transport block and SL-BCH codeword.

slmib = lteSLMIB(ue);
slbchCodeword = lteSLBCH(ue,slmib);

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing the following fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

2 Functions

2-1062

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

Data Types: struct

trblk — Transport block
40-bit vector

Transport block, specified as a 40-bit vector containing MIB-SL information bits. These bits are
delivered at the input to the SL-BCH transport channel.
Data Types: double | int8 | logical

Output Arguments
cw — Codeword representing the MIB-SL information bits
binary-valued column vector

Codeword representing the MIB-SL information bits, returned as a binary-valued column vector. For
D2D sidelink mode, this vector has length 1152 for normal cyclic prefix or 864 for extended cyclic
prefix. For V2X PSBCH, this vector has length 1008, defined for normal cyclic prefix only. If the input
MIB-SL message is empty, the function returns this output as an empty 0-by-1 matrix. The output
codeword matches the bit capacity available in the PSBCH. The PSBCH bit capacity is based on the
specified cyclic prefix setting and does not account for the sidelink SC-FDMA guard symbol. For more
information, see ltePSBCHIndices.
Data Types: int8

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteSLBCHDecode | ltePSBCH | lteBCH | lteSLMIB | ltePSBCHIndices

 lteSLBCH

2-1063

https://www.3gpp.org

lteSLBCHDecode
Sidelink broadcast channel decoding

Syntax
[trblkout,crcerr] = lteSLBCHDecode(ue,softbits)

Description
[trblkout,crcerr] = lteSLBCHDecode(ue,softbits) returns a 40-by-1 column vector of
information bits and the cyclic redundancy check (CRC) result for the specified UE settings structure
and recovered soft bits.

The SL-BCH decoder performs the inverse of the sidelink broadcast channel processing performed by
lteSLBCH, and as defined in TS 36.212 [1], Section 5.4.1. The decoding operation includes PUSCH
deinterleaving, rate recovery, tail-biting convolutional decoding, and CRC decoding.

Examples

Decode SL-BCH Codeword

Decode a sidelink broadcast channel (SL-BCH) codeword.

Create a UE-specific configuration structure with normal cyclic prefix.

ue.CyclicPrefixSL = 'Normal';

Generate an SL-BCH codeword by using an MIB-SL transport block of all ones. Display the CRC
result.

trblk = ones(40,1);
slbchCoded = lteSLBCH(ue,trblk);
[slbchDecoded,err] = lteSLBCHDecode(ue,slbchCoded);
err

err = uint32
 0

The CRC result indicates no error. isequal reconfirms the decoded output matches the input
transport block.

isequal(slbchDecoded,trblk)

ans = logical
 1

2 Functions

2-1064

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

Data Types: struct

softbits — Log-likelihood ratio soft bits
vector

Log-likelihood ratio (LLR) soft bits, specified as a vector. Nominally, softbits contains 1152 bits for
normal cyclic prefix, 864 bits extended cyclic prefix, or 1008 bits for V2X. These lengths match the bit
capacity of the PSBCH, ignoring the SC-FDMA guard symbol.

Because PSBCH uses a low code rate and the decoder can successfully decode much shorter blocks
than the entire coded block, input softbits can be any length.
Data Types: double

Output Arguments
trblkout — Transport block
40-by-1 column bit vector

Transport block, returned as a 40-by-1 column bit vector representing the MIB-SL information bits
sent by a transmitting UE on the SL-BCH transport channel. The MIB-SL information bits are
decoded from the soft log-likelihood (LLR) codeword data.
Data Types: int8

crcerr — CRC error status
0 | 1

CRC error status, returned as 0 for a pass and 1 for a block error.
Data Types: uint32

Version History
Introduced in R2016b

 lteSLBCHDecode

2-1065

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteSLBCH | ltePSBCHDecode | lteSLMIB | lteBCHDecode

2 Functions

2-1066

https://www.3gpp.org

lteSLChannelEstimatePSBCH
PSBCH sidelink channel estimation

Syntax
[hest] = lteSLChannelEstimatePSBCH(ue,rxgrid)
[hest] = lteSLChannelEstimatePSBCH(ue,cec,rxgrid)
[hest,noiseest] = lteSLChannelEstimatePSBCH(___)

Description
[hest] = lteSLChannelEstimatePSBCH(ue,rxgrid) returns an estimate for the channel by
averaging the least squares estimates of the reference symbols across time and copying these
estimates across the allocated resource elements within the time frequency grid. The channel
estimation configuration uses the method described in TS 36.101 [1], Annex F.

[hest] = lteSLChannelEstimatePSBCH(ue,cec,rxgrid) also accepts the channel estimator
configuration structure, cec, to adjust the default method and parameters defined for estimating the
channel.

[hest,noiseest] = lteSLChannelEstimatePSBCH(___) also returns an estimate of the noise
power spectral density for the channel. This syntax supports input options from prior syntaxes.

Examples

Estimate Channel Using PSBCH DM-RS and Default CE Settings

Estimate the channel characteristics given the PSBCH-received resource grid containing PSBCH DM-
RS symbols. Use the default channel estimation configuration method, as defined in TS 36.101, Annex
F.

Create Parameter Structure

Define UE-specific settings in a parameter structure.

ue = struct('NSLRB',50,'CyclicPrefixSL','Normal','NSLID',1);

Populate Subframe with PSBCH Symbols

Create the subframe grid and indices for the subframe. Create broadcast channel and demodulation
reference symbols and populate the subframe.

subframe = lteSLResourceGrid(ue);
psbchIndices = ltePSBCHIndices(ue);
psbchdmrsIndices = ltePSBCHDRSIndices(ue);
psbchSymbols = ltePSBCH(ue,lteSLBCH(ue,zeros(40,1)));
subframe(psbchIndices) = psbchSymbols;
subframe(psbchdmrsIndices) = ltePSBCHDRS(ue);

 lteSLChannelEstimatePSBCH

2-1067

Estimate Channel Characteristics

Use the received resource grid containing PSBCH DM-RS symbols to estimate the channel
characteristics.

• Perform sidelink SC-FDMA modulation.
• No channel impairment is applied, so set the received waveform equal to the transmit waveform.
• Perform sidelink SC-FDMA demodulation and channel estimation.

txWaveform = lteSLSCFDMAModulate(ue,subframe);
rxWaveform = txWaveform;
rxGrid = lteSLSCFDMADemodulate(ue,rxWaveform);
hest = lteSLChannelEstimatePSBCH(ue,rxGrid);

Estimate Channel Using PSBCH DM-RS

Estimate the channel characteristics given the PSBCH-received resource grid containing PSBCH DM-
RS symbols. The default channel estimation configuration is adjusted.

Create parameter structures

Define UE-specific settings and channel estimation configuration settings in parameter structures.

ue = struct('NSLRB',50,'CyclicPrefixSL','Normal','NSLID',1);
cec = struct('FreqWindow',7,'TimeWindow',1,'InterpType','cubic','PilotAverage','UserDefined');

Populate a subframe with PSBCH symbols

Create the subframe grid and indices for the subframe. Create broadcast channel and demodulation
reference (DM-RS) symbols.

subframe = lteSLResourceGrid(ue);
psbchIndices = ltePSBCHIndices(ue);

psbchSymbols = ltePSBCH(ue,lteSLBCH(ue,zeros(40,1)));

subframe(psbchIndices) = psbchSymbols;
subframe(ltePSBCHDRSIndices(ue)) = ltePSBCHDRS(ue);

Estimate the channel characteristics

Use the received resource grid containing PSBCH DM-RS symbols to estimate the channel
characteristics.

• Perform sidelink SC-FDMA modulation.
• No channel impairment is applied, so set the received waveform equal to the transmit waveform.
• Perform sidelink SC-FDMA demodulation and channel estimation.

txWaveform = lteSLSCFDMAModulate(ue,subframe);

rxWaveform = txWaveform;

2 Functions

2-1068

rxGrid = lteSLSCFDMADemodulate(ue,rxWaveform);
hest = lteSLChannelEstimatePSBCH(ue,cec,rxGrid);

Estimate Channel and Noise Using PSBCH DM-RS

Estimate the channel characteristics and noise power spectral density given the PSBCH-received
resource grid containing PSBCH DM-RS symbols.

Create Parameter Structures

Define UE-specific settings and channel estimation configuration settings in parameter structures.

ue = struct('NSLRB',50,'CyclicPrefixSL','Normal','NSLID',1);
cec = struct('FreqWindow',7,'TimeWindow',1,'InterpType','cubic','PilotAverage','UserDefined');

Populate Subframe with PSBCH Symbols

Create the subframe grid and indices for the subframe. Create broadcast channel and demodulation
reference symbols.

subframe = lteSLResourceGrid(ue);
psbchIndices = ltePSBCHIndices(ue);

psbchSymbols = ltePSBCH(ue,lteSLBCH(ue,zeros(40,1)));
subframe(psbchIndices) = psbchSymbols;

subframe(ltePSBCHDRSIndices(ue)) = ltePSBCHDRS(ue);

Estimate Channel Characteristics

Estimate the channel characteristics by using the received resource grid containing PSBCH DM-RS
symbols.

• Perform sidelink SC-FDMA modulation
• Add noise to the transmitted signal
• Perform sidelink SC-FDMA demodulation and channel estimation
• View the noise estimate

txWaveform = lteSLSCFDMAModulate(ue,subframe);

rxWaveform = awgn(txWaveform,15,'measured');

rxGrid = lteSLSCFDMADemodulate(ue,rxWaveform);
[hest,noiseEst] = lteSLChannelEstimatePSBCH(ue,cec,rxGrid);

disp(noiseEst)

 8.7693e-04

Input Arguments
ue — UE-specific settings
structure

 lteSLChannelEstimatePSBCH

2-1069

User equipment settings, specified as a structure containing these fields.

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

NSLID — Physical layer sidelink synchronization identity
integer from 0 to 355

Physical layer sidelink synchronization identity, specified as an integer from 0 to 355. (NID
SL)

Data Types: double

Data Types: struct

rxgrid — Received resource element grid
3-D array

Received resource element grid, specified as an NSC-by-NSym-by-NR array of complex symbols.

• NSC is the number of subcarriers.
• NSym = NSF × NSymPerSF = 1 × NSymPerSF

• NSF is the total number of subframes. For this function rxgrid must contain one subframe.
• NSymPerSF is the number of SC-FDMA symbols per subframe.

• For normal cyclic prefix, a subframe contains 14 SC-FDMA symbols.
• For extended cyclic prefix, a subframe contains 12 SC-FDMA symbols.

• NR is the number of receive antennas.

Data Types: double
Complex Number Support: Yes

cec — PSBCH channel estimation settings
structure

PSBCH channel estimation settings, specified as a structure that can contain these fields.

2 Functions

2-1070

FreqWindow — Size of frequency window
integer

Size of frequency window, specified as an integer that is odd or a multiple of 12. FreqWindow is the
number of resource elements (REs) used to average over frequency.
Data Types: double

TimeWindow — Size of time window
integer

Size of time window, specified as an odd integer. TimeWindow is the number of resource elements
(REs) used to average over time.
Data Types: double

InterpType — Type of 2-D interpolation
'nearest' | 'linear' | 'natural' | 'cubic' | 'v4' | 'none'

Type of 2-D interpolation used during interpolation, specified as one of these supported choices.

Value Description
'nearest' Nearest neighbor interpolation
'linear' Linear interpolation
'natural' Natural neighbor interpolation
'cubic' Cubic interpolation
'v4' MATLAB 4 griddata method
'none' Disables interpolation

For details, see griddata.
Data Types: char | string

PilotAverage — Type of pilot averaging
'UserDefined' (default) | 'TestEVM' | optional

Type of pilot averaging, specified as 'UserDefined' or 'TestEVM'.

The 'UserDefined' pilot averaging uses a rectangular kernel of size cec.FreqWindow-by-
cec.TimeWindow and performs a 2-D filtering operation on the pilots. Pilots near the edge of the
resource grid are averaged less because they have no neighbors outside of the grid.

For cec.FreqWindow = 12×X (that is, any multiple of 12) and cec.TimeWindow = 1, the estimator
enters a special case where an averaging window of (12×X)-in-frequency is used to average the pilot
estimates. The averaging is always applied across (12×X) subcarriers, even at the upper and lower
band edges. Therefore, the first (6×X) symbols at the upper and lower band edge have the same
channel estimate. This operation ensures that averaging is always done on 12 (or a multiple of 12)
symbols. The 'TestEVM' pilot averaging ignores other structure fields in cec, and for the
transmitter EVM testing, it follows the method described in TS 36.101, Annex F.
Data Types: char | string

Data Types: struct

 lteSLChannelEstimatePSBCH

2-1071

Output Arguments
hest — Channel estimate between each transmit and receive antenna
3-D array

Channel estimate between each transmit and receive antenna, returned as an NSC-by-NSym-by-NR
array of complex symbols. NSC is the total number of subcarriers, NSym is the number of SC-FDMA
symbols, and NR is the number of receive antennas.

For cec.InterpType = 'none',

• No interpolation between the pilot symbol estimates is performed and no virtual pilots are created
• hest contains channel estimates in the locations of transmitted DM-RS symbols for each received

antenna and all other elements of hest are 0
• The averaging of pilot symbol estimates, described by cec.TimeWindow and cec.FreqWindow, is

still performed

noiseest — Noise estimate
numeric scalar

Noise estimate, returned as a numeric scalar. When cec.PilotAverage is 'UserDefined', this
output is the power spectral density of the noise present on the estimated channel response
coefficients. Otherwise, noiseest returns 0.

Version History
Introduced in R2017a

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteSLChannelEstimatePSCCH | lteSLChannelEstimatePSSCH

2 Functions

2-1072

https://www.3gpp.org

lteSLChannelEstimatePSCCH
PSCCH sidelink channel estimation

Syntax
[hest] = lteSLChannelEstimatePSCCH(ue,rxgrid)
[hest] = lteSLChannelEstimatePSCCH(ue,cec,rxgrid)
[hest,noiseest] = lteSLChannelEstimatePSCCH(___)

Description
[hest] = lteSLChannelEstimatePSCCH(ue,rxgrid) returns an estimate for the channel by
averaging the least squares estimates of the reference symbols across time and copying these
estimates across the allocated resource elements within the time frequency grid. The channel
estimation configuration uses the method described in TS 36.101 [1], Annex F.

[hest] = lteSLChannelEstimatePSCCH(ue,cec,rxgrid) also accepts the channel estimator
configuration structure, cec, to adjust the default method and parameters defined for estimating the
channel.

[hest,noiseest] = lteSLChannelEstimatePSCCH(___) also returns an estimate of the noise
power spectral density for the channel. This syntax supports input options from prior syntaxes.

Examples

Estimate Channel Using PSCCH DM-RS and Default CE Settings

Estimate the channel characteristics given the PSCCH-received resource grid containing PSCCH DM-
RS symbols. Use the default channel estimation configuration method, as defined in TS 36.101, Annex
F.

Create a structure defining UE-specific settings.

ue = struct('NSLRB',25,'CyclicPrefixSL','Normal','PRBSet',5);

Create the subframe grid, control channel, and indices for a subframe. Populate the subframe with
PSCCH symbols.

subframe = lteSLResourceGrid(ue);

[pscchIndices,pscchInfo] = ltePSCCHIndices(ue);
pscchSymbols = ltePSCCH(randi([0 1],pscchInfo.G,1));

subframe(pscchIndices) = pscchSymbols;

Create the control DM-RS and indices. Add the PSCCH DM-RS symbols to the subframe.

subframe(ltePSCCHDRSIndices(ue)) = ltePSCCHDRS;

Perform sidelink SC-FDMA modulation.

 lteSLChannelEstimatePSCCH

2-1073

txWaveform = lteSLSCFDMAModulate(ue,subframe);

No channel impairment is applied, so set the received waveform equal to the transmit waveform.
Perform sidelink SC-FDMA demodulation and channel estimation.

rxWaveform = txWaveform;

rxGrid = lteSLSCFDMADemodulate(ue,rxWaveform);
hest = lteSLChannelEstimatePSCCH(ue,rxGrid);

Estimate Channel Using PSCCH DM-RS

Estimate the channel characteristics given the PSCCH-received resource grid containing PSCCH DM-
RS symbols. The default channel estimation configuration is adjusted.

Create structures defining UE-specific settings and channel estimation configuration settings.

ue = struct('NSLRB',50,'CyclicPrefixSL','Normal','PRBSet',5);

cec = struct('FreqWindow',7,'TimeWindow',1,'InterpType','cubic', ...
 'PilotAverage','UserDefined');

Create the subframe grid, control channel, and indices for a subframe. Populate the subframe with
PSCCH symbols.

subframe = lteSLResourceGrid(ue);

[pscchIndices,pscchInfo] = ltePSCCHIndices(ue);
pscchSymbols = ltePSCCH(randi([0 1],pscchInfo.G,1));

subframe(pscchIndices) = pscchSymbols;

Create the control DM-RS and indices. Add the PSCCH DM-RS symbols to the subframe.

subframe(ltePSCCHDRSIndices(ue)) = ltePSCCHDRS;

Perform sidelink SC-FDMA modulation.

txWaveform = lteSLSCFDMAModulate(ue,subframe);

No channel impairment is applied, so set the received waveform equal to the transmit waveform.
Perform sidelink SC-FDMA demodulation and channel estimation.

rxWaveform = txWaveform;

rxGrid = lteSLSCFDMADemodulate(ue,rxWaveform);
hest = lteSLChannelEstimatePSCCH(ue,cec,rxGrid);

Estimate Channel and Noise Using PSCCH DM-RS

Estimate the channel characteristics and noise power spectral density given the PSCCH-received
resource grid containing PSCCH DM-RS symbols.

2 Functions

2-1074

Create structures defining UE-specific and channel estimation configuration settings.

ue = struct('NSLRB',25,'CyclicPrefixSL','Normal','PRBSet',5);
cec = struct('FreqWindow',7,'TimeWindow',1,'InterpType','cubic', ...
 'PilotAverage','UserDefined');

Create the subframe grid, control channel, and indices for a subframe. Populate the subframe with
PSCCH symbols.

subframe = lteSLResourceGrid(ue);

[pscchIndices,pscchInfo] = ltePSCCHIndices(ue);
pscchSymbols = ltePSCCH(randi([0 1],pscchInfo.G,1));

subframe(pscchIndices) = pscchSymbols;

Create the control DM-RS and indices. Add the PSCCH DM-RS symbols to the subframe.

subframe(ltePSCCHDRSIndices(ue)) = ltePSCCHDRS;

Perform sidelink SC-FDMA modulation.

txWaveform = lteSLSCFDMAModulate(ue,subframe);

Add noise to impair the channel. Perform sidelink SC-FDMA demodulation and channel estimation.
View the noise estimate.

rxWaveform = awgn(txWaveform,15,'measured');

rxGrid = lteSLSCFDMADemodulate(ue,rxWaveform);
[hest,noiseest] = lteSLChannelEstimatePSCCH(ue,cec,rxGrid);
noiseest

noiseest = 4.3822e-04

Input Arguments
ue — UE-specific settings
structure

User equipment settings, specified as a structure containing these fields.

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

 lteSLChannelEstimatePSCCH

2-1075

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

PRBSet — Zero-based physical resource block index
integer | integer column vector | two-column integer matrix

Zero-based physical resource block (PRB) index, specified as an integer, an integer column vector, or
a two-column integer matrix.

For D2D sidelink, the PSCCH is intended to be transmitted in a single PRB in a subframe and
therefore, specifying PRBSet as a scalar PRB index is recommended. For V2X sidelink, the PSCCH is
intended to be transmitted in a pair of consecutive PRB in a subframe, therefore PRBSet must be a
column vector containing two consecutive indices. However, for a more general nonstandard multi-
PRB allocation, PRBSet can be a set of indices specified as an integer column vector or as a two-
column integer matrix corresponding to slot-wise resource allocations for PSCCH.
Data Types: double

CyclicShift — Cyclic shift for DM-RS
0 (default) | 3 | 6 | 9

Cyclic shift for DM-RS, specified as 0, 3, 6 or 9. The function uses this input only for V2X sidelink.
Data Types: double

Data Types: struct

rxgrid — Received resource element grid
3-D array

Received resource element grid, specified as an NSC-by-NSym-by-NR array of complex symbols.

• NSC is the number of subcarriers.
• NSym = NSF × NSymPerSF = 1 × NSymPerSF

• NSF is the total number of subframes. For this function rxgrid must contain one subframe.
• NSymPerSF is the number of SC-FDMA symbols per subframe.

• For normal cyclic prefix, a subframe contains 14 SC-FDMA symbols.
• For extended cyclic prefix, a subframe contains 12 SC-FDMA symbols.

• NR is the number of receive antennas.

Data Types: double
Complex Number Support: Yes

cec — PSCCH channel estimation settings
structure

PSCCH channel estimation settings, specified as a structure that can contain these fields.

FreqWindow — Size of frequency window
integer

2 Functions

2-1076

Size of frequency window, specified as an integer that is odd or a multiple of 12. FreqWindow is the
number of resource elements (REs) used to average over frequency.
Data Types: double

TimeWindow — Size of time window
integer

Size of time window, specified as an odd integer. TimeWindow is the number of resource elements
(REs) used to average over time.
Data Types: double

InterpType — Type of 2-D interpolation
'nearest' | 'linear' | 'natural' | 'cubic' | 'v4' | 'none'

Type of 2-D interpolation used during interpolation, specified as one of these supported choices.

Value Description
'nearest' Nearest neighbor interpolation
'linear' Linear interpolation
'natural' Natural neighbor interpolation
'cubic' Cubic interpolation
'v4' MATLAB 4 griddata method
'none' Disables interpolation

For details, see griddata.
Data Types: char | string

PilotAverage — Type of pilot averaging
'UserDefined' (default) | 'TestEVM' | optional

Type of pilot averaging, specified as 'UserDefined' or 'TestEVM'.

The 'UserDefined' pilot averaging uses a rectangular kernel of size cec.FreqWindow-by-
cec.TimeWindow and performs a 2-D filtering operation on the pilots. Pilots near the edge of the
resource grid are averaged less because they have no neighbors outside of the grid.

For cec.FreqWindow = 12×X (that is, any multiple of 12) and cec.TimeWindow = 1, the estimator
enters a special case where an averaging window of (12×X)-in-frequency is used to average the pilot
estimates. The averaging is always applied across (12×X) subcarriers, even at the upper and lower
band edges. Therefore, the first (6×X) symbols at the upper and lower band edge have the same
channel estimate. This operation ensures that averaging is always done on 12 (or a multiple of 12)
symbols. The 'TestEVM' pilot averaging ignores other structure fields in cec, and for the
transmitter EVM testing, it follows the method described in TS 36.101, Annex F.
Data Types: char | string

Data Types: struct

 lteSLChannelEstimatePSCCH

2-1077

Output Arguments
hest — Channel estimate between each transmit and receive antenna
3-D array

Channel estimate between each transmit and receive antenna, returned as an NSC-by-NSym-by-NR
array of complex symbols. NSC is the total number of subcarriers, NSym is the number of SC-FDMA
symbols, and NR is the number of receive antennas.

For cec.InterpType = 'none',

• No interpolation between the pilot symbol estimates is performed and no virtual pilots are created
• hest contains channel estimates in the locations of transmitted DM-RS symbols for each received

antenna and all other elements of hest are 0
• The averaging of pilot symbol estimates, described by cec.TimeWindow and cec.FreqWindow, is

still performed

noiseest — Noise estimate
numeric scalar

Noise estimate, returned as a numeric scalar. When cec.PilotAverage is 'UserDefined', this
output is the power spectral density of the noise present on the estimated channel response
coefficients. Otherwise, noiseest returns 0.

Version History
Introduced in R2017a

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteSLChannelEstimatePSBCH | lteSLChannelEstimatePSSCH

2 Functions

2-1078

https://www.3gpp.org

lteSLChannelEstimatePSSCH
PSSCH sidelink channel estimation

Syntax
[hest] = lteSLChannelEstimatePSSCH(ue,rxgrid)
[hest] = lteSLChannelEstimatePSSCH(ue,cec,rxgrid)
[hest,noiseest] = lteSLChannelEstimatePSSCH(___)

Description
[hest] = lteSLChannelEstimatePSSCH(ue,rxgrid) returns an estimate for the channel by
averaging the least squares estimates of the reference symbols across time and copying these
estimates across the allocated resource elements within the time frequency grid. The channel
estimation configuration uses the method described in TS 36.101 [1], Annex F.

[hest] = lteSLChannelEstimatePSSCH(ue,cec,rxgrid) also accepts the channel estimator
configuration structure, cec, to adjust the default method and parameters defined for estimating the
channel.

[hest,noiseest] = lteSLChannelEstimatePSSCH(___) also returns an estimate of the noise
power spectral density for the channel. This syntax supports input options from prior syntaxes.

Examples

Estimate Channel Using PSSCH DM-RS and Default CE Settings

Estimate the channel characteristics given the PSSCH-received resource grid containing PSSCH DM-
RS symbols. Use the default channel estimation configuration method, as defined in TS 36.101, Annex
F.

Configure UE Settings

Define UE-specific settings in a parameter structure.

ue = struct('NSLRB',50,'CyclicPrefixSL','Normal','NSAID',255, ...
 'Modulation','QPSK','NSubframePSSCH',0,'PRBSet',(30:39)');

Populate Subframe with PSSCH Symbols

Create the subframe grid and indices for the subframe. Create shared channel and demodulation
reference signal (DM-RS) symbols. Populate the subframe with the shared channel and DM-RS
symbols.

subframe = lteSLResourceGrid(ue);
[psschIndices,psschInfo] = ltePSSCHIndices(ue);

psschSymbols = ltePSSCH(ue,zeros(psschInfo.G,1));
subframe(psschIndices) = psschSymbols;

 lteSLChannelEstimatePSSCH

2-1079

subframe(ltePSSCHDRSIndices(ue)) = ltePSSCHDRS(ue);

Estimate Channel Characteristics

Estimate the channel characteristics by using the received resource grid containing PSSCH DM-RS
symbols.

• Perform sidelink SC-FDMA modulation
• No channel impairment is applied, so set the received waveform equal to the transmit waveform
• Perform sidelink SC-FDMA demodulation and channel estimation

txWaveform = lteSLSCFDMAModulate(ue,subframe);

rxWaveform = txWaveform;

rxGrid = lteSLSCFDMADemodulate(ue,rxWaveform);
hest = lteSLChannelEstimatePSSCH(ue,rxGrid);

Estimate Channel Using PSSCH DM-RS

Estimate the channel characteristics given the PSSCH-received resource grid containing PSSCH DM-
RS symbols.

Create Parameter Structures

Define UE-specific settings and channel estimation configuration settings in parameter structures.

ue = struct('NSLRB',50,'CyclicPrefixSL','Normal','NSAID',255, ...
 'Modulation','QPSK','NSubframePSSCH',0,'PRBSet',(30:39)');
cec = struct('FreqWindow',7,'TimeWindow',1,'InterpType','cubic', ...
 'PilotAverage','UserDefined');

Populate Subframe with PSSCH Symbols

Create the subframe grid and indices for the subframe. Create shared channel and demodulation
reference signal (DM-RS) symbols. Populate the subframe with shared channel and DM-RS symbols.

subframe = lteSLResourceGrid(ue);
[psschIndices,psschInfo] = ltePSSCHIndices(ue);

psschSymbols = ltePSSCH(ue,zeros(psschInfo.G,1));
subframe(psschIndices) = psschSymbols;

subframe(ltePSSCHDRSIndices(ue)) = ltePSSCHDRS(ue);

Estimate Channel Characteristics

Estimate the channel characteristics by using the received resource grid containing PSSCH DM-RS
symbols.

• Perform sidelink SC-FDMA modulation
• No channel impairment is applied, so set the received waveform equal to the transmit waveform
• Perform sidelink SC-FDMA demodulation and channel estimation

2 Functions

2-1080

txWaveform = lteSLSCFDMAModulate(ue,subframe);

rxWaveform = txWaveform;

rxGrid = lteSLSCFDMADemodulate(ue,rxWaveform);
hest = lteSLChannelEstimatePSSCH(ue,cec,rxGrid);

Estimate Channel and Noise Using PSSCH DM-RS

Estimate the channel characteristics and noise power spectral density given the PSSCH-received
resource grid containing PSSCH DM-RS symbols.

Create Parameter Structures

Define UE-specific settings and channel estimation configuration settings in parameter structures.

ue = struct('NSLRB',50,'CyclicPrefixSL','Normal','NSAID',255, ...
 'Modulation','QPSK','NSubframePSSCH',0,'PRBSet',(30:39)');
cec = struct('FreqWindow',7,'TimeWindow',1,'InterpType','cubic', ...
 'PilotAverage','UserDefined');

Populate Subframe with PSSCH Symbols

Create the subframe grid and indices for the subframe. Create shared channel and demodulation
reference signal (DM-RS) symbols. Populate the subframe with shared channel and DM-RS symbols.

subframe = lteSLResourceGrid(ue);

[psschIndices,psschInfo] = ltePSSCHIndices(ue);
psschSymbols = ltePSSCH(ue,zeros(psschInfo.G,1));

subframe(psschIndices) = psschSymbols;

Create the control DM-RS and indices. Add the PSSCH DM-RS symbols to the subframe.

subframe(ltePSSCHDRSIndices(ue)) = ltePSSCHDRS(ue);

Estimate Channel Characteristics

Estimate the channel characteristics by using the received resource grid containing PSSCH DM-RS
symbols.

• Perform sidelink SC-FDMA modulation
• Add noise to the transmitted signal
• Perform sidelink SC-FDMA demodulation and channel estimation
• View the noise estimate

txWaveform = lteSLSCFDMAModulate(ue,subframe);

rxWaveform = awgn(txWaveform,15,'measured');

rxGrid = lteSLSCFDMADemodulate(ue,rxWaveform);
[hest,noiseest] = lteSLChannelEstimatePSSCH(ue,cec,rxGrid);

noiseest

 lteSLChannelEstimatePSSCH

2-1081

noiseest = 0.0026

Input Arguments
ue — UE-specific settings
structure

User equipment settings, specified as a structure containing these fields.

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

NSAID — Sidelink group destination identity
integer in the interval [0, 255]

Sidelink group destination identity, specified as an integer in the interval [0, 255].

This field is the lower eight bits of the full 24-bit ProSe Layer-2 group destination ID. This field and
the NSubframePSSCH field control the value of the scrambling sequence at the start of each
subframe. This field is required only for D2D sidelink.
Data Types: double

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

NXID — V2X scrambling identity
integer scalar

V2X scrambling identity, specified as an integer scalar. NXID is the 16 bit CRC associated with the
PSCCH SCI grant. It is only required for V2X sidelink.
Data Types: double

NSubframePSSCH — PSSCH subframe number
integer scalar

PSSCH subframe number in the PSSCH subframe pool, specified as an integer scalar. (nssf
PSSCH)

2 Functions

2-1082

NSubframePSSCH and NSAID control the values of the scrambling sequence. It is only required for
D2D sidelink.
Data Types: double

PRBSet — Zero-based physical resource block indices
integer column vector | two-column integer matrix

Zero-based physical resource block (PRB) indices, specified as an integer column vector or a two-
column integer matrix.

The PSSCH is intended to be transmitted in the same PRB in each slot of a subframe. Therefore,
specifying PRBSet as a single column of PRB indices is recommended. However, for a nonstandard
slot-hopping PRB allocation, PRBSet can be specified as a two-column matrix of indices
corresponding to slot-wise resource allocations for PSSCH.
Data Types: double

Data Types: struct

rxgrid — Received resource element grid
3-D array

Received resource element grid, specified as an NSC-by-NSym-by-NR array of complex symbols.

• NSC is the number of subcarriers.
• NSym = NSF × NSymPerSF = 1 × NSymPerSF

• NSF is the total number of subframes. For this function rxgrid must contain one subframe.
• NSymPerSF is the number of SC-FDMA symbols per subframe.

• For normal cyclic prefix, a subframe contains 14 SC-FDMA symbols.
• For extended cyclic prefix, a subframe contains 12 SC-FDMA symbols.

• NR is the number of receive antennas.

Data Types: double
Complex Number Support: Yes

cec — PSSCH channel estimation settings
structure

PSSCH channel estimation settings, specified as a structure that can contain these fields.

FreqWindow — Size of frequency window
integer

Size of frequency window, specified as an integer that is odd or a multiple of 12. FreqWindow is the
number of resource elements (REs) used to average over frequency.
Data Types: double

TimeWindow — Size of time window
integer

Size of time window, specified as an odd integer. TimeWindow is the number of resource elements
(REs) used to average over time.

 lteSLChannelEstimatePSSCH

2-1083

Data Types: double

InterpType — Type of 2-D interpolation
'nearest' | 'linear' | 'natural' | 'cubic' | 'v4' | 'none'

Type of 2-D interpolation used during interpolation, specified as one of these supported choices.

Value Description
'nearest' Nearest neighbor interpolation
'linear' Linear interpolation
'natural' Natural neighbor interpolation
'cubic' Cubic interpolation
'v4' MATLAB 4 griddata method
'none' Disables interpolation

For details, see griddata.
Data Types: char | string

PilotAverage — Type of pilot averaging
'UserDefined' (default) | 'TestEVM' | optional

Type of pilot averaging, specified as 'UserDefined' or 'TestEVM'.

The 'UserDefined' pilot averaging uses a rectangular kernel of size cec.FreqWindow-by-
cec.TimeWindow and performs a 2-D filtering operation on the pilots. Pilots near the edge of the
resource grid are averaged less because they have no neighbors outside of the grid.

For cec.FreqWindow = 12×X (that is, any multiple of 12) and cec.TimeWindow = 1, the estimator
enters a special case where an averaging window of (12×X)-in-frequency is used to average the pilot
estimates. The averaging is always applied across (12×X) subcarriers, even at the upper and lower
band edges. Therefore, the first (6×X) symbols at the upper and lower band edge have the same
channel estimate. This operation ensures that averaging is always done on 12 (or a multiple of 12)
symbols. The 'TestEVM' pilot averaging ignores other structure fields in cec, and for the
transmitter EVM testing, it follows the method described in TS 36.101, Annex F.
Data Types: char | string

Data Types: struct

Output Arguments
hest — Channel estimate between each transmit and receive antenna
3-D array

Channel estimate between each transmit and receive antenna, returned as an NSC-by-NSym-by-NR
array of complex symbols. NSC is the total number of subcarriers, NSym is the number of SC-FDMA
symbols, and NR is the number of receive antennas.

For cec.InterpType = 'none',

• No interpolation between the pilot symbol estimates is performed and no virtual pilots are created

2 Functions

2-1084

• hest contains channel estimates in the locations of transmitted DM-RS symbols for each received
antenna and all other elements of hest are 0

• The averaging of pilot symbol estimates, described by cec.TimeWindow and cec.FreqWindow, is
still performed

noiseest — Noise estimate
numeric scalar

Noise estimate, returned as a numeric scalar. When cec.PilotAverage is 'UserDefined', this
output is the power spectral density of the noise present on the estimated channel response
coefficients. Otherwise, noiseest returns 0.

Version History
Introduced in R2017a

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteSLChannelEstimatePSBCH | lteSLChannelEstimatePSCCH

 lteSLChannelEstimatePSSCH

2-1085

https://www.3gpp.org

lteSLFrameOffsetPSBCH
PSBCH DM-RS sidelink subframe timing estimate

Syntax
offset = lteSLFrameOffsetPSBCH(ue,waveform)
[offset,corr] = lteSLFrameOffsetPSBCH(ue,waveform)

Description
offset = lteSLFrameOffsetPSBCH(ue,waveform) performs synchronization using PSBCH
demodulation reference signal (DM-RS) symbols for the time-domain waveform, waveform, given UE-
specific settings, ue.

The returned offset indicates the number of samples from the start of the input waveform to the
position in that waveform where the first subframe containing the DM-RS begins.

[offset,corr] = lteSLFrameOffsetPSBCH(ue,waveform) also returns a complex matrix,
corr, which is used to extract the timing offset.

Examples

Synchronize and Demodulate Transmission Containing PSBCH DM-RS

Synchronize and demodulate a transmission that has been delayed by five samples. The transmission
contains PSBCH demodulation reference signal (DM-RS) symbols that are used when estimating the
waveform timing offset.

Create a UE configuration specifying 15 resource blocks, a sidelink identity of 1, and a normal cyclic
prefix.

ue = struct('NSLRB',15,'NSLID',1,'CyclicPrefixSL','Normal');

Create a resource grid and modulate the waveform containing PSBCH DM-RS symbols.

txgrid = lteSLResourceGrid(ue);
txgrid(ltePSBCHDRSIndices(ue)) = ltePSBCHDRS(ue);
txwaveform = lteSLSCFDMAModulate(ue,txgrid);

Add a time delay of five samples.

rxwaveform = [zeros(5,1); txwaveform];

Calculate the timing offset in samples.

offset = lteSLFrameOffsetPSBCH(ue,rxwaveform)

offset = 5

Correct the timing offset and demodulate the received waveform.

2 Functions

2-1086

rxGrid = lteSLSCFDMADemodulate(ue,rxwaveform(1+offset:end));

View Correlation Peak in PSBCH DM-RS Transmission

View the correlation peak for a transmission waveform that has been delayed by five samples. The
transmission contains PSBCH demodulation reference signal (DM-RS) symbols available for
estimating the waveform timing.

Create a UE configuration specifying 15 resource blocks, a sidelink identity of 1, and a normal cyclic
prefix.

ue = struct('NSLRB',15,'NSLID',1,'CyclicPrefixSL','Normal');

Create a resource grid and modulate the waveform containing PSBCH DM-RS symbols.

txgrid = lteSLResourceGrid(ue);
txgrid(ltePSBCHDRSIndices(ue)) = ltePSBCHDRS(ue);
txwaveform = lteSLSCFDMAModulate(ue,txgrid);

Calculate the timing offset in samples.

[offset corr] = lteSLFrameOffsetPSBCH(ue,txwaveform);

Add a time delay of five samples.

rxwaveform = [zeros(5,1); txwaveform];

Calculate the timing offset in samples.

[offset corrDelayed] = lteSLFrameOffsetPSBCH(ue,rxwaveform);

Plot the correlation data before and after delay is added. Zoom in on the x-axis to view correlation
peaks.

plot(corr)
hold on
plot(corrDelayed)
hold off
xlim([0 50])

 lteSLFrameOffsetPSBCH

2-1087

Correct the timing offset and demodulate the received waveform.

rxGrid = lteSLSCFDMADemodulate(ue,rxwaveform(1+offset:end));

Input Arguments
ue — UE-specific settings
scalar structure

User equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

2 Functions

2-1088

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

NSLID — Physical layer sidelink synchronization identity
integer from 0 to 355

Physical layer sidelink synchronization identity, specified as an integer from 0 to 355. (NID
SL)

Data Types: double

Data Types: struct

waveform — Modulated sidelink waveform
numeric matrix

Modulated sidelink waveform, specified as an NS-by-NR numeric matrix, where NS is the number of
time-domain samples and NR is the number of receive antennas. waveform should be at least one
subframe long and contain the DM-RS signals.

You can generate this matrix by performing SC-FDMA modulation on a resource matrix. To perform
this modulation, use the lteSLSCFDMAModulate function or one of the channel model functions,
such as lteFadingChannel or lteMovingChannel.
Data Types: double

Output Arguments
offset — Offset number of samples
scalar integer

Offset number of samples, returned as a scalar integer. This output is the number of samples from the
start of the waveform to the position in that waveform where the first subframe containing the DM-
RS begins. offset is computed by extracting the timing of the peak of the correlation between
waveform and internally generated reference waveforms containing DM-RS signals. The correlation
is performed separately for each antenna. The antenna with the strongest correlation is used to
compute offset.

Note offset is the position of mod(max(abs(corr),LSF)), where LSF is the subframe length.

corr — Signal used to extract the timing offset
numeric matrix

Signal used to extract the timing offset, returned as a complex numeric matrix. corr has the same
dimensions as waveform.

Version History
Introduced in R2017a

 lteSLFrameOffsetPSBCH

2-1089

See Also
lteFadingChannel | lteMovingChannel | lteSCFDMADemodulate

2 Functions

2-1090

lteSLFrameOffsetPSCCH
PSCCH DM-RS sidelink subframe timing estimate

Syntax
offset = lteSLFrameOffsetPSCCH(ue,waveform)
[offset,corr] = lteSLFrameOffsetPSCCH(ue,waveform)

Description
offset = lteSLFrameOffsetPSCCH(ue,waveform) performs synchronization using PSCCH
demodulation reference signal (DM-RS) symbols for the time-domain waveform, waveform, given UE-
specific settings, ue.

The returned offset indicates the number of samples from the start of the input waveform to the
position in that waveform where the first subframe containing DM-RS begins.

[offset,corr] = lteSLFrameOffsetPSCCH(ue,waveform) also returns a complex matrix,
corr, which is used to extract the timing offset.

Examples

Synchronize and Demodulate Transmission Containing PSCCH DM-RS

Synchronize and demodulate a transmission that has been delayed by five samples. The transmission
contains PSCCH demodulation reference signal (DM-RS) symbols that are used when estimating the
waveform timing offset.

Create a UE configuration specifying 15 resource blocks, a normal cyclic prefix, and a PRBSet of 1.

ue = struct('NSLRB',15,'CyclicPrefixSL','Normal','PRBSet',1);

Create a resource grid and modulate the waveform containing PSCCH DM-RS symbols.

txgrid = lteSLResourceGrid(ue);
txgrid(ltePSCCHDRSIndices(ue)) = ltePSCCHDRS;
txwaveform = lteSLSCFDMAModulate(ue,txgrid);

Add a time delay of five samples.

rxwaveform = [zeros(5,1); txwaveform];

Calculate the timing offset in samples.

offset = lteSLFrameOffsetPSCCH(ue,rxwaveform)

offset = 5

Correct the timing offset and demodulate the received waveform.

rxGrid = lteSLSCFDMADemodulate(ue,rxwaveform(1+offset:end));

 lteSLFrameOffsetPSCCH

2-1091

View Correlation Peak in PSCCH DM-RS Transmission

View the correlation peak for a transmission waveform that has been delayed by five samples. The
transmission contains PSCCH demodulation reference signal (DM-RS) symbols available for
estimating the waveform timing.

Create a UE configuration specifying 15 resource blocks, a normal cyclic prefix, and a PRBSet of 1.

ue = struct('NSLRB',15,'CyclicPrefixSL','Normal','PRBSet',1);

Create a resource grid and modulate the waveform containing PSCCH DM-RS symbols.

txgrid = lteSLResourceGrid(ue);
txgrid(ltePSCCHDRSIndices(ue)) = ltePSCCHDRS;
txwaveform = lteSLSCFDMAModulate(ue,txgrid);

Calculate the timing offset in samples.

[offset corr] = lteSLFrameOffsetPSCCH(ue,txwaveform);

Add a time delay of five samples.

rxwaveform = [zeros(5,1); txwaveform];

Calculate the timing offset in samples.

[offset corrDelayed] = lteSLFrameOffsetPSCCH(ue,rxwaveform);

Plot the correlation data before and after delay is added. Zoom in on the x-axis to view correlation
peaks.

plot(corr)
hold on
plot(corrDelayed)
hold off
xlim([0 100])

2 Functions

2-1092

Correct the timing offset and demodulate the received waveform.

rxGrid = lteSLSCFDMADemodulate(ue,rxwaveform(1+offset:end));

Input Arguments
ue — UE-specific settings
scalar structure

User equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

 lteSLFrameOffsetPSCCH

2-1093

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

PRBSet — Zero-based physical resource block index
integer | integer column vector | two-column integer matrix

Zero-based physical resource block (PRB) index, specified as an integer, an integer column vector, or
a two-column integer matrix.

For D2D sidelink, the PSCCH is intended to be transmitted in a single PRB in a subframe and
therefore, specifying PRBSet as a scalar PRB index is recommended. For V2X sidelink, the PSCCH is
intended to be transmitted in a pair of consecutive PRB in a subframe, therefore PRBSet must be a
column vector containing two consecutive indices. However, for a more general nonstandard multi-
PRB allocation, PRBSet can be a set of indices specified as an integer column vector or as a two-
column integer matrix corresponding to slot-wise resource allocations for PSCCH.
Data Types: double

CyclicShift — Cyclic shift for DM-RS
0 (default) | 3 | 6 | 9

Cyclic shift for DM-RS, specified as 0, 3, 6 or 9. The function uses this input only for V2X sidelink.
Data Types: double

Data Types: struct

waveform — Modulated sidelink waveform
numeric matrix

Modulated sidelink waveform, specified as an NS-by-NR numeric matrix, where NS is the number of
time-domain samples and NR is the number of receive antennas. waveform should be at least one
subframe long and contain the DM-RS signals.

You can generate this matrix by performing SC-FDMA modulation on a resource matrix. To perform
this modulation, use the lteSLSCFDMAModulate function or one of the channel model functions,
such as lteFadingChannel or lteMovingChannel.
Data Types: double

Output Arguments
offset — Offset number of samples
scalar integer

Offset number of samples, returned as a scalar integer. This output is the number of samples from the
start of the waveform to the position in that waveform where the first subframe containing the DM-
RS begins. offset is computed by extracting the timing of the peak of the correlation between
waveform and internally generated reference waveforms containing DM-RS signals. The correlation
is performed separately for each antenna. The antenna with the strongest correlation is used to
compute offset.

2 Functions

2-1094

Note offset is the position of mod(max(abs(corr),LSF)), where LSF is the subframe length.

corr — Signal used to extract the timing offset
numeric matrix

Signal used to extract the timing offset, returned as a complex numeric matrix. corr has the same
dimensions as waveform.

Version History
Introduced in R2017a

See Also
lteFadingChannel | lteMovingChannel | lteSCFDMADemodulate

 lteSLFrameOffsetPSCCH

2-1095

lteSLFrameOffsetPSSCH
PSSCH DM-RS sidelink subframe timing estimate

Syntax
offset = lteSLFrameOffsetPSSCH(ue,waveform)
[offset,corr] = lteSLFrameOffsetPSSCH(ue,waveform)

Description
offset = lteSLFrameOffsetPSSCH(ue,waveform) performs synchronization using PSSCH
demodulation reference signal (DM-RS) symbols for the time-domain waveform, waveform, given UE-
specific settings, ue.

The returned offset indicates the number of samples from the start of the input waveform to the
position in that waveform where the first subframe containing DM-RS begins.

[offset,corr] = lteSLFrameOffsetPSSCH(ue,waveform) also returns a complex matrix,
corr, which is used to extract the timing offset.

Examples

Synchronize and Demodulate Transmission Containing PSSCH DM-RS

Synchronize and demodulate a transmission that has been delayed by five samples. The transmission
contains PSSCH demodulation reference signal (DM-RS) symbols that are used when estimating the
waveform timing offset.

Create a UE configuration specifying 15 resource blocks, a sidelink identity of 1, a normal cyclic
prefix, a PSSCH subframe number of 0, and a PRBSet of 1.

ue = struct('NSLRB',15,'NSAID',1,'CyclicPrefixSL','Normal', ...
 'NSubframePSSCH',0,'PRBSet',1);

Create a resource grid and modulate the waveform containing PSSCH DM-RS symbols.

txgrid = lteSLResourceGrid(ue);
txgrid(ltePSSCHDRSIndices(ue)) = ltePSSCHDRS(ue);
txwaveform = lteSLSCFDMAModulate(ue,txgrid);

Add a time delay of five samples.

rxwaveform = [zeros(5,1); txwaveform];

Calculate the timing offset in samples.

offset = lteSLFrameOffsetPSSCH(ue,rxwaveform)

offset = 5

Correct the timing offset and demodulate the received waveform.

2 Functions

2-1096

rxGrid = lteSLSCFDMADemodulate(ue,rxwaveform(1+offset:end));

View Correlation Peak in PSSCH DM-RS Transmission

View the correlation peak for a transmission waveform that has been delayed by five samples. The
transmission contains PSSCH demodulation reference signal (DM-RS) symbols available for
estimating the waveform timing.

Create a UE configuration specifying 15 resource blocks, a sidelink identity of 1, a normal cyclic
prefix, a PSSCH subframe number of 0, and a PRBSet of 1.

ue = struct('NSLRB',15,'NSAID',1,'CyclicPrefixSL','Normal', ...
 'NSubframePSSCH',0,'PRBSet',1);

Create a resource grid and modulate the waveform containing PSSCH DM-RS symbols.

txgrid = lteSLResourceGrid(ue);
txgrid(ltePSSCHDRSIndices(ue)) = ltePSSCHDRS(ue);
txwaveform = lteSLSCFDMAModulate(ue,txgrid);

Calculate the timing offset in samples.

[offset corr] = lteSLFrameOffsetPSSCH(ue,txwaveform);

Add a time delay of five samples.

rxwaveform = [zeros(5,1); txwaveform];

Calculate the timing offset in samples.

[offset corrDelayed] = lteSLFrameOffsetPSSCH(ue,rxwaveform);

Plot the correlation data before and after delay is added. Zoom in on the x-axis to view correlation
peaks.

plot(corr)
hold on
plot(corrDelayed)
hold off
xlim([0 100])

 lteSLFrameOffsetPSSCH

2-1097

Correct the timing offset and demodulate the received waveform.

rxGrid = lteSLSCFDMADemodulate(ue,rxwaveform(1+offset:end));

Input Arguments
ue — UE-specific settings
scalar structure

User equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

2 Functions

2-1098

NSAID — Sidelink group destination identity
integer in the interval [0, 255]

Sidelink group destination identity, specified as an integer in the interval [0, 255].

This field is the lower eight bits of the full 24-bit ProSe Layer-2 group destination ID. This field and
the NSubframePSSCH field control the value of the scrambling sequence at the start of each
subframe. This field is required only for D2D sidelink.
Data Types: double

NXID — V2X scrambling identity
integer scalar

V2X scrambling identity, specified as an integer scalar. NXID is the 16 bit CRC associated with the
PSCCH SCI grant. It is only required for V2X sidelink.
Data Types: double

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

NSubframePSSCH — PSSCH subframe number
integer scalar

PSSCH subframe number in the PSSCH subframe pool, specified as an integer scalar. (nssf
PSSCH)

NSubframePSSCH and NSAID control the values of the scrambling sequence. It is only required for
D2D sidelink.
Data Types: double

PRBSet — Zero-based physical resource block indices
integer column vector | two-column integer matrix

Zero-based physical resource block (PRB) indices, specified as an integer column vector or a two-
column integer matrix.

The PSSCH is intended to be transmitted in the same PRB in each slot of a subframe. Therefore,
specifying PRBSet as a single column of PRB indices is recommended. However, for a nonstandard
slot-hopping PRB allocation, PRBSet can be specified as a two-column matrix of indices
corresponding to slot-wise resource allocations for PSSCH.
Data Types: double

Data Types: struct

waveform — Modulated sidelink waveform
numeric matrix

Modulated sidelink waveform, specified as an NS-by-NR numeric matrix, where NS is the number of
time-domain samples and NR is the number of receive antennas. waveform should be at least one
subframe long and contain the DM-RS signals.

 lteSLFrameOffsetPSSCH

2-1099

You can generate this matrix by performing SC-FDMA modulation on a resource matrix. To perform
this modulation, use the lteSLSCFDMAModulate function or one of the channel model functions,
such as lteFadingChannel or lteMovingChannel.
Data Types: double

Output Arguments
offset — Offset number of samples
scalar integer

Offset number of samples, returned as a scalar integer. This output is the number of samples from the
start of the waveform to the position in that waveform where the first subframe containing the DM-
RS begins. offset is computed by extracting the timing of the peak of the correlation between
waveform and internally generated reference waveforms containing DM-RS signals. The correlation
is performed separately for each antenna. The antenna with the strongest correlation is used to
compute offset.

Note offset is the position of mod(max(abs(corr),LSF)), where LSF is the subframe length.

corr — Signal used to extract the timing offset
numeric matrix

Signal used to extract the timing offset, returned as a complex numeric matrix. corr has the same
dimensions as waveform.

Version History
Introduced in R2017a

See Also
lteFadingChannel | lteMovingChannel | lteSCFDMADemodulate

2 Functions

2-1100

lteSLMIB
Sidelink MIB encoding and decoding

Syntax
mibslout = lteSLMIB(ue)
ueout = lteSLMIB(mibsl)
ueout = lteSLMIB(mibsl,ue)

Description
mibslout = lteSLMIB(ue) returns the encoded sidelink MIB (MIB-SL) RRC message bits for the
specified UE settings structure.

For more information, see “MIB-SL Message Processing” on page 2-1105.

ueout = lteSLMIB(mibsl) performs the inverse processing of the preceding syntax, returning a
UE parameter structure after decoding the input MIB-SL message bits.

ueout = lteSLMIB(mibsl,ue) returns the UE settings structure, updating any fields contained in
the input UE parameter structure with values decoded from mibsl.

Examples

Create MIB-SL Message

Create the 40-bit MIB-SL associated with the parameter values to be carried on the message.

Initialize a UE-specific configuration structure with 10 MHz bandwidth for TDD.

ue.NSLRB = 50;
ue.DuplexMode = 'TDD';
ue.TDDConfig = 6;
ue.NFrame = 5;
ue.NSubframe = 1;
ue.InCoverage = 1;

Generate the 40-bit MIB-SL message using the ue structure.

mibsl = lteSLMIB(ue);

Decode MIB-SL Message

Decode the 40-bit MIB-SL message, creating a received parameter structure from the message.

Initialize a UE-specific configuration structure with 5 MHz bandwidth for TDD.

ue.NSLRB = 25;
ue.DuplexMode = 'TDD';

 lteSLMIB

2-1101

ue.TDDConfig = 6;
ue.NFrame = 5;
ue.NSubframe = 1;
ue.InCoverage = 1

ue = struct with fields:
 NSLRB: 25
 DuplexMode: 'TDD'
 TDDConfig: 6
 NFrame: 5
 NSubframe: 1
 InCoverage: 1

Generate the 40-bit MIB-SL message using the ue structure.

mibsl = lteSLMIB(ue);

Convert the MIB-SL bit vector back into a parameter set. Compare this parameter set with the
transmission set.

rxparams = lteSLMIB(mibsl)

rxparams = struct with fields:
 NSLRB: 25
 DuplexMode: 'TDD'
 TDDConfig: 6
 NFrame: 5
 NSubframe: 1
 InCoverage: 1

isequal(rxparams,ue)

ans = logical
 1

Update UE Structure Using MIB-SL Message

Update UE-specific parameter configuration structure settings using the 40-bit MIB-SL message.
Encode an MIB-SL message based on one ue structure parameter set.

Encode an MIB-SL message from one UE-specific configuration

Initialize a UE-specific configuration structure with 5 MHz bandwidth for TDD. Encode a 40-bit MIB-
SL message using the ue1 structure.

ue1.NSLRB = 25;
ue1.DuplexMode = 'TDD';
ue1.TDDConfig = 6;
ue1.NFrame = 5;
ue1.NSubframe = 1;
ue1.InCoverage = 1;

mibsl = lteSLMIB(ue1);

2 Functions

2-1102

Create a second UE-specific configuration

Initialize a second UE-specific configuration structure with a different configuration. Compare ue2
with ue1.

ue2.NSLRB = 75;
ue2.DuplexMode = 'TDD';
ue2.TDDConfig = 2;
ue2.NFrame = 2;
ue2.NSubframe = 2;
ue2.InCoverage = 0;

isequal(ue2,ue1)

ans = logical
 0

Update the second UE-specific configuration based on the MIB-SL message

Using mibsl, update the settings in ue2 to match ue1. Compare ue2 with ue1.

ue2 = lteSLMIB(mibsl,ue2);
isequal(ue2,ue1)

ans = logical
 1

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

DuplexMode — Duplexing mode
'FDD' (default) | 'TDD' | optional

Duplexing mode, specified as 'FDD' or 'TDD'.
Data Types: char | string

TDDConfig — Uplink or downlink configuration
0 (default) | integer from 0 to 6 | optional

Uplink or downlink configuration, specified as an integer from 0 to 6. (tdd-ConfigSL-r12)

TDDConfig is applicable for TDD duplex mode only.

 lteSLMIB

2-1103

Data Types: double

NFrame — Direct frame number
0 (default) | nonnegative integer | optional

Direct frame number, specified as a nonnegative integer. (directFrameNumber-r12)
Data Types: double

NSubframe — Direct subframe number
0 (default) | nonnegative integer | optional

Direct subframe number, specified as a nonnegative integer. (directSubframeNumber-r12)
Data Types: double

InCoverage — Indicates whether UE is in E-UTRAN coverage
0 (default) | 1 | optional

Indicates whether the UE transmitting the MIB-SL is in E-UTRAN coverage, specified as 0 (not in
coverage) or 1 (in coverage). (inCoverage-r12).
Data Types: double

Data Types: struct

mibsl — MIB-SL message bit sequence
40-bit column vector

MIB-SL message bit sequence, specified as a 40-bit column vector.

For more information, see “MIB-SL Message Processing” on page 2-1105.
Data Types: double | int8 | logical

Output Arguments
mibslout — MIB-SL message bit sequence
40-bit column vector

MIB-SL message bit sequence, returned as a 40-bit column vector.

For more information, see “MIB-SL Message Processing” on page 2-1105.
Data Types: int8

ueout — User equipment settings
structure

User equipment settings, returned as a parameter structure containing these fields:

NSLRB — Number of sidelink resource blocks
0, 6, 15, 25, 50, 75, or 100

Number of sidelink resource blocks, returned as an integer from the set {0, 6, 15, 25, 50, 75, 100}.
(NRB

SL)

2 Functions

2-1104

For more information on sidelink bandwidths, see “MIB-SL Message Processing” on page 2-1105.
Data Types: int32

DuplexMode — Duplexing mode
'FDD' | 'TDD'

Duplexing mode, returned as 'FDD' or 'TDD'.
Data Types: char

TDDConfig — Uplink or downlink configuration
integer from 0 to 6

Uplink or downlink configuration, returned as an integer from 0 to 6. (tdd-ConfigSL-r12)

TDDConfig is applicable for TDD duplex mode only.
Data Types: int32

NFrame — Direct frame number
nonnegative integer

Direct frame number, returned as a nonnegative integer. (directFrameNumber-r12)
Data Types: int32

NSubframe — Direct subframe number
nonnegative integer

Direct subframe number, returned as a nonnegative integer. (directSubframeNumber-r12)
Data Types: int32

InCoverage — Indicates when UE is in E-UTRAN coverage
0 | 1

Indicates when UE is in E-UTRAN coverage, returned as 0 or 1. (inCoverage-r12) The UE
transmitting the MIB-SL is:

• Not in E-UTRAN coverage when InCoverage = 0.
• In E-UTRAN coverage when InCoverage = 1.

Data Types: int32

Data Types: struct

More About
MIB-SL Message Processing

The MIB-SL message is a 40 bits long and defined in TS 36.331 [1], Section 6.5.2. The message is
sent from UE to UE on the PC5 interface via the SL-BCH transport channel on the SBCCH logical
channel. MIB-SL contains sl-Bandwidth-r12, tdd-ConfigSL-r12, directFrameNumber-r12,
directSubframeNumber-r12, inCoverage-r12, and 19 bits reserved for future.

 lteSLMIB

2-1105

• When encoding the MIB-SL message:

• If NSLRB is not one of the set {6,15,25,50,75,100}, then all ones are inserted into the first
three bits (sl-Bandwidth-r12 bit field) of the MIB message.

• When decoding the MIB-SL message:

• If the first three bits (sl-Bandwidth-r12 bit field) of the input MIB-SL message do not contain
the equivalent of a decimal from 0 to 5 (MSB first, corresponding to the PRB set
{6,15,25,50,75, 100}) then NSLRB is returned as 0.

• If the input MIB-SL messages are not 40 bits, the messages are either truncated to 40
elements or zero padded as needed.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.331. “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control

(RRC); Protocol specification.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteSLBCH | lteSLBCHDecode | lteMIB

2 Functions

2-1106

https://www.3gpp.org

lteSLResourceGrid
Sidelink subframe resource array

Syntax
grid = lteSLResourceGrid(ue)
grid = lteSLResourceGrid(ue,ntxants)

Description
grid = lteSLResourceGrid(ue) returns an empty resource grid matrix that represents the
resource elements for one subframe, for the specified UE-specific setting structure.

For more information on the resource grid and the multidimensional array used to represent the
resource elements for one subframe across all configured antenna ports, see “Represent Resource
Grids”.

grid = lteSLResourceGrid(ue,ntxants) returns a 3-D resource grid array for the specified UE
settings structure and number of antenna planes.

Examples

Create Empty Sidelink Resource Grid

Create an empty resource array representing the resource elements for 10 MHz bandwidth.

reGrid = lteSLResourceGrid(struct('NSLRB',50));

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a structure containing these parameter fields:

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

 lteSLResourceGrid

2-1107

ntxants — Number of transmit antenna planes
positive integer

Number of transmit antenna planes, specified as a positive integer.
Data Types: double

Output Arguments
grid — Resource element grid
matrix | 3-D array

Resource element grid, returned as an NSC-by-NSYM-by-NTX array.

• NSC is the number of subcarriers, 12*ue.NSLRB.
• NSYM is the number of SC-FDMA symbols in a subframe—14 for normal cyclic prefix or 12 for

extended cyclic prefix.
• NTX is the number of transmission antenna planes.

Version History
Introduced in R2016b

See Also
lteSLResourceGridSize | lteULResourceGrid | lteSLSCFDMAModulate

2 Functions

2-1108

lteSLResourceGridSize
Sidelink subframe resource array size

Syntax
dim = lteSLResourceGridSize(ue)
dim = lteSLResourceGridSize(ue,ntxants)

Description
dim = lteSLResourceGridSize(ue) returns a 3-element row vector of dimension lengths for the
resource grid array that you can generate from the specified UE settings structure. By default, the
number of antennas is set to 1 for single-port sidelink transmissions.

For more information on the resource grid and the multidimensional array used to represent the
resource elements for one subframe across all configured antenna ports, see “Represent Resource
Grids”.

dim = lteSLResourceGridSize(ue,ntxants) accepts the number of antenna planes as an
optional input.

Examples

Create Empty Sidelink Resource Array Using Grid Size

Use the vector returned by lteSLResourceGridSize to create a MATLAB® array. Valid and
equivalent sidelink subframe resource grids can be created using the lteSLResourceGrid function
or the MATLAB zeros function.

Create a UE settings structure. Use the output from lteSLResourceGridSize as input to zeros to
generate an empty resource grid.

ue = struct('NSLRB',6,'CyclicPrefixSL','Normal');

reGrid1 = zeros(lteSLResourceGridSize(ue));

Generate another empty resource grid, this time use lteSLResourceGrid.

reGrid2 = lteSLResourceGrid(ue);

Confirm the two grids are identical.

isequal(reGrid1,reGrid2)

ans = logical
 1

 lteSLResourceGridSize

2-1109

Create Two Antenna Empty Sidelink Resource Array Using Grid Size

Create an empty resource grid for two antenna planes using the vector returned by
lteSLResourceGridSize and the function zeros.

Create a UE settings structure and define a local variable for the number of antennas.

ue = struct('NSLRB',6,'CyclicPrefixSL','Normal');
ntxant = 2;

Generate an empty resource grid.

reGrid = zeros(lteSLResourceGridSize(ue,ntxant));
size(reGrid)

ans = 1×3

 72 14 2

The third dimension indicates that two antenna planes are defined in the output grid.

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a structure containing these parameter fields:

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

ntxants — Number of transmit antenna planes
positive integer

Number of transmit antenna planes, specified as a positive integer.
Data Types: double

Output Arguments
dim — Dimension lengths of resource grid array
3-element row vector

2 Functions

2-1110

Dimension lengths of resource grid array, returned as a 3-element row vector, [NSC NSYM NTX].

• NSC is the number of subcarriers, 12*ue.NSLRB.
• NSYM is the number of SC-FDMA symbols in a subframe—14 for normal cyclic prefix or 12 for

extended cyclic prefix.
• NTX is the number of transmission antenna planes.

Version History
Introduced in R2016b

See Also
lteSLResourceGrid | lteULResourceGridSize

 lteSLResourceGridSize

2-1111

lteSLSCFDMADemodulate
Sidelink SC-FDMA demodulation

Syntax
grid = lteSLSCFDMADemodulate(ue,waveform)
grid = lteSLSCFDMADemodulate(ue,waveform,cpfraction)

Description
grid = lteSLSCFDMADemodulate(ue,waveform) performs sidelink SC-FDMA demodulation of
the input time-domain waveform for the specified UE settings structure. For more information, see
“Sidelink SC-FDMA Demodulation” on page 2-1115.

grid = lteSLSCFDMADemodulate(ue,waveform,cpfraction) allows the specification of the
starting waveform sample for demodulation as a fraction of the cyclic prefix.

Examples

Sidelink Demodulation

Perform sidelink SC-FDMA modulation of one subframe containing the sidelink synchronization
signals and add noise at an SNR of 3.0 dB. The demodulator zeros the resource elements in the last
SC-FDMA symbol. This behavior is consistent with the operation of the SC-FDMA modulator which
does not modulate the last SC-FDMA symbol of the subframe. Plot the received waveform and the
demodulated resource grid magnitude.

Create a UE settings structure.

ue.NSLRB = 15;
ue.CyclicPrefixSL = 'Normal';
ue.NSLID = 17;

Populate the resource grid with PSSS and SSSS. Modulate the PSSS and SSSS.

txgrid = lteSLResourceGrid(ue);
txgrid(ltePSSSIndices(ue)) = ltePSSS(ue);
txgrid(lteSSSSIndices(ue)) = lteSSSS(ue);

[txwaveform,info] = lteSLSCFDMAModulate(ue,txgrid);

Add AWGN with an SNR of 3.0 dB.

rxwaveform = awgn(txwaveform,3.0,'measured');

Perform sidelink SC-FDMA demodulation.

rxgrid = lteSLSCFDMADemodulate(ue,rxwaveform);

Calculate the RMS of each SC-FDMA symbol in the received resource grid.

2 Functions

2-1112

rms = sqrt(sum(abs((rxgrid./double(info.Nfft)).^2)));

Plot the magnitude of the resulting time-domain waveform, overlaying the RMS for each SC-FDMA
symbol after demodulation. Plot the demodulated resource grid magnitude.

t = (0:size(rxwaveform,1))/info.SamplingRate;
figure

subplot(2,1,1)
plot(t(1:end-1),abs(rxwaveform),'r')
hold on
n = cumsum([1 info.CyclicPrefixLengths + info.Nfft]);
n = [n(1:end-1); n(2:end)];
rmsplot = repmat(rms,[2 1]);
plot(t(n(:)),rmsplot(:),'b')
xlabel('time (s)')
ylabel('magnitude')
title('RX Waveform vs. Time')
legend('RX waveform magnitude','RMS per demodulated SC-FDMA symbol')

subplot(2,1,2)
imagesc(abs(rxgrid))
title('Demodulated Resource Grid Magnitude')
xlabel('SC-FDMA symbol index')
ylabel('subcarrier index')

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

 lteSLSCFDMADemodulate

2-1113

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

Data Types: struct

waveform — Sidelink SC-FDMA modulated waveform
numeric matrix

Sidelink SC-FDMA modulated waveform, specified as an NS-by-NT numeric matrix, where NS is the
number of the time-domain samples and NT is the number of transmission antennas.
NS = K × 30720 / 2048 × Nfft, where Nfft is the FFT size and K is the number of subframes in
waveform.

For more information about the FFT size, see lteSLSCFDMAInfo.
Data Types: double

cpfraction — Fraction of cyclic prefix
0.55 (default) | numeric scalar from 0 to 1

Fraction of cyclic prefix, specified as a numeric scalar from 0 to 1. A value of 0 represents the start of
the cyclic prefix and a value of 1 represents the end of the cyclic prefix. The default value is 0.55
which assumes for the default level of windowing in the lteSLSCFDMAModulate function.
Data Types: double

Output Arguments
grid — Resource element grid
numeric 3-D array

Resource element grid, returned as an NSC-by-NSYM-by-NT numeric array. NSC is 12 × NSLRB
subcarriers. NSYM is a multiple of the number of SC-FDMA symbols in a subframe (14 for normal
cyclic prefix and 12 for extended cyclic prefix). NT is the number of antenna ports. grid defines the
RE allocation across one or more subframes. Multiple subframes are defined by concatenation across
the columns (second dimension).

Each antenna plane in grid is SC-FDMA modulated, resulting in the columns of waveform, as
described in “Represent Resource Grids”.
Data Types: double
Complex Number Support: Yes

2 Functions

2-1114

More About
Sidelink SC-FDMA Demodulation

Sidelink SC-FDMA demodulation recovers the received subcarrier values by performing one FFT
operation per received sidelink SC-FDMA symbol. The recovered subcarrier values are used to
construct each column of the output resource array grid. The FFT is positioned partway through the
cyclic prefix, to account for some channel delay spread while avoiding the overlap between adjacent
SC-FDMA symbols. The input FFT is also shifted by half of one subcarrier. The position of the FFT
chosen in the function avoids the SC-FDMA symbol overlapping used in the lteSLSCFDMAModulate
function. Because the FFT is performed away from the original zero-phase point on the transmitted
subcarriers, lteSLSCFDMADemodulate applies a phase correction to each subcarrier after the FFT.

Note

• TS 36.211 specifies that for PSSCH (Section 9.3.6), PSCCH (9.4.6), PSDCH (9.5.6) and PSBCH
(9.6.6), resource elements in the last SC-FDMA symbol within a subframe should be counted in
the mapping process but not transmitted. The resource elements of the last SC-FDMA symbol in
each subframe of the output resource array grid are set to zero by lteSLSCFDMADemodulate.
This behavior is consistent with SC-FDMA modulation, performed by lteSLSCFDMAModulate.

• The sampling rate of the time-domain sidelink waveform must be the same as the rate used in the
lteSLSCFDMAModulate function, for the specified number of resource blocks, NRB.

• The input waveform must be time aligned, such that the first sample is the first sample of the
cyclic prefix of the first sidelink SC-FDMA symbol in a subframe.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteSLSCFDMAModulate | lteSLSCFDMAInfo

 lteSLSCFDMADemodulate

2-1115

https://www.3gpp.org

lteSLSCFDMAInfo
Sidelink SC-FDMA modulation information

Syntax
info = lteSLSCFDMAInfo(ue)

Description
info = lteSLSCFDMAInfo(ue) returns a structure containing information related to the sidelink
SC-FDMA modulation performed by lteSLSCFDMAModulate, using the specified UE settings
structure.

For details, see “Sidelink SC-FDMA Modulation” on page 2-1118.

Examples

Sidelink Waveform Sampling Rate for 5 MHz Channel

Calculate the sampling rate of a 5 MHz sidelink waveform after sidelink SC-FDMA modulation.

Create a UE settings structure. Specify 25 resource blocks, which corresponds to 5 MHz channel
bandwidth.

ue = struct('NSLRB',25);

For the specified channel bandwidth, find the sidelink SC-FDMA modulation sampling rate.

slscfdmaInfo = lteSLSCFDMAInfo(ue);
samplingRate = slscfdmaInfo.SamplingRate

samplingRate = 7680000

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

2 Functions

2-1116

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

Windowing — Number of time-domain samples
positive integer scalar | optional

Number of time-domain samples over which windowing and overlapping of sidelink SC-FDMA
symbols is applied, specified as a positive integer scalar.

ue.Windowing must be even. For the ue.Windowing field, the default depends on NSLRB and
CyclicPrefixSL.
Data Types: double

Data Types: struct

Output Arguments
info — Sidelink SC-FDMA modulated waveform information
structure

Sidelink SC-FDMA modulated waveform information, returned as a parameter structure containing
these fields:

SamplingRate — Sampling rate
positive numeric scalar

Sampling rate of the time-domain sidelink waveform, in Hz, returned as a positive numeric scalar.
SamplingRate = Nfft × (30.72e6 / 2048).

Nfft — Number of FFT points
positive integer scalar

Number of FFT points, returned as a positive integer scalar. Nfft is a function of the number of
resource blocks, NRB

SL.

NSLRB (NRB
SL) Nfft

6 128
15 256
25 512
50 1024
75 2048
100 2048

In general, Nfft is the smallest power of 2 greater than or equal to (12 × NRB
SL) / 0.85. Specifically,

Nfft is the smallest FFT that spans all subcarriers and results in no more than 85% of bandwidth
occupancy (12 × NRB

SL / Nfft).

 lteSLSCFDMAInfo

2-1117

Windowing — Number of time-domain samples
positive integer scalar

Number of time-domain samples over which windowing and overlapping of sidelink SC-FDMA
symbols is applied, returned as a positive integer scalar.

CyclicPrefixLengths — Cyclic prefix length
positive integer vector

Cyclic prefix length in symbols for each sidelink SC-FDMA symbol in a subframe, returned as an
NSYM-by-1 integer vector. NSYM is 14 for normal cyclic prefix and 12 for extended cyclic prefix.

The vector returned for info.CyclicPrefixLengths depends on the FFT size.

• When info.Nfft = 2048, then CyclicPrefixLengths is:

• [160 144 144 144 144 144 144 160 144 144 144 144 144 144] for normal cyclic
prefix

• [512 512 512 512 512 512 512 512 512 512 512 512] for extended cyclic prefix
• For other values of info.Nfft, these element values in CyclicPrefixLengths are scaled by

info.Nfft / 2048.

More About
Sidelink SC-FDMA Modulation

The sidelink SC-FDMA modulation processing in lteSLSCFDMAModulate performs IFFT calculation,
half-subcarrier shifting, cyclic prefix insertions, and optional raised-cosine windowing and
overlapping of adjacent sidelink SC-FDMA symbols. TS 36.211 specifies that for PSSCH (Section
9.3.6), PSCCH (9.4.6), PSDCH (9.5.6) and PSBCH (9.6.6), resource elements in the last SC-FDMA
symbol within a subframe should be counted in the mapping process but not transmitted. Therefore,
before performing the IFFT, the last SC-FDMA symbol of each subframe in the input resource grid is
set to zero.

For sidelink SC-FDMA modulation, calling lteSLSCFDMAModulate on a multi-subframe array of
resource grids is recommended.

• When the resource element grid input to lteSLSCFDMAModulate spans multiple subframes, the
windowing and overlapping is applied between all adjacent SC-FDMA symbols, including the last
symbol of the previous subframe and the first symbol of the next subframe. Multi-subframe
modulation processing results in a waveform that does not have discontinuities between
subframes.

• A time-domain waveform that concatenates individually modulated subframes has discontinuities
at the start and end of each subframe. To avoid these discontinuities, the resulting multi-subframe
time-domain waveform must be created by manually overlapping symbols at the subframe
boundaries.

• If the value for windowing is zero, issues concerning concatenation of subframes before sidelink
SC-FDMA modulation do not apply.

If ue.Windowing is absent, info.Windowing returns a default value chosen as a function of NRB.
The chosen value is a compromise between:

2 Functions

2-1118

• The effective duration of cyclic prefix, and therefore the channel delay spread tolerance
• The spectral characteristics of the transmitted signal, not considering any additional FIR filtering

Version History
Introduced in R2016b

See Also
lteSLSCFDMAModulate | lteSLSCFDMADemodulate

 lteSLSCFDMAInfo

2-1119

lteSLSCFDMAModulate
Sidelink SC-FDMA modulation

Syntax
waveform = lteSLSCFDMAModulate(ue,grid)
[waveform,info] = lteSLSCFDMAModulate(ue,grid)
[___] = lteSLSCFDMAModulate(ue,grid,windowing)

Description
waveform = lteSLSCFDMAModulate(ue,grid) returns a modulated sidelink SC-FDMA waveform
for the specified UE settings structure and allocated resource element grid of a number of subframes
across one or more antenna planes. For more information, see “Sidelink SC-FDMA Modulation” on
page 2-1124.

[waveform,info] = lteSLSCFDMAModulate(ue,grid) also returns a SC-FDMA information
structure array.

[___] = lteSLSCFDMAModulate(ue,grid,windowing) specifies in windowing the number of
windowed and overlapped samples to use in the time-domain windowing. For this syntax, the value
reported in info.Windowing equals windowing. Any value provided in ue.Windowing is ignored.

This syntax supports output options from prior syntaxes.

Examples

Sidelink Broadcast Channel Modulation

Perform sidelink SC-FDMA modulation of one subframe containing a sidelink broadcast transmission.
Any resource elements present in the last SC-FDMA symbol of the subframe are not modulated, so
the resulting waveform magnitude is zero during that SC-FDMA symbol. Plot the magnitude of the
resulting time-domain waveform and the transmitted resource grid magnitude.

Create a UE settings structure and an empty resource grid

ue.NSLRB = 6;
ue.CyclicPrefixSL = 'Extended';
ue.InCoverage = 1;
ue.DuplexMode = 'FDD';
ue.NFrame = 0;
ue.NSubframe = 0;
ue.NSLID = 42;

grid = lteSLResourceGrid(ue);

Transmit the PSBCH

Populate the PSBCH resource grid with an encoded SL-MIB message, and its DM-RS. Perform
sidelink SC-FDMA modulation.

2 Functions

2-1120

grid(ltePSBCHIndices(ue)) = ltePSBCH(ue,lteSLBCH(ue,lteSLMIB(ue)));
grid(ltePSBCHDRSIndices(ue)) = ltePSBCHDRS(ue);

[waveform,info] = lteSLSCFDMAModulate(ue,grid);

Calculate the expected RMS for each SC-FDMA symbol from the resource grid prior to modulation.

rms = sqrt(sum(abs((grid./double(info.Nfft)).^2)));

Plot the waveform magnitude overlaying the RMS for each SC-FDMA symbol. Plot the transmitted
resource grid magnitude.

t = (0:size(waveform,1))/info.SamplingRate;
figure

subplot(2,1,1)
hold on

plot(t(1:end-1),abs(waveform),'r');
n = cumsum([1 info.CyclicPrefixLengths + info.Nfft]);
n = [n(1:end-1); n(2:end)];
rmsplot = repmat(rms,[2 1]);

plot(t(n(:)),rmsplot(:),'b')
xlabel('time (s)')
ylabel('magnitude')
title('Waveform vs. Time')
legend('Waveform magnitude','RMS per resource grid SC-FDMA symbol')

subplot(2,1,2)
imagesc(abs(grid))
title('Resource Grid Magnitude')
xlabel('SC-FDMA symbol index');
ylabel('subcarrier index');

 lteSLSCFDMAModulate

2-1121

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

Windowing — Number of time-domain samples
positive integer scalar | optional

Number of time-domain samples over which the function applies windowing and overlapping of
sidelink SC-FDMA symbols, specified as a positive integer scalar.

ue.Windowing must be even. For the ue.Windowing field, the default depends on NRB and
CyclicPrefixSL.
Data Types: double

Data Types: struct

2 Functions

2-1122

grid — Resource element grid
numeric 3-D array

Resource element grid, specified as an NSC-by-NSYM-by-NT numeric array. NSC must be a multiple of 12
REs per Resource Block, since number of resource blocks is NRB = NSC / 12. NSYM must be a multiple
of the number of SC-FDMA symbols in a subframe (14 for normal cyclic prefix and 12 for extended
cyclic prefix). NT is the number of antenna ports. grid defines the RE allocation across one or more
subframes. Multiple subframes are defined by concatenation across the columns (second dimension).

Each antenna plane in grid is SC-FDMA modulated, resulting in the columns of waveform, as
described in “Represent Resource Grids”.
Data Types: double
Complex Number Support: Yes

windowing — Number of time-domain samples
positive integer scalar | optional

Number of time-domain samples over which windowing and overlapping of sidelink SC-FDMA
symbols is applied, specified as a positive integer.

If you specify windowing this value is returned in info.Windowing and any value provided in
ue.Windowing is ignored.
Data Types: double

Output Arguments
waveform — Sidelink SC-FDMA modulated waveform
numeric matrix

Sidelink SC-FDMA modulated waveform, returned as an NS-by-NT numeric matrix, where NS is the
number of the time-domain samples and NT is the number of transmission antennas.
NS = K × 30720 / 2048 × Nfft, where Nfft is the IFFT size and K is the number of subframes in the
grid input.

info — Sidelink SC-FDMA modulated waveform information
structure

Sidelink SC-FDMA modulated waveform information, returned as a parameter structure containing
these fields:

SamplingRate — Sampling rate
positive numeric scalar

Sampling rate of the time-domain sidelink waveform, in Hz, returned as a positive numeric scalar.
SamplingRate = Nfft × (30.72e6 / 2048).

Nfft — Number of FFT points
positive integer scalar

The number of FFT points, returned as a positive integer scalar. Nfft is a function of the number of
resource blocks (NRB)

 lteSLSCFDMAModulate

2-1123

NRB Nfft
6 128
15 256
25 512
50 1024
75 2048
100 2048

In general, Nfft is the smallest power of 2 greater than or equal to (12 × NRB) / 0.85. Specifically,
Nfft is the smallest FFT that spans all subcarriers and results in no more than 85% of bandwidth
occupancy (12 × NRB / Nfft).

Windowing — Number of time-domain samples
positive integer scalar

Number of time-domain samples over which windowing and overlapping of sidelink SC-FDMA
symbols is applied, returned as a positive integer scalar.

CyclicPrefixLengths — Cyclic prefix length
positive integer vector

Cyclic prefix length in symbols for each sidelink SC-FDMA symbol in a subframe, returned as an
NSYM-by-1 integer vector. NSYM is 14 for normal cyclic prefix and 12 for extended cyclic prefix.

The vector returned for info.CyclicPrefixLengths depends on the FFT size.

• When info.Nfft = 2048, then CyclicPrefixLengths is:

• [160 144 144 144 144 144 144 160 144 144 144 144 144 144] for normal cyclic
prefix

• [512 512 512 512 512 512 512 512 512 512 512 512] for extended cyclic prefix
• For other values of info.Nfft, these element values in CyclicPrefixLengths are scaled by

info.Nfft / 2048.

More About
Sidelink SC-FDMA Modulation

The sidelink SC-FDMA modulation processing in lteSLSCFDMAModulate performs IFFT calculation,
half-subcarrier shifting, cyclic prefix insertions, and optional raised-cosine windowing and
overlapping of adjacent sidelink SC-FDMA symbols. TS 36.211 specifies that for PSSCH (Section
9.3.6), PSCCH (9.4.6), PSDCH (9.5.6) and PSBCH (9.6.6), resource elements in the last SC-FDMA
symbol within a subframe should be counted in the mapping process but not transmitted. Therefore,
before performing the IFFT, the last SC-FDMA symbol of each subframe in the input resource grid is
set to zero.

For sidelink SC-FDMA modulation, calling lteSLSCFDMAModulate on a multi-subframe array of
resource grids is recommended.

• When the resource element grid input to lteSLSCFDMAModulate spans multiple subframes, the
windowing and overlapping is applied between all adjacent SC-FDMA symbols, including the last

2 Functions

2-1124

symbol of the previous subframe and the first symbol of the next subframe. Multi-subframe
modulation processing results in a waveform that does not have discontinuities between
subframes.

• A time-domain waveform that concatenates individually modulated subframes has discontinuities
at the start and end of each subframe. To avoid these discontinuities, the resulting multi-subframe
time-domain waveform must be created by manually overlapping symbols at the subframe
boundaries.

• If the value for windowing is zero, issues concerning concatenation of subframes before sidelink
SC-FDMA modulation do not apply.

If ue.Windowing is absent, info.Windowing returns a default value chosen as a function of NRB.
The chosen value is a compromise between:

• The effective duration of cyclic prefix, and therefore the channel delay spread tolerance
• The spectral characteristics of the transmitted signal, not considering any additional FIR filtering

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteSLSCFDMADemodulate | lteSLSCFDMAInfo | lteSLResourceGridSize

 lteSLSCFDMAModulate

2-1125

https://www.3gpp.org

lteSLSCH
Sidelink shared channel

Syntax
cw = lteSLSCH(ue,outlen,trblkin)

Description
cw = lteSLSCH(ue,outlen,trblkin) returns the codeword column vector for the specified UE
settings structure and output length. lteSLSCH applies the complete sidelink shared channel (SL-
SCH) transport channel processing to the input data, trblkin.

For more information, see “Sidelink Shared Transport Channel Processing” on page 2-1128.

Examples

Create and Decode SL-SCH Codeword

Use the physical channel bit capacity information to configure the output codeword size for SL-SCH
coding. Decode the resulting codeword and check for CRC errors.

ue = struct('NSLRB',50,'CyclicPrefixSL','Normal');
ue.PRBSet = (10:12)';
ue.Modulation = '16QAM';
ue.RV = 0;

[~,psschinfo] = ltePSSCHIndices(ue);
cwlength = psschinfo.G;

trblk = randi([0 1],100,1);
cw = lteSLSCH(ue,cwlength,trblk);
[rxtrblk,err] = lteSLSCHDecode(ue,length(trblk),cw);
err

err = logical
 0

The transport block is recovered with no error.

Create SL-SCH Codeword Sequence

Create a cell array containing the redundancy version (RV) sequence of four codewords that is ready
for transmission on the PSSCH.

Initialize a UE settings structure.

2 Functions

2-1126

ue = struct('NSLRB',50,'CyclicPrefixSL','Normal');
ue.PRBSet = (10:12)';
ue.Modulation = '16QAM';

Use the physical channel bit capacity information to configure the output codeword size for SL-SCH
coding. Create a transport block of information bits.

[~,psschinfo] = ltePSSCHIndices(ue);
cwlength = psschinfo.G;

trblk = randi([0 1],100,1);

Use a for loop to create a cell array containing the sequence of four SL-SCH codewords. RV =
0,2,3,1 for transmission on the PSSCH.

rvseq = [0 2 3 1];
for ii = 1:length(rvseq)
 ue.RV = rvseq(ii);
 cwseq = lteSLSCH(ue,cwlength,trblk);
 cwseqCell{ii} = cwseq;
end

Alternatively, the same cell array of SL-SCH codeword sequences can be created using an anonymous
function handle.

rvseq = [0 2 3 1];

cwgenfn = @(rv)lteSLSCH(setfield(ue,'RV',rv),cwlength,trblk); %#ok<SFLD>

cwseqCell2 = arrayfun(cwgenfn,rvseq,'UniformOutput',false);

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

Modulation — Modulation type
'QPSK' | '16QAM'

Modulation type, specified as 'QPSK' or '16QAM'.

 lteSLSCH

2-1127

Data Types: char | string

RV — Redundancy version indicator
0 | 1 | 2 | 3 | vector with element values from 0 to 3

Redundancy version indicator, specified as an integer scalar or vector with element values from 0 to
3.
Example: [0 2 3 1], indicates the RV sequence order for transmission on the PSSCH.
Data Types: double

Data Types: struct

outlen — Codeword length
integer scalar

Codeword length, specified as an integer scalar. For more information, see “Sidelink Shared
Transport Channel Processing” on page 2-1128.
Data Types: double

trblkin — Transport block data bits
bit vector

Transport block data bits, specified as a bit vector.
Data Types: double

Output Arguments
cw — PSSCH codeword
integer vector

PSSCH codeword, returned as an Mbit-by-1 integer vector. Mbit is equal to outlen and is the number
of bits transmitted on the physical sidelink shared channel in one subframe. outlen must be a
multiple of the number of bits per symbol. For more information, see “Sidelink Shared Transport
Channel Processing” on page 2-1128.

More About
Sidelink Shared Transport Channel Processing

The sidelink shared channel (SL-SCH) transport channel processing includes type-24A CRC
calculation, code block segmentation (including type-24B CRC attachment, if present), turbo
encoding, rate matching with redundancy version (RV), code block concatenation, and PUSCH
interleaving. lteSLSCH generates this transport channel codeword as specified by TS 36.212,
Section 5.4.2.

2 Functions

2-1128

The SL-SCH transport channel codeword carrying the information bits of a single transport block is
transmitted on the physical sidelink shared channel. Use the ltePSSCH and ltePSSCHIndices
functions to generate the modulated symbols and populate the resource grid for transmission.

The length of the codeword output by lteSLSCH represents the bit capacity of the physical channel.
For PSSCH, the input codeword length is Mbits = NRE × Nbps, where Nbps is the number of bits per
symbol. The PSSCH modulation is either QPSK (2 bits per symbol) or 16QAM (4 bits per symbol). The
number of PSSCH resource elements (NRE) in a subframe is NRE = NPRB × NREperPRB × NSYM and
includes symbols associated with the sidelink SC-FDMA guard symbol.

• NPRB is the number of physical resource blocks (PRB) used for transmission.
• NREperPRB is the number of resource elements in a PRB. Each PRB has 12 resource elements.
• NSYM is the number of SC-FDMA symbols in a PSSCH subframe, including symbols associated with

the sidelink SC-FDMA guard symbol. NSYM is 12 for D2D normal cyclic prefix or 10 for D2D
extended cyclic prefix and V2X.

For D2D sidelink, the SL-SCH codeword carrying the information bits of a single transport block is
always transmitted four times on four consecutive PSSCH subframes using the fixed RV sequence, RV
= 0,2,3,1. The transmission subframes are selected from a subset of the PSSCH subframe pool. There
is no HARQ feedback involved in the process. For V2X, there can be either one or two transmissions

 lteSLSCH

2-1129

of a transport block using the RV sequence, RV = 0,2. For more information on the SL-SCH
transmission and the sidelink HARQ process, see TS 36.321, Section 5.14.2.2.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.321. “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control
(MAC) protocol Specification.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteSLSCHDecode | ltePSSCH

2 Functions

2-1130

https://www.3gpp.org
https://www.3gpp.org

lteSLSCHDecode
Sidelink shared channel decoding

Syntax
trblkout,blkcrc,stateout = lteSLSCHDecode(ue,trblklen,cwin)
[trblkout,blkcrc,stateout] = lteSLSCHDecode(ue,trblklen,cwin,statein)

Description
trblkout,blkcrc,stateout = lteSLSCHDecode(ue,trblklen,cwin) returns a column vector
of information bits,trblkout, decoded from the soft log-likelihood ratio (LLR) codeword data vector
cwin for the specified UE settings structure and transport block length. Additional outputs contains
the result from a block cyclic redundancy check, blkcrc and a structure containing the HARQ
process decoding state, stateout.

The SL-SCH decoder processing includes PUSCH deinterleaving, rate recovery, turbo decoding, block
concatenation, and CRC calculations. The SL-SCH decoder performs the inverse of the sidelink
shared channel processing defined in TS 36.212 [1], Section 5.4.2. For more information, see
“Sidelink Shared Transport Channel Processing” on page 2-1135.

[trblkout,blkcrc,stateout] = lteSLSCHDecode(ue,trblklen,cwin,statein) accepts an
input structure specifying the initial HARQ process state that is used in support of HARQ soft
combining.

The stateout array is normally reapplied via the statein argument of subsequent
lteSLSCHDecode function calls, as part of a fixed sequence of HARQ retransmissions used by the
SL-SCH. When a transport block is transmitted, it is always sent four times on four consecutive
PSSCH subframes using the fixed RV sequence of {0,2,3,1}. The consecutive PSSCH subframes are
selected from a subset of the PSSCH subframe pool. The statein and stateout variables allow this
set of transmissions to be soft combined.

Examples

Decode SL-SCH Transport Channel

Encode and decode an information block using the SL-SCH transport channel.

Create a UE settings structure. Generate a 100-bit transport block and SL-SCH codeword.

ue = struct('CyclicPrefixSL','Normal','Modulation','16QAM','RV',0);
trblk = randi([0 1],100,1);
cw = lteSLSCH(ue,5760,trblk);

Decode the SL-SCH codeword.

rxtrblk = lteSLSCHDecode(ue,length(trblk),cw);

 lteSLSCHDecode

2-1131

Decode SL-SCH Transport Channel and Check CRC

Encode and decode an information block using the SL-SCH transport channel, and display the CRC
error result.

Create a UE settings structure. Generate a 100-bit transport block and SL-SCH codeword.

ue = struct('CyclicPrefixSL','Normal','Modulation','16QAM','RV',0);
trblk = randi([0 1],100,1);
cw = lteSLSCH(ue,5760,trblk);

Decode the SL-SCH codeword and check for block errors.

[rxtrblk,err] = lteSLSCHDecode(ue,length(trblk),cw);
err

err = logical
 0

The decoded transport block has no errors.

Decode SL-SCH Using HARQ Soft Combining

Use soft combining while decoding the sequence of four transmissions used to send every transport
block on the SL-SCH. The rate matching and noise level are set so that successful decoding of the
block requires multiple transmissions.

Initialize parameters

• Create a UE settings structure for the SL-SCH.
• Generate a transport block of 100 random bits.
• Create a local variable specifying an SL-SCH bit capacity of 288.
• Define the fixed redundancy version sequence used by the HARQ process.
• Clear the HARQ process decoding state.

ue = struct('CyclicPrefixSL','Normal','Modulation','QPSK');
trblk = randi([0 1],100,1);
bitcapacity = 288;
rvseq = [0 2 3 1];
decstate = [];

Transmit and recover the SL-SCH transport block

• Send the transport block four times.
• Display result of decoding successive transmissions.

for i = 1:4
 % Encode information bits with the next RV value.
 ue.RV = rvseq(i);
 cw = lteSLSCH(ue,bitcapacity,trblk);

 % Modulate the codeword and add noise.

2 Functions

2-1132

 sym = awgn(lteSymbolModulate(cw,ue.Modulation),-4,'measured');
 softdata = lteSymbolDemodulate(sym,ue.Modulation);

 % Decode the current transmission and combine with decoding state.
 [rxtrblk,err,decstate] = lteSLSCHDecode(ue,length(trblk), ...
 softdata,decstate);
 X = ['Decoding error ', num2str(err), ' for transmission #', ...
 num2str(i), ' with RV ', num2str(ue.RV)];
 disp(X)
end

Decoding error 1 for transmission #1 with RV 0
Decoding error 1 for transmission #2 with RV 2
Decoding error 0 for transmission #3 with RV 3
Decoding error 0 for transmission #4 with RV 1

The soft-combined data is recovered without error on the third transmission.

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a parameter structure containing these fields:

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

Modulation — Modulation type
'QPSK' | '16QAM'

Modulation type, specified as 'QPSK' or '16QAM'.
Data Types: char | string

RV — Redundancy version indicator
0 | 1 | 2 | 3 | vector with element values from 0 to 3

Redundancy version indicator, specified as an integer scalar or vector with element values from 0 to
3.
Example: [0 2 3 1], indicates the RV sequence order for transmission on the PSSCH.
Data Types: double

NTurboDecIts — Number of turbo decoder iteration cycles
5 (default) | integer scalar from 1 to 30 | optional

 lteSLSCHDecode

2-1133

Number of turbo decoder iteration cycles, specified as an integer scalar from 1 to 30.
Data Types: double

Data Types: struct

trblklen — Transport block length
positive integer scalar

Transport block length, specified as a positive integer scalar. trblklen defines the decoded
transport block length.
Data Types: double

cwin — LLR codeword data
bit vector

LLR codeword data, specified as a soft bit vector.
Data Types: double

statein — Decoder buffer state
structure | optional

Decoder buffer state, specified as a structure. Use statein to input the current decoder buffer state
for the transport block in an active HARQ process. statein can be an empty structure or a structure
array with one or two elements. If nonempty, statein.CBSBuffers should contain a cell array of
vectors representing the log-likelihood ratio (LLR) soft buffer states for the set of code blocks at the
input to the turbo decoder, after explicit rate recovery. The updated buffer states after decoding are
returned in the CBSBuffers field of stateout.

The statein array is normally generated and recycled from the stateout of previous calls to
lteSLSCHDecode, as part of the fixed sequence of SL-SCH HARQ (re)transmissions.

The statein structure contains this field:

CBSBuffers — LLR soft buffer states
cell array of numeric vectors

LLR soft buffer states, specified as a cell array of numeric vectors. CBSBuffers contains the LLR soft
buffer states for the set of code blocks associated with a single transport block. The LLR soft buffer
states are positioned at the input to the turbo decoder. The states are available after the explicit rate
recovery.
Data Types: cell

Data Types: struct

Output Arguments
trblkout — Decoded information bits
integer column vector

Decoded information bits, returned as a column vector. The trblkout information bits are decoded
from the soft log-likelihood ratio (LLR) codeword data vector, cwin.

2 Functions

2-1134

blkcrc — CRC failure check of block
true | false

CRC failure check of block, returned as true or false.

• blkcrc = false indicates that the subframe was recovered with no block errors.
• blkcrc = true indicates a block error.

stateout — Internal state of decoder
structure

Internal state of decoder, returned as a structure containing these fields:

CBSBuffers — LLR soft buffer states
cell array of integer vectors

LLR soft buffer states, returned as a cell array of integer vectors. CBSBuffers contains the LLR soft
buffer states for the set of code blocks associated with a single transport block. The LLR soft buffer
states are positioned at the input to the turbo decoder. The states are available after the explicit rate
recovery.
Data Types: cell

CBSCRC — CRC decoding results of type-24B code block set
integer array | empty array

CRC decoding results of type-24B code block set, returned as an integer array or empty array.
Data Types: double

BLKCRC — CRC decoding error in type-24A transport block
logical

CRC decoding error in type-24A transport block, returned as a logical.

• BLKCRC = 0 indicates that the subframe was recovered with no block errors.
• BLKCRC = 1 indicates a block error.

Data Types: logical

More About
Sidelink Shared Transport Channel Processing

The sidelink shared channel (SL-SCH) transport channel processing includes type-24A CRC
calculation, code block segmentation (including type-24B CRC attachment, if present), turbo
encoding, rate matching with redundancy version (RV), code block concatenation, and PUSCH
interleaving. lteSLSCH generates this transport channel codeword as specified by TS 36.212,
Section 5.4.2.

 lteSLSCHDecode

2-1135

The SL-SCH transport channel codeword carrying the information bits of a single transport block is
transmitted on the physical sidelink shared channel. Use the ltePSSCH and ltePSSCHIndices
functions to generate the modulated symbols and populate the resource grid for transmission.

The length of the codeword output by lteSLSCH represents the bit capacity of the physical channel.
For PSSCH, the input codeword length is Mbits = NRE × Nbps, where Nbps is the number of bits per
symbol. The PSSCH modulation is either QPSK (2 bits per symbol) or 16QAM (4 bits per symbol). The
number of PSSCH resource elements (NRE) in a subframe is NRE = NPRB × NREperPRB × NSYM and
includes symbols associated with the sidelink SC-FDMA guard symbol.

• NPRB is the number of physical resource blocks (PRB) used for transmission.
• NREperPRB is the number of resource elements in a PRB. Each PRB has 12 resource elements.
• NSYM is the number of SC-FDMA symbols in a PSSCH subframe, including symbols associated with

the sidelink SC-FDMA guard symbol. NSYM is 12 for D2D normal cyclic prefix or 10 for D2D
extended cyclic prefix and V2X.

For D2D sidelink, the SL-SCH codeword carrying the information bits of a single transport block is
always transmitted four times on four consecutive PSSCH subframes using the fixed RV sequence, RV
= 0,2,3,1. The transmission subframes are selected from a subset of the PSSCH subframe pool. There
is no HARQ feedback involved in the process. For V2X, there can be either one or two transmissions

2 Functions

2-1136

of a transport block using the RV sequence, RV = 0,2. For more information on the SL-SCH
transmission and the sidelink HARQ process, see TS 36.321, Section 5.14.2.2.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.321. “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control
(MAC) protocol Specification.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteSLSCH | ltePSSCHDecode

 lteSLSCHDecode

2-1137

https://www.3gpp.org
https://www.3gpp.org

lteSRS
Uplink sounding reference signal

Syntax
seq = lteSRS(ue,chs)
[seq,info] = lteSRS(ue,chs)

Description
seq = lteSRS(ue,chs) returns a complex matrix, seq, containing uplink sounding reference
signal (SRS) values and information structure array given structures containing UE-specific settings,
and signal transmission configuration settings. For more information, see “SRS Processing” on page
2-1143 and TS 36.213 [1], Section 8.2.

[seq,info] = lteSRS(ue,chs) also returns an SRS information structure array, info.

Examples

Generate Uplink SRS Values

This example generates SRS values for 1.4 MHz bandwidth using the default SRS configuration.

Set the signal transmission configuration, chs structure fields.

chs.BWConfig = 7;
chs.BW = 0;
chs.CyclicShift = 0;
chs.SeqGroup = 0;
chs.SeqIdx = 0;
chs.ConfigIdx = 7;

Set ue structure fields.

ue.DuplexMode = 'FDD';
ue.CyclicPrefixUL = 'Normal';
ue.NTxAnts = 1;
ue.NFrame = 0;
ue.NULRB = 6;
ue.NSubframe = 0;

Generate Uplink SRS resource element values.

srs = lteSRS(ue,chs);
srs(1:4)

ans = 4×1 complex

 0.7071 - 0.7071i
 -0.7071 + 0.7071i
 0.7071 + 0.7071i

2 Functions

2-1138

 -0.7071 - 0.7071i

Generate SRS Symbols for Two Antennas

Generate the SRS symbols for two transmit antenna paths. Display the information structure.

Initialize UE-specific and channel configuration structures (ue and chs) for 3 MHz bandwidth and
two antennas using the default SRS configuration. Generate SRS symbols and the information
structure (ind and info).

ue.DuplexMode = 'FDD';
ue.CyclicPrefixUL = 'Normal';
ue.NFrame = 0;
ue.NULRB = 15;
ue.NSubframe = 0;

chs = struct();
chs.NTxAnts = 2;
chs.BWConfig = 7;
chs.BW = 0;
chs.CyclicShift = 0;
chs.ConfigIdx = 7;
chs.SeqIdx = 0;
chs.SeqGroup = 0;

[ind,info] = lteSRS(ue,chs);

Since there are two antennas, the SRS symbols are output as a two column vector and the info
output structure contains two elements.

ind(1:6,:)

ans = 6×2 complex

 0.5000 - 0.5000i 0.5000 - 0.5000i
 -0.5000 + 0.5000i 0.5000 - 0.5000i
 0.5000 + 0.5000i 0.5000 + 0.5000i
 -0.5000 - 0.5000i 0.5000 + 0.5000i
 -0.5000 + 0.5000i -0.5000 + 0.5000i
 0.5000 - 0.5000i -0.5000 + 0.5000i

size(info)

ans = 1×2

 1 2

View the contents of the two info structure elements.

info(1)

ans = struct with fields:
 Alpha: 0

 lteSRS

2-1139

 SeqGroup: 0
 SeqIdx: 0
 RootSeq: -1
 NZC: -1

info(2)

ans = struct with fields:
 Alpha: 3.1416
 SeqGroup: 0
 SeqIdx: 0
 RootSeq: -1
 NZC: -1

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure containing these following fields.

NULRB — Number of uplink resource blocks
positive integer

Number of uplink resource blocks, specified as a positive integer.
Data Types: double

NSubframe — Subframe number
0 (default) | optional | nonnegative integer

Subframe number, specified as a nonnegative integer.
Data Types: double

NTxAnts — Number of transmission antennas
1 (default) | optional | 2 | 4

Number of transmission antennas, specified as 1, 2, or 4.
Data Types: double

CyclicPrefixUL — Cyclic prefix length for uplink
'Normal' (default) | optional | 'Extended'

Cyclic prefix length for uplink, specified as 'Normal' or 'Extended'.
Data Types: char | string

NFrame — Initial frame number
0 (default) | optional | nonnegative integer

Initial frame number, specified as a nonnegative integer.
Data Types: double

2 Functions

2-1140

DuplexMode — Duplexing mode
'FDD' (default) | optional | 'TDD'

Duplexing mode, specified as 'FDD' or 'TDD' to indicate the frame structure type of the generated
waveform.
Example: 'TDD'
Data Types: char | string

TDDConfig — Uplink or downlink configuration
0 (default) | integer from 0 to 6 | optional

Uplink or downlink configuration, specified as an integer from 0 to 6. Only required for TDD duplex
mode.
Data Types: double

SSC — Special subframe configuration
0 (default) | integer from 0 to 9 | optional

Special subframe configuration, specified as an integer from 0 to 9. Only required for TDD duplex
mode.
Data Types: double

CyclicPrefix — Cyclic prefix length in the downlink
'Normal' (default) | optional | 'Extended'

Cyclic prefix length in the downlink, specified as 'Normal' or 'Extended'.
Data Types: char | string

Data Types: struct

chs — Signal transmission configuration
structure

Signal transmission configuration, specified as a structure containing these fields.

NTxAnts — Number of transmission antennas
1 (default) | optional | 2 | 4

Number of transmission antennas, specified as 1, 2, or 4.
Data Types: double

BWConfig — SRS bandwidth configuration
7 (default) | integer from 0 to 7 | optional

SRS bandwidth configuration, specified as an integer from 0 to 7. (CSRS)
Data Types: double

BW — UE-specific SRS bandwidth
0 (default) | optional | 1 | 2 | 3

UE-specific SRS bandwidth, specified as an integer from 0 to 3. (BSRS)

 lteSRS

2-1141

Data Types: double

ConfigIdx — Configuration index for UE-specific periodicity
7 (default) | integer from 0 to 644 | optional

Configuration index for UE-specific periodicity, specified as a nonnegative integer from 0 to 644. This
parameter contains the configuration index for UE-specific periodicity (TSRS) and subframe offset
(Toffset).
Data Types: double

CyclicShift — UE-specific cyclic shift
0 (default) | integer from 0 to 7 | optional

UE-specific cyclic shift, specified as an integer from 0 to 7. (nSRS
cs)

Data Types: double

SeqGroup — SRS sequence group number
0 (default) | integer from 0 to 29 | optional

SRS sequence group number, specified as an integer from 0 to 29. (u)
Data Types: double

SeqIdx — Base sequence number
0 (default) | optional | 1

Base sequence number, specified as either 0 or 1. (v)
Data Types: double | logical

OffsetIdx — SRS subframe offset
0 (default) | optional | 1

SRS subframe offset choice for 2 ms SRS periodicity, specified as 0 or 1. Only required for 'TDD'
duplex mode. This parameter indexes the two SRS subframe offset entries in the row of TS 36.213
[1], Table 8.2-2 for the SRS configuration index specified by the ConfigIdx parameter.
Data Types: double

Data Types: struct

Output Arguments
seq — Uplink SRS values
complex matrix

Uplink SRS values, returned as a complex matrix. The symbols for each antenna are in the columns of
the matrix, seq. The symbols for each antenna are in the columns of seq, with the number of
columns determined by the number of transmission antennas configured. For more information, see
“SRS Processing” on page 2-1143.
Data Types: double

info — Information related to SRS
structure

2 Functions

2-1142

Information related to SRS, returned as a structure array with elements corresponding to each
transmit antenna and containing these fields.

Alpha — Reference signal cyclic shift
numeric scalar

Reference signal cyclic shift, returned as a numeric scalar. (α)
Data Types: double

SeqGroup — SRS sequence group number
0,...,29

SRS sequence group number, returned as an integer from 0 to 29. (u)
Data Types: double

SeqIdx — Base sequence number
0 | 1

Base sequence number, returned as 0 or 1. (v)
Data Types: double

RootSeq — Root Zadoff-Chu sequence index
integer

Root Zadoff-Chu sequence index, returned as an integer. (q)
Data Types: double

NZC — Zadoff-Chu sequence length
integer

Zadoff-Chu sequence length, returned as an integer. (NZC
RS)

Data Types: double

Data Types: struct

More About
SRS Processing

As specified in TS 36.213, Section 8.2, a UE shall transmit the sounding reference symbol (SRS) on
per serving cell SRS resources, based on two trigger types:

• trigger type 0 — periodic SRS from higher layer signalling
• trigger type 1 — aperiodic SRS from DCI formats 0/4/1A for FDD or TDD and from DCI formats

2B/2C/2D for TDD.

The parameter chs.ConfigIdx indexes Tables 8.2-1, 8.2-2, 8.2-4, and 8.2-5 defined in TS 36.213,
Section 8.2. The applicable table and appropriate range of chs.ConfigIdx depends on the duplex
mode and the SRS trigger type.

If type 0 triggered SRS transmission is intended, then:

 lteSRS

2-1143

• The valid range of chs.ConfigIdx (ISRS) is from 0 to 636 for FDD (Table 8.2-1) and from 0 to 644
for TDD (Table 8.2-2).

If type 1 triggered SRS transmission is intended, then:

• chs.ConfigIdx indexes trigger type 1 UE-specific periodicity TSRS,1 and subframe offset Toffset,1.
The valid range of chs.ConfigIdx (ISRS) is from 0 to 16 for FDD (Table 8.2-4) and from 0 to 24
for TDD (Table 8.2-5).

• Frequency hopping is not permitted. Therefore, set chs.HoppingBW to be greater than or equal
to BW. (bhop ≥ BSRS).

To control whether to call the lteSRS and lteSRSIndices functions in a subframe, use
info.IsSRSSubframe, returned by lteSRSInfo.

UE-specific configurations determine how lteSRS and lteSRSIndices operate. When no SRS is
scheduled, calling lteSRS or lteSRSIndices in a subframe:

• May generate an SRS depending on the cell-specific SRS subframe configuration.
• Returns an empty seq or ind vector, for a given UE-specific SRS configuration. Also, the info

structure scalar fields are set to –1, and any undefined vector fields are empty.

For short-base reference sequences, used with SRS transmissions spanning 4 PRBs, the lteSRS
function does not use Zadoff Chu sequences and it sets info.RootSeq and info.NZC to –1.

lteSRSIndices returns the UE-specific SRS periodicity, info.UePeriod, and subframe offset,
info.UeOffset. These parameters are distinct from the cell-specific SRS periodicity and subframe
offset that lteSRSInfo returns.

If chs.NTxAnts is not present, ue.NTxAnts is used. If neither is present, the function assumes one
antenna. In lteSRSIndices, for SRS transmission on multiple antennas:

• When chs.NTxAnts is set to 2 or 4, the value of info.Port matches the position in the structure
array (0,...,NTxAnts – 1).

• If chs.NTxAnts is set to 1, lteSRSIndices uses info.Port to indicate the port chosen by SRS
transmit antenna selection. info.Port indicates the selected antenna port, 0 or 1.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer

procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteSRSIndices | lteSRSInfo | lteCellRS | lteCSIRS | lteDMRS | ltePRS

2 Functions

2-1144

https://www.3gpp.org

lteSRSIndices
Uplink SRS resource element indices

Syntax
ind = lteSRSIndices(ue,chs)
[ind,info] = lteSRSIndices(ue,chs)
[___] = lteSRSIndices(ue,chs,opts)

Description
ind = lteSRSIndices(ue,chs) returns a column vector of resource element (RE) indices for the
Uplink sounding reference signal (SRS) given structures with the UE-specific settings, and the signal
transmission configuration settings. For more information, see “SRS Processing” on page 2-1154 and
TS 36.213 [1], Section 8.2.

[ind,info] = lteSRSIndices(ue,chs) also returns an SRS information structure array, info.

[___] = lteSRSIndices(ue,chs,opts) formats the returned indices using options specified by
opts.

This syntax supports output options from prior syntaxes.

Examples

Generate Uplink SRS Indices

This example creates SRS indices for 3 MHz bandwidth.

Set the signal transmission configuration, chs structure fields.

chs.NTxAnts = 1;
chs.BWConfig = 7;
chs.BW = 0;
chs.ConfigIdx = 7;
chs.TxComb = 0;
chs.HoppingBW = 0;
chs.FreqPosition = 0;

Set ue structure fields.

ue.DuplexMode = 'FDD';
ue.CyclicPrefixUL = 'Normal';
ue.NFrame = 0;
ue.NULRB = 15;
ue.NSubframe = 0;

Generate the Uplink SRS resource element indices.

srsIndices = lteSRSIndices(ue,chs);
srsIndices(1:4)

 lteSRSIndices

2-1145

ans = 4x1 uint32 column vector

 2401
 2403
 2405
 2407

Generate SRS Indices for Two Antennas

Generate the SRS indices for two transmit antenna paths. Display the information structure.

Initialize UE-specific and channel configuration structures (ue and chs) for 3 MHz bandwidth and
two antennas. Generate SRS indices and the information structure (ind and info).

ue.DuplexMode = 'FDD';
ue.CyclicPrefixUL = 'Normal';
ue.NFrame = 0;
ue.NULRB = 15;
ue.NSubframe = 0;

chs.NTxAnts = 2;
chs.BWConfig = 7;
chs.BW = 0;
chs.ConfigIdx = 7;
chs.TxComb = 0;
chs.HoppingBW = 0;
chs.FreqPosition = 0;

[ind,info] = lteSRSIndices(ue,chs);

Since there are two antennas, the SRS indices are output as a two column vector and the info
output structure contains two elements.

ind(1:10,:)

ans = 10x2 uint32 matrix

 2401 4921
 2403 4923
 2405 4925
 2407 4927
 2409 4929
 2411 4931
 2413 4933
 2415 4935
 2417 4937
 2419 4939

size(info)

ans = 1×2

 1 2

2 Functions

2-1146

View the contents of the two info structure elements.

info(1)

ans = struct with fields:
 UePeriod: 10
 UeOffset: 0
 PRBSet: [4x1 double]
 FreqStart: 60
 KTxComb: 0
 BaseFreq: 60
 FreqIdx: 0
 HoppingOffset: 0
 NSRSTx: 0
 Port: 0

info(2)

ans = struct with fields:
 UePeriod: 10
 UeOffset: 0
 PRBSet: [4x1 double]
 FreqStart: 60
 KTxComb: 0
 BaseFreq: 60
 FreqIdx: 0
 HoppingOffset: 0
 NSRSTx: 0
 Port: 1

Generate SRS Indices Varying Indexing Style

Generate the SRS indices for two transmit antenna paths. Display the information structure.

Initialize UE-specific and channel configuration structures (ue and chs) for 3 MHz bandwidth and
two antennas. Generate SRS indices and the information structure (ind and info).

ue.DuplexMode = 'FDD';
ue.CyclicPrefixUL = 'Normal';
ue.NFrame = 0;
ue.NULRB = 15;
ue.NSubframe = 0;

chs.NTxAnts = 2;
chs.BWConfig = 7;
chs.BW = 0;
chs.ConfigIdx = 7;
chs.TxComb = 0;
chs.HoppingBW = 0;
chs.FreqPosition = 0;

[ind,info] = lteSRSIndices(ue,chs,{'sub'});

 lteSRSIndices

2-1147

Using 'sub' indexing style, the indices are output in [subcarrier,symbol,antenna] subscript
form. View the midpoint of ind and observe the antenna index change.

size(ind)

ans = 1×2

 48 3

ind(22:27,:)

ans = 6x3 uint32 matrix

 103 14 1
 105 14 1
 107 14 1
 61 14 2
 63 14 2
 65 14 2

Since there are two antennas, the info output structure contains two elements. View the contents of
the second info structure element.

size(info)

ans = 1×2

 1 2

info(2)

ans = struct with fields:
 UePeriod: 10
 UeOffset: 0
 PRBSet: [4x1 double]
 FreqStart: 60
 KTxComb: 0
 BaseFreq: 60
 FreqIdx: 0
 HoppingOffset: 0
 NSRSTx: 0
 Port: 1

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure containing the following fields.

NULRB — Number of uplink resource blocks
positive integer

2 Functions

2-1148

Number of uplink resource blocks, specified as a positive integer.
Data Types: double

NSubframe — Number of subframes
0 (default) | optional | nonnegative integer

Number of subframes, specified as a nonnegative integer.
Data Types: double

NTxAnts — Number of transmission antennas
1 (default) | optional | 2 | 4

Number of transmission antennas, specified as a 1, 2, or 4.
Data Types: double

CyclicPrefixUL — Cyclic prefix length
'Normal' (default) | optional | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

NFrame — Initial frame number
0 (default) | optional | nonnegative integer

Initial frame number, returned as a nonnegative integer.
Data Types: double

DuplexMode — Duplexing mode
'FDD' (default) | optional | 'TDD'

Duplexing mode, specified as 'FDD' or 'FDD' to indicate the frame structure of the generated
waveform.
Data Types: char | string

TDDConfig — Uplink or downlink configuration
0 (default) | optional | 0,...,6

Uplink or downlink configuration, returned as a nonnegative integer from 0 to 6. Only required for
'TDD' duplex mode.
Data Types: double

SSC — Special subframe configuration
0 (default) | optional | 0,...,9

Special subframe configuration, returned as a nonnegative integer from 0 to 9. Only required for
'TDD' duplex mode.
Data Types: double

CyclicPrefix — Cyclic prefix length
'Normal' (default) | optional | 'Extended'

 lteSRSIndices

2-1149

Cyclic prefix length, returned as 'Normal' or 'Extended'. Only required for 'TDD' duplex mode.
Data Types: char | string

Data Types: struct

chs — Signal transmission configuration
structure

Signal transmission configuration, specified as a structure containing these fields.

NTxAnts — Number of transmission antennas
1 (default) | optional | 2 | 4

Number of transmission antennas, specified as a 1, 2, or 4.
Data Types: double

BWConfig — Cell-specific SRS bandwidth configuration
7 (default) | optional | 0,...,7

Cell-specific SRS bandwidth configuration, specified as a nonnegative integer from 0 to 7. (CSRS)
Data Types: double

BW — UE-specific SRS bandwidth
0 (default) | optional | 1 | 2 | 3

UE-specific SRS bandwidth, specified as a nonnegative integer from 0 to 3. (BSRS)
Data Types: double

ConfigIdx — Configuration index for UE-specific periodicity
7 (default) | optional | 0,...,644

Configuration index for UE-specific periodicity, specified as a nonnegative integer from 0 to 644. This
parameter contains the configuration index for UE-specific periodicity (TSRS) and subframe offset
(Toffset).
Data Types: double

TxComb — Transmission comb
0 (default) | optional | 1

Transmission comb, specified as a 0 or 1. This parameter controls SRS positions. SRS is transmitted
in six carriers per resource block on odd (1) and even (0) resource indices.
Data Types: double | logical

HoppingBW — SRS frequency hopping configuration index
0 (default) | optional | 1 | 2 | 3

SRS frequency hopping configuration index, specified as a nonnegative integer from 0 to 3. (bhop)
Data Types: double

FreqPosition — Frequency-domain position
0 (default) | optional | 0,...,23

2 Functions

2-1150

Frequency-domain position, specified as a nonnegative integer from 0 to 23. (nRRC)
Data Types: double

CyclicShift — UE-specific cyclic shift
0 (default) | optional | 0,...,7

UE-specific cyclic shift, specified as a nonnegative integer from 0 to 7. This parameter applies only
when NTxAnts is 4. (nSRS

cs)

Data Types: double

NF4RachPreambles — Number of RACH preamble frequency resources of format 4 in UpPTS
0 (default) | optional | 0,...,6

Number of RACH preamble frequency resources of format 4 in “UpPTS” on page 2-1155, specified as
a nonnegative integer from 0 to 6. Only required for 'TDD' duplex mode.
Data Types: double

OffsetIdx — SRS subframe offset
0 (default) | optional | 1

SRS subframe offset choice for 2 ms SRS periodicity, specified as 0 or 1. Only required for 'TDD'
duplex mode. This parameter indexes the two SRS subframe offset entries in the row of TS 36.213
[1], Table 8.2-2 for the SRS configuration index specified by the ConfigIdx parameter.
Data Types: double

MaxUpPts — Option to disable reconfiguration of sounding maximum bandwidth
1 (default) | optional | 0

Option to disable reconfiguration of sounding maximum bandwidth, specified as 0 or 1. Only required
for 'TDD' duplex mode. Enables (1) or disables (0) reconfiguration of mSRS, 0

max in “UpPTS” on page 2-
1155. See TS 36.331 [2] for information on how the system information element srs-MaxUpPts
applies tomSRS, 0

max configurability.

Data Types: double | logical

Data Types: struct

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.

 lteSRSIndices

2-1151

Category Options Description
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — Antenna indices
numeric matrix

Antenna indices, returned as a numeric matrix. By default, the indices are returned in one-based
linear indexing form that can directly index elements of a resource matrix. These indices are ordered
according to SRS modulation symbols mapping. The opts input offers alternative indexing formats.
The indices for each antenna are in the columns of ind, with the number of columns determined by
the number of transmission antennas configured specified in chs.NTxAnts. For more information,
see “SRS Processing” on page 2-1154.
Data Types: uint32

info — Information related to SRS
structure array

Information related to SRS, returned as a structure array with elements corresponding to each
transmit antenna and containing these fields.

UePeriod — UE-specific SRS periodicity
2 | 5 | 10 | 20 | 40 | 80 | 160 | 320

UE-specific SRS periodicity, in ms, returned as a positive integer.
Data Types: double

UeOffset — UE-specific SRS offset
0,...,319 | integer

UE-specific SRS offset, returned as an integer from 0 to 319.
Data Types: double

PRBSet — Physical resource block set
vector of integers

Physical resource block set, returned as a vector of integers. PRBSet specifies the PRBs occupied by
the indices (zero-based).
Data Types: double

2 Functions

2-1152

FreqStart — Frequency-domain starting position
numeric scalar

Frequency-domain starting position (k0), returned as a numeric scalar. This argument is the zero-
based subcarrier index of the lowest SRS subcarrier.
Data Types: double

KTxComb — Offset to the frequency-domain starting position
numeric scalar

Offset to the frequency-domain starting position (kTC), returned as a numeric scalar. This argument is
a function of the transmission comb parameter.
Data Types: double

BaseFreq — Base frequency-domain starting position
numeric scalar

Base (cell-specific) frequency-domain starting position (k0), returned as a numeric scalar. This UE-
specific SRS is offset as a function of the UE-specific SRS bandwidth value, BSRS. UE-specific SRS
configuration cannot result in a frequency-domain starting position (k0) lower than this value, given
the cell-specific SRS bandwidth configuration value, CSRS.
Data Types: double

FreqIdx — Frequency position index
numeric vector

Frequency position index, returned as a numeric vector. This argument specifies the frequency
position index (nb) for each b in the range 0,...,BSRS.
Data Types: double

HoppingOffset — Offset term due to frequency hopping
numeric vector

Offset term due to frequency hopping, returned as a numeric vector. This argument specifies the
offset term due to frequency hopping (Fb), used in the calculation of nb.
Data Types: double

NSRSTx — Number of UE-specific SRS transmissions
positive integer

Number of UE-specific SRS transmissions (nSRS), returned as a positive integer.
Data Types: double

Port — Antenna port number used for transmission
positive integer

Antenna port number used for transmission (p), returned as a positive integer.
Data Types: double

Data Types: struct

 lteSRSIndices

2-1153

More About
SRS Processing

As specified in TS 36.213, Section 8.2, a UE shall transmit the sounding reference symbol (SRS) on
per serving cell SRS resources, based on two trigger types:

• trigger type 0 — periodic SRS from higher layer signalling
• trigger type 1 — aperiodic SRS from DCI formats 0/4/1A for FDD or TDD and from DCI formats

2B/2C/2D for TDD.

The parameter chs.ConfigIdx indexes Tables 8.2-1, 8.2-2, 8.2-4, and 8.2-5 defined in TS 36.213,
Section 8.2. The applicable table and appropriate range of chs.ConfigIdx depends on the duplex
mode and the SRS trigger type.

If type 0 triggered SRS transmission is intended, then:

• The valid range of chs.ConfigIdx (ISRS) is from 0 to 636 for FDD (Table 8.2-1) and from 0 to 644
for TDD (Table 8.2-2).

If type 1 triggered SRS transmission is intended, then:

• chs.ConfigIdx indexes trigger type 1 UE-specific periodicity TSRS,1 and subframe offset Toffset,1.
The valid range of chs.ConfigIdx (ISRS) is from 0 to 16 for FDD (Table 8.2-4) and from 0 to 24
for TDD (Table 8.2-5).

• Frequency hopping is not permitted. Therefore, set chs.HoppingBW to be greater than or equal
to BW. (bhop ≥ BSRS).

To control whether to call the lteSRS and lteSRSIndices functions in a subframe, use
info.IsSRSSubframe, returned by lteSRSInfo.

UE-specific configurations determine how lteSRS and lteSRSIndices operate. When no SRS is
scheduled, calling lteSRS or lteSRSIndices in a subframe:

• May generate an SRS depending on the cell-specific SRS subframe configuration.
• Returns an empty seq or ind vector, for a given UE-specific SRS configuration. Also, the info

structure scalar fields are set to –1, and any undefined vector fields are empty.

For short-base reference sequences, used with SRS transmissions spanning 4 PRBs, the lteSRS
function does not use Zadoff Chu sequences and it sets info.RootSeq and info.NZC to –1.

lteSRSIndices returns the UE-specific SRS periodicity, info.UePeriod, and subframe offset,
info.UeOffset. These parameters are distinct from the cell-specific SRS periodicity and subframe
offset that lteSRSInfo returns.

If chs.NTxAnts is not present, ue.NTxAnts is used. If neither is present, the function assumes one
antenna. In lteSRSIndices, for SRS transmission on multiple antennas:

• When chs.NTxAnts is set to 2 or 4, the value of info.Port matches the position in the structure
array (0,...,NTxAnts – 1).

• If chs.NTxAnts is set to 1, lteSRSIndices uses info.Port to indicate the port chosen by SRS
transmit antenna selection. info.Port indicates the selected antenna port, 0 or 1.

2 Functions

2-1154

UpPTS

Uplink pilot time slot — the uplink part of the special subframe. This special subframe is only
applicable for TDD operation. For more information, see “Frame Structure Type 2: TDD”.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer

procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.331. “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control
(RRC); Protocol specification.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteSRS | lteSRSInfo | lteCellRSIndices | lteCSIRSIndices | lteDMRSIndices |
ltePRSIndices

 lteSRSIndices

2-1155

https://www.3gpp.org
https://www.3gpp.org

lteSRSInfo
Uplink SRS information

Syntax
info = lteSRSInfo(ue,chs)

Description
info = lteSRSInfo(ue,chs) returns information related to the sounding reference signal (SRS)
configuration determined by UE-specific settings, ue, and signal transmission configuration, chs. The
information returned relates to the cell-specific SRS subframe configuration as described in TS
36.211[1], Section 5.5.3.3.

Information relating to a particular UE, such as UE-specific SRS configuration defined in TS
36.213[2], Section 8.2, is output by the lteSRSIndices and lteSRS functions. For a given
configuration, if either of these components returns an empty vector, the SRS is not transmitted for
that UE in the specified subframe.

Note lteSRSIndices and lteSRS may generate an SRS signal and indices even in a subframe that,
based on the cell-specific SRS subframe configuration, is not an SRS subframe. Use the field
info.IsSRSSubframe returned by lteSRSInfo to control whether to call the lteSRSIndices and
lteSRS functions in a subframe.

Examples

Get Information Related to SRS

Adjust the length of the PUCCH to allow for SRS transmission using the shortened field.

The setup in this example is consistent with Simultaneous-ACK/NACK-and-SRS set to 'True' as
described in TS 36.213, Section 8.2. Generate pucchSymbols, using ue.Shortened=1.

ue = lteRMCUL('A1-1');
srs.SubframeConfig = 0;
srsInfo = lteSRSInfo(ue,srs);
ue.Shortened = srsInfo.IsSRSSubframe;
harqValues = [];

pucchSymbols = ltePUCCH1(ue,ue.PUSCH,harqValues);

For the default case, Simultaneous-ACK/NACK-and-SRS is 'False', and the PUCCH is
transmitted with ue.Shortened=0.

2 Functions

2-1156

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure. ue contains the following fields.

NSubframe — Subframe number
numeric scalar | optional

Subframe number, specified as a numeric scalar.
Data Types: double

DuplexMode — Duplex mode
'FDD' (default) | 'TDD' | optional

Duplex mode, specified as 'FDD' or 'TDD'.
Data Types: char | string

Data Types: struct

chs — Signal transmission configuration
structure

Signal transmission configuration, specified as a structure. chs contains the following fields.

SubframeConfig — SRS subframe configuration
0...15

SRS subframe configuration, specified as a nonnegative scalar integer from 0 through 15.
Data Types: double

Data Types: struct

Output Arguments
info — Information related to the SRS configuration
structure

Information related to the SRS configuration, returned as a structure. info contains the following
fields.

CellPeriod — Cell-specific SRS periodicity
1 | 2 | 5 | 10

Cell-specific SRS periodicity, in ms, returned as 1, 2, 5, or 10.
Data Types: uint32

CellOffset — Cell-specific SRS offsets
0...9

Cell-specific SRS offsets, returned as a nonnegative scalar integer from 0 through 9.

 lteSRSInfo

2-1157

Data Types: int32

IsSRSSubframe — SRS subframe flag
1 | 0

SRS subframe flag, returned as 1 or 0. Present only if ue contains NSubframe. If NSubframe
satisfies the expression mod(NSubframe,CellPeriod)==CellOffset, this value is 1. Otherwise,
this value is 0.
Data Types: uint32

Data Types: struct

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteSRS | lteSRSIndices

2 Functions

2-1158

https://www.3gpp.org
https://www.3gpp.org

lteSSS
Secondary synchronization signal

Syntax
sss = lteSSS(enb)

Description
sss = lteSSS(enb) returns a complex column vector containing the secondary synchronization
signal (SSS) values for cell-wide settings in structure enb.

This signal is only defined for subframes 0 and 5; therefore, an empty vector is returned for other
values of NSubframe. This allows this function and the corresponding indices function
lteSSSIndices to be used to index the resource grid, as described in “Resource Grid Indexing”, for
any subframe number, but the resource grid is only modified in subframes 0 and 5.

Examples

Generate SSS Values

Generate secondary synchronization signal (SSS) values for a physical layer cell identity of 1.

sss = lteSSS(struct('NCellID',1,'NSubframe',0));
sss(1:4)

ans = 4×1

 1
 -1
 1
 1

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure. This structure can contain the following fields.

NCellID — Physical layer cell identity
integer

Physical layer cell identity, specified as an integer.
Data Types: double

 lteSSS

2-1159

NSubframe — Subframe number
0 (default) | optional | integer

Subframe number, specified as an integer.
Data Types: double

Data Types: struct

Output Arguments
sss — Secondary synchronization signal
complex column vector

Secondary synchronization signal (SSS), returned as a complex column vector. The vector contains
the SSS values for cell-wide settings in the enb structure.
Data Types: double

Version History
Introduced in R2014a

See Also
lteSSSIndices | ltePSS | lteSSSS

2 Functions

2-1160

lteSSSIndices
SSS resource element indices

Syntax
ind = lteSSSIndices(enb)
ind = lteSSSIndices(enb,port)
ind = lteSSSIndices(enb,port,opts)

Description
ind = lteSSSIndices(enb) returns a column vector of resource element indices, port 0 oriented,
given the parameter fields of structure, enb. It returns a column vector of resource element (RE)
indices for the Secondary Synchronization Signal (SSS). By default, the indices are returned in 1-
based linear indexing form that can directly index elements of a 3-D array representing the resource
array. These indices are ordered as the SSS modulation symbols should be mapped. Alternative
indexing formats can also be generated.

These indices are only defined for subframes 0 and 5; therefore, an empty vector is returned for other
values of NSubframe. This allows this function and the corresponding sequence function, lteSSS, to
be used to index the resource grid, as described in “Resource Grid Indexing”, for any subframe
number. However, the resource grid is only modified in subframes 0 and 5.

ind = lteSSSIndices(enb,port) returns indices appropriate for an antenna port, port, which
must be either 0, 1, 2, or 3.

ind = lteSSSIndices(enb,port,opts) formats the returned indices using options specified by
opts.

Examples

Generate SSS RE Indices in Linear Form

Get 0-based SSS resource element indices in linear form for antenna port 0.

enb = lteRMCDL('R.4');
sssIndices = lteSSSIndices(enb,0,{'0based','ind'});
sssIndices(1:4)

ans = 4x1 uint32 column vector

 365
 366
 367
 368

 lteSSSIndices

2-1161

Generate SSS RE Indices in Subscript Form

Generate 0-based SSS resource element indices in subscript form for antenna port 0. In this case, a
matrix is generated where each row has three columns representing subcarrier, symbol, and antenna
port.

Generate 0-based SSS resource element indices in subscript form for antenna port 0.

enb = lteRMCDL('R.4');
sssIndices = lteSSSIndices(enb,0,{'0based','sub'});
sssIndices(1:4,:)

ans = 4x3 uint32 matrix

 5 5 0
 6 5 0
 7 5 0
 8 5 0

The first column of the output represents subcarrier. The second column represents symbol. The third
column represents antenna port.

Input Arguments
enb — Cell-wide settings
structure

Cell-wide settings, specified as a structure. It contains the following fields.

NDLRB — Number of downlink resource blocks
positive integer

Number of downlink resource blocks, specified as a positive integer in the interval [6, 110].
Data Types: double

CyclicPrefix — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as'Normal' or 'Extended'.
Data Types: char | string

NSubframe — Subframe number
0 (default) | nonnegative integer | optional

Subframe number, specified as a nonnegative integer.
Data Types: double

DuplexMode — Duplex mode
'FDD' (default) | 'TDD' | optional

Duplex mode, specified as 'FDD' or 'TDD'.
Data Types: char | string

2 Functions

2-1162

Data Types: struct

port — Antenna port number
nonnegative integer

Antenna port number, specified as a nonnegative integer.
Example: 2
Data Types: double

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — SSS resource element (RE) indices
integer column vector | 3-column integer matrix

SSS resource element (RE) indices, returned as a column vector or 3-column integer matrix. By
default, the indices are returned in 1-based linear indexing form that can directly index elements of a
3D array representing the resource array. These indices are ordered as the SSS modulation symbols
should be mapped. Alternative indexing formats can be generated using the opts input.
Data Types: uint32

Version History
Introduced in R2014a

See Also
lteSSS | ltePSSIndices | lteSSSSIndices

 lteSSSIndices

2-1163

Topics
“Resource Grid Indexing”

2 Functions

2-1164

lteSSSS
Secondary sidelink synchronization signal

Syntax
s = lteSSSS(ue)

Description
s = lteSSSS(ue) returns s, a column vector containing the secondary sidelink synchronization
signal (SSSS) values for user equipment settings ue. For more information, see “Secondary Sidelink
Synchronization Signal” on page 2-1167.

Examples

Generate SSSS

Generate and plot the BPSK sidelink secondary synchronization signal values for NSLID = 10.

ssss = lteSSSS(struct('NSLID',10));
scatterplot(ssss)
grid

 lteSSSS

2-1165

Generate All SSSS Sequences

Generate all possible SSSS sequences, contained as columns in a 124-by-336 matrix.

ssssfn = @(x)lteSSSS(struct('NSLID',x));
allssss = cell2mat(arrayfun(ssssfn,[0:335],'UniformOutput',false));

Generate All SSSSs for V2X

Generate all possible SSSSs for V2X sidelink.

sfn = @(x)lteSSSS(struct('NSLID',x,'SidelinkMode','V2X'));
s = cell2mat(arrayfun(sfn,0:335,'UniformOutput',false));

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a structure containing the following fields.

SidelinkMode — Sidelink mode
'D2D' (default) | 'V2X' | optional

Sidelink mode, specified as 'D2D' or 'V2X'.
Data Types: char | string

NSLID — Physical layer sidelink synchronization identity
integer in the interval [0, 335]

Physical layer sidelink synchronization identity, specified as an integer in the interval [0, 335].

For more information, see “Secondary Sidelink Synchronization Signal” on page 2-1167.
Data Types: double

Output Arguments
s — SSSS values
complex-valued vector

SSSS values, returned as a 124-by-1 complex-valued vector. These values are created for the user
equipment settings in the ue structure. For more information, see “Secondary Sidelink
Synchronization Signal” on page 2-1167.

2 Functions

2-1166

More About
Secondary Sidelink Synchronization Signal

The secondary sidelink synchronization signal (SSSS) is transmitted in the central 62 resource
elements of two adjacent SC-FDMA symbols in a synchronization subframe. The same sequence of 62
complex values is repeated in each of the symbols, resulting in a 124-by-1 element vector returned by
the lteSSSS function. The values of this sequence are ordered as they should be mapped into the
resource elements of the adjacent symbols using lteSSSSIndices. If a terminal is transmitting
SSSS then it should be sent every 40 ms for D2D sidelink or every 160 ms for V2X sidelink, with the
exact subframe dependent on the RCC signaled subframe number offset (syncOffsetIndicator-r12).
The SSSS is sent on antenna port 1020, along with the primary sidelink synchronization signal
(PSSS). A synchronization subframe also contains the PSBCH, which is sent on antenna port 1010.
The transmission power of the SSSS symbols should be the same as the PSBCH therefore they should
be scaled by 72 62 in a subframe. No PSCCH or PSSCH transmission will occur in a sidelink
subframe configured for synchronization purposes.

As specified in TS 36.211, Section 9.7, the SSSS identity assignment depends on the network
coverage. The set of all NID

SL is divided into two sets, id_net {0, ..., 167} and id_oon {168, ..., 335},
which are used by terminals that are in-network and out-of-network coverage, respectively. The
sidelink physical layer cell identity number, NID

SL, corresponds to the lteSSSS input UE settings
structure field ue.NSLID. Within each set, all identities result in the same SSSS. For an in-network
terminal, the ue.NSLID value corresponds to the RRC sidelink synchronization signal identity (slssid-
r12) associated with the cell.

Secondary Sidelink Synchronization Signal Indexing

Use the indexing function, lteSSSSIndices, and the corresponding sequence function, lteSSSS, to
populate the resource grid for the desired subframe number. The SSSS values are output by
lteSSSS, ordered as they should be mapped, applying frequency-first mapping into the resource
elements of the adjacent symbols using lteSSSSIndices. When indexing is zero-based, the SC-
FDMA symbols used are {11,12} for normal cyclic prefix and {9, 10} for extended cyclic prefix.

Note The indicated symbol indices are based on TS 36.211, Section 9.7. However to align with the
LTE Toolbox subframe orientation, these indices are expanded from symbol index per slot to symbol
index per subframe.

For more information on mapping symbols to the resource element grid, see “Resource Grid
Indexing”.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

 lteSSSS

2-1167

https://www.3gpp.org

See Also
lteSSSSIndices | ltePSSS | lteSSS

Topics
“Resource Grid Indexing”

2 Functions

2-1168

lteSSSSIndices
SSSS resource element indices

Syntax
ind = lteSSSSIndices(ue)
ind = lteSSSSIndices(ue,opts)

Description
ind = lteSSSSIndices(ue) returns a 124-by-1 complex column vector of resource element (RE)
indices for the secondary sidelink synchronization signal (SSSS) values given the user equipment
settings structure. By default, the indices are returned in one-based linear indexing form. You can use
this form to directly index elements of a matrix representing the subframe resource grid for antenna
port 1020. For more information, see “Secondary Sidelink Synchronization Signal Indexing” on page
2-1172.

ind = lteSSSSIndices(ue,opts) formats the returned indices using options specified by opts.

Examples

Generate SSSS Indices

Generate SSSS values and indices. Write the values into the SSSS resource elements in a
synchronization subframe (extended cyclic prefix) and display an image of their locations.

Create a user equipment settings structure and a resource grid that has a 10 MHz bandwidth and
extended cyclic prefix.

ue.NSLRB = 50;
ue.CyclicPrefixSL = 'Extended';
ue.NSLID = 1;
subframe = lteSLResourceGrid(ue);

Generate SSSS indices and display the first five indices. Load the SSSS symbols into the resource
grid. Display an image showing the SSSS symbol locations.

ind = lteSSSSIndices(ue);
ind(1:5)

ans = 5x1 uint32 column vector

 5670
 5671
 5672
 5673
 5674

 lteSSSSIndices

2-1169

subframe(ind) = lteSSSS(ue);
imagesc(100*abs(subframe))
axis xy

Generate Zero-Based SSSS Indices

Generate SSSS indices using zero-based indexing style. Compare these indices to one-based indices.

Create a user equipment settings structure that has a 10 MHz bandwidth and extended cyclic prefix.

ue.NSLRB = 50;
ue.CyclicPrefixSL = 'Extended';
ue.NSLID = 1;

Generate SSSS zero-based indices and view the first five indices.

ind = lteSSSSIndices(ue,'0based');
s = size(ind)

s = 1×2

 124 1

ind(1:5)

2 Functions

2-1170

ans = 5x1 uint32 column vector

 5669
 5670
 5671
 5672
 5673

Generate SSSS one-based indices and view the first five indices.

ind = lteSSSSIndices(ue,'1based');
s = size(ind)

s = 1×2

 124 1

ind(1:5)

ans = 5x1 uint32 column vector

 5670
 5671
 5672
 5673
 5674

For zero-based indexing, the first assigned index is one lower than the one-based indexing style.

Input Arguments
ue — User equipment settings
structure

User equipment settings, specified as a structure. ue contains the following fields.

NSLRB — Number of sidelink resource blocks
integer scalar from 6 to 110

Number of sidelink resource blocks, specified as an integer scalar from 6 to 110.
Example: 6, which corresponds to a channel bandwidth of 1.4 MHz.
Data Types: double

CyclicPrefixSL — Cyclic prefix length
'Normal' (default) | 'Extended' | optional

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

opts — Output format options for resource element indices
character vector | cell array of character vectors | string array

 lteSSSSIndices

2-1171

Output format options for resource element indices, specified as a character vector, cell array of
character vectors, or string array. For convenience, you can specify several options as a single
character vector or string scalar by a space-separated list of values placed inside the quotes. Values
for opts when specified as a character vector include (use double quotes for string) :

Category Options Description
Indexing style 'ind' (default) The returned indices are in linear index

style.
'sub' The returned indices are in

[subcarrier,symbol,port]
subscript row style.

Index base '1based' (default) The returned indices are one-based.
'0based' The returned indices are zero-based.

Example: 'ind 1based', "ind 1based", {'ind','1based'}, or ["ind","1based"] specify the
same formatting options.
Data Types: char | string | cell

Output Arguments
ind — SSSS resource element indices
integer column vector | three-column integer matrix

SSSS resource element indices, returned as an integer column vector or a three-column integer
matrix. This output is generated using the cell-wide settings structure, ue. For more information, see
“Secondary Sidelink Synchronization Signal Indexing” on page 2-1172.
Data Types: uint32

More About
Secondary Sidelink Synchronization Signal Indexing

Use the indexing function, lteSSSSIndices, and the corresponding sequence function, lteSSSS, to
populate the resource grid for the desired subframe number. The SSSS values are output by
lteSSSS, ordered as they should be mapped, applying frequency-first mapping into the resource
elements of the adjacent symbols using lteSSSSIndices. When indexing is zero-based, the SC-
FDMA symbols used are {11,12} for normal cyclic prefix and {9, 10} for extended cyclic prefix.

Note The indicated symbol indices are based on TS 36.211, Section 9.7. However to align with the
LTE Toolbox subframe orientation, these indices are expanded from symbol index per slot to symbol
index per subframe.

For more information on mapping symbols to the resource element grid, see “Resource Grid
Indexing”.

Secondary Sidelink Synchronization Signal

The secondary sidelink synchronization signal (SSSS) is transmitted in the central 62 resource
elements of two adjacent SC-FDMA symbols in a synchronization subframe. The same sequence of 62

2 Functions

2-1172

complex values is repeated in each of the symbols, resulting in a 124-by-1 element vector returned by
the lteSSSS function. The values of this sequence are ordered as they should be mapped into the
resource elements of the adjacent symbols using lteSSSSIndices. If a terminal is transmitting
SSSS then it should be sent every 40 ms for D2D sidelink or every 160 ms for V2X sidelink, with the
exact subframe dependent on the RCC signaled subframe number offset (syncOffsetIndicator-r12).
The SSSS is sent on antenna port 1020, along with the primary sidelink synchronization signal
(PSSS). A synchronization subframe also contains the PSBCH, which is sent on antenna port 1010.
The transmission power of the SSSS symbols should be the same as the PSBCH therefore they should
be scaled by 72 62 in a subframe. No PSCCH or PSSCH transmission will occur in a sidelink
subframe configured for synchronization purposes.

As specified in TS 36.211, Section 9.7, the SSSS identity assignment depends on the network
coverage. The set of all NID

SL is divided into two sets, id_net {0, ..., 167} and id_oon {168, ..., 335},
which are used by terminals that are in-network and out-of-network coverage, respectively. The
sidelink physical layer cell identity number, NID

SL, corresponds to the lteSSSS input UE settings
structure field ue.NSLID. Within each set, all identities result in the same SSSS. For an in-network
terminal, the ue.NSLID value corresponds to the RRC sidelink synchronization signal identity (slssid-
r12) associated with the cell.

Version History
Introduced in R2016b

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteSSSS | ltePSSSIndices | lteSSSIndices

Topics
“Resource Grid Indexing”

 lteSSSSIndices

2-1173

https://www.3gpp.org

lteSymbolDemodulate
Demodulation and symbol to bit conversion

Syntax
out = lteSymbolDemodulate(in,mod)
out = lteSymbolDemodulate(in,mod,dec)

Description
out = lteSymbolDemodulate(in,mod) returns a column vector containing bits resulting from
soft constellation demodulation of complex values in vector in. The demodulation algorithm assumes
the vector of received symbols are normalized to fall on constellation points as defined by in.
lteSymbolModulate provides an output with the expected constellation scaling.

out = lteSymbolDemodulate(in,mod,dec) allows the decision mode, dec, to be specified as
either 'Hard' or 'Soft'.

Examples

Demodulate Complex-Valued Symbols

Demodulate complex-valued symbols, specifying hard decision mode.

out = lteSymbolDemodulate([0.7 - 0.7i; -0.7 + 0.7i],'QPSK','Hard')

out = 4×1

 0
 1
 1
 0

Input Arguments
in — Input symbols to demodulate
numeric column vector

Input symbols to demodulate, specified as a column vector of complex numeric values. Demodulation
is performed assuming the input constellation power normalization in accordance with TS 36.211,
Section 7.1 [2], as follows:

• 1/sqrt(2) for 'BPSK' and 'QPSK'
• 1/sqrt(10) for '16QAM'
• 1/sqrt(42) for '64QAM'
• 1/sqrt(170) for '256QAM'

2 Functions

2-1174

• 1/sqrt(682) for '1024QAM'

Example: For 'BPSK' and 'QPSK' [0.707 - 0.707i; -0.707 + 0.707i]
Data Types: double
Complex Number Support: Yes

mod — Modulation format
'BPSK' | 'QPSK' | '16QAM' | '64QAM' | '256QAM' | '1024QAM'

Modulation format, specified as 'BPSK', 'QPSK', '16QAM', '64QAM', '256QAM', or '1024QAM'.
Data Types: char | string

dec — Decision mode
'Hard' | 'Soft'

Decision mode, specified as 'Hard' or 'Soft'.
Data Types: char | string

Output Arguments
out — Demodulated output bits
numeric column vector

Demodulated output bits, returned as a numeric column vector. This argument contains bits resulting
from soft constellation demodulation of complex values vector, in.

'Hard' decision mode results in the output containing the bit sequences corresponding to the closest
constellation points to the input.

'Soft' decision mode results in the output indicating the bit values using the sign (-ve for 0, +ve
for 1). For 'Soft' decision mode, the magnitude of the output gives a piecewise linear
approximation to the log likelihood ratio (LLR) of the demodulated bits. The algorithm used for the
LLR approximation is described in [1]. The returned LLRs are scaled such that for a input signal lying
on the constellation points in the preceding description, the output values lie on the points with these
magnitudes:

• 1 for 'BPSK'
• 1/sqrt(2) for 'QPSK'
• [1 3]/sqrt(10) for '16QAM'
• [1 3 5 7]/sqrt(42) for '64QAM'
• [1 3 5 7 9 11 13 15]/sqrt(170) for '256QAM'
• [1:2:31]/sqrt(682) for '1024QAM'

Data Types: double

Version History
Introduced in R2014a

 lteSymbolDemodulate

2-1175

References
[1] Tosato, F., and Bisaglia, P. “Simplified soft-output demapper for binary interleaved COFDM with

application to HIPERLAN/2.” IEEE International Conference on Communications (ICC) 2002,
Vol. 2. pp. 664-668.

[2] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and
Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteSymbolModulate | lteLayerDemap | lteULDescramble

2 Functions

2-1176

https://www.3gpp.org

lteSymbolModulate
Symbol modulation

Syntax
out = lteSymbolModulate(in,mod)

Description
out = lteSymbolModulate(in,mod) maps the bit values, in, to complex modulation symbols
with the modulation scheme specified in mod.

Examples

Generate QPSK Modulated Symbols

Map bit values to QPSK modulated symbols.

out = lteSymbolModulate([0; 1; 1; 0], 'QPSK')

out = 2×1 complex

 0.7071 - 0.7071i
 -0.7071 + 0.7071i

Input Arguments
in — Input bits
column vector | cell array

Input bits, specified as a column vector, where each bit is either 0 or 1. The vector length must be a
multiple of two for QPSK, four for 16-QAM, six for 64-QAM, eight for 256-QAM, or ten for 1024-QAM.
The bit values must be 0 or 1.

Alternatively, specify in as a cell array containing one bit vector or a cell array containing two bit
vectors.
Data Types: double | cell

mod — Modulation scheme
'BPSK' | 'QPSK' | '16QAM' | '64QAM' | '256QAM' | '1024QAM' | cell array

Modulation scheme, specified as 'BPSK', 'QPSK', '16QAM', '64QAM', '256QAM', or '1024QAM'.

Alternately, you can specify mod as a cell array of one or two modulation schemes. The number of
modulation schemes in mod cannot exceed the number of bit vectors specified by in. If in specifies
two bit vectors and mod specifies one modulation scheme, the same modulation is used for both bit
vectors.

 lteSymbolModulate

2-1177

Data Types: char | cell

Output Arguments
out — Complex modulated output symbols
column vector

Complex modulated output symbols, returned as a column vector. The symbols use the modulation
scheme specified in mod.
Data Types: double
Complex Number Support: Yes

Version History
Introduced in R2014a

See Also
lteSymbolDemodulate | lteLayerMap | lteDLPrecode | lteULScramble

2 Functions

2-1178

lteTBS
Transport block size lookup

Syntax
tbs = lteTBS(nprb)
tbs = lteTBS(nprb,itbs)
tbs = lteTBS(nprb,itbs,smnlayer)

Description
Use this function to look up transport block sizes as defined in TS 36.213 [1], Section 7.1.7.2 tables.
The tables are Release 15 compliant and contain 37 TBS values for each of the physical resource
block entries. The first 27 table entries are the Release 8–Release 11 compatible TBSs. Entries 28-33
are Release 12 compatible.

tbs = lteTBS(nprb) returns the column of TS 36.213 [1], Table 7.1.7.2.1-1 for the number of
physical resource blocks, nprb, specified. Table 7.1.7.2.1-1 is for transport blocks not mapped to two
or more spatial multiplexing layers. The returned column vector, tbs, has 38 elements,
corresponding to transport block size indices from 0 to 37.

tbs = lteTBS(nprb,itbs) uses an additional input, itbs (a vector of transport block size indices
from 0 to 33) to restrict returned vector of values. A value in the itbs vector equal to –1, indicates a
discontinuous transmission (DTX) and lteTBS produces a corresponding tbs value of 0.

tbs = lteTBS(nprb,itbs,smnlayer) uses an additional input, smnlayer to indicate the number
of spatial multiplexing layers to which the transport block is mapped. This combines TS 36.213 [1],
Table 7.1.7.2.1-1 with the appropriate spatial layer TBS translation table:

• For 2-layer spatial multiplexing, the function follows the rules in TS 36.213 [1], Section 7.1.7.2.2.
• For 3-layer spatial multiplexing, the function follows the rules in TS 36.213 [1], Section 7.1.7.2.4.
• For 4-layer spatial multiplexing, the function follows the rules in TS 36.213 [1], Section 7.1.7.2.5.

For transmission schemes that do not support spatial multiplexing
('Port0','TxDiversity','Port5','Port8'), set smnlayer = 1.

Examples

Generate Transport Block Sizes for Release 15

Generate the set of 38 transport block sizes from TS 36.213, Table 7.1.7.2.1-1 (Release 15), valid for a
single PRB allocation.

tbs = lteTBS(1);
disp(tbs')

 Columns 1 through 11

 16 24 32 40 56 72 328 104 120 136 144

 lteTBS

2-1179

 Columns 12 through 22

 176 208 224 256 280 328 336 376 408 440 488

 Columns 23 through 33

 520 552 584 616 712 648 680 712 776 808 840

 Columns 34 through 38

 968 1032 1096 1160 1224

Generate Transport Block Sizes for Three Spatial Layers

Generate the set of 27 Release 8-Release 11 transport block sizes for a single PRB allocation and
three spatial layers.

nprb = 1;
itbs = 0:26;
smnlayer = 3;
tbs = lteTBS(nprb,itbs,smnlayer);
disp(tbs')

 Columns 1 through 11

 56 88 144 176 208 224 256 328 392 456 504

 Columns 12 through 22

 584 680 744 840 904 968 1064 1160 1288 1384 1480

 Columns 23 through 27

 1608 1736 1800 1864 2216

Input Arguments
nprb — Number of physical resource blocks
1,…,110

Number of physical resource blocks, specified as a positive scalar integer from 1 to 110.
Data Types: double

itbs — Transport block size indices
numeric vector

Transport block size indices, specified as a numeric vector.
Data Types: double

smnlayer — Number of spatial multiplexing layers to which transport block is mapped
1,…,4

2 Functions

2-1180

Number of spatial multiplexing layers to which transport block is mapped, specified as a positive
scalar integer from 1 to 4.
Data Types: double

Output Arguments
tbs — Transport block size or sizes
column vector | nonnegative integer

Transport block size or sizes, returned as a column vector of nonnegative integers from the transport
block size table in TS 36.213, Section 7.1.7.2 [1]. The maximum length of this output is 38,
corresponding to TBS indices from 0 to 37.
Data Types: int32

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer

procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteDLSCH | ltePDSCH

 lteTBS

2-1181

https://www.3gpp.org

lteTestModel
Downlink test model configuration structure

Syntax
tm = lteTestModel(tmn,bw)
tm = lteTestModel(tmn,bw,ncellid,duplexmode)
tm = lteTestModel(tmcfg)

Description
tm = lteTestModel(tmn,bw) returns the E-UTRA test model (E-TM) configuration structure for
given test model number and bandwidth. The output structure, tm, contains the configuration
parameters required to generate a given downlink E-TM waveform using the generator tool,
lteTestModelTool. The field names and default values align with those defined in TS 36.141 [1],
Section 6.1.

The PDSCH is a substructure relating to the physical channel configuration and contains the fields
NLayers, TxScheme, and Modulation.

tm = lteTestModel(tmn,bw,ncellid,duplexmode) controls the configuration of the physical
cell identity, ncellid, and duplex mode, duplexmode.

tm = lteTestModel(tmcfg) returns tm, a configuration structure for the test model partially (or
wholly) defined by the input structure tmcfg. The input structure tmcfg can define any (or all) of the
parameters or substructure parameters and the output structure tm retains the defined parameters.
The undefined fields are given appropriate default values.

The tm structure can be used with the E-TM generator tool to generate a waveform.

Examples

Create Downlink E-TM Configuration Structure

Create the configuration structure for Test Model TS 36.141 E-TM 3.2, 20MHz.

Specify an E-TM 3.2 test model number and 20-MHz channel bandwidth. Create a test model
configuration structure and view the contents.

tmn = '3.2';
bw = '20MHz';

tm = lteTestModel(tmn, bw)

tm = struct with fields:
 TMN: '3.2'
 BW: '20MHz'
 NDLRB: 100
 CellRefP: 1
 NCellID: 1

2 Functions

2-1182

 CyclicPrefix: 'Normal'
 CFI: 1
 Ng: 'Sixth'
 PHICHDuration: 'Normal'
 NSubframe: 0
 TotSubframes: 10
 Windowing: 0
 DuplexMode: 'FDD'
 PDSCH: [1x1 struct]
 CellRSPower: 0
 PSSPower: 2.4260
 SSSPower: 2.4260
 PBCHPower: 2.4260
 PCFICHPower: 0
 NAllocatedPDCCHREG: 180
 PDCCHPower: 1.1950
 PDSCHPowerBoosted: 2.4260
 PDSCHPowerDeboosted: -3
 Nfft: []

tm.PDSCH

ans = struct with fields:
 TxScheme: 'Port0'
 Modulation: {'16QAM' 'QPSK'}
 NLayers: 1

Input Arguments
tmn — Test model number
'1.1' | '1.2' | '2' | '2a' | '2b' | '3.1' | '3.1a' | '3.1b' | '3.2' | '3.3'

Test model number, specified as a character vector or string scalar. Use double quotes for string. See
TS 36.141 [1] for information on the test models.
Data Types: char | string

bw — Channel bandwidth
'1.4MHz' | '3MHz' | '5MHz' | '10MHz' | '15MHz' | '20MHz' | '9RB' | '11RB' | '27RB' | '45RB'
| '64RB' | '91RB'

Channel bandwidth, specified as a character vector or string scalar. Use double quotes for string. You
can set the nonstandard bandwidths, '9RB', '11RB', '27RB', '45RB', '64RB', and '91RB', only
when tmn is '1.1'. These nonstandard bandwidths specify custom test models.
Data Types: char | string

ncellid — Physical layer cell identity
1 for standard bandwidths and 10 for non-standard bandwidths (default) | optional | integer from 0 to
503

Physical layer cell identity, specified as an integer from 0 to 503. If not specified, defaults to 1 for
standard bandwidths and 10 for non-standard bandwidths.
Data Types: double

 lteTestModel

2-1183

duplexmode — Duplex mode
'FDD' (default) | 'TDD' | optional

Duplex mode, specified as 'FDD' or 'TDD'.
Data Types: char | string

tmcfg — Test model configuration
scalar structure

Test model configuration, specified as a scalar structure. Refer to the output tm for structure fields.
Define any or all listed parameters or substructure parameters in the input structure, tmcfg. The
output structure, tm, retains the defined parameters and appropriate defaults are assigned for
undefined fields.
Data Types: struct

Output Arguments
tm — E-UTRA test model (E-TM) configuration
scalar structure

E-UTRA test model (E-TM) configuration, returned as a scalar structure. tm contains the following
fields.

Parameter
Field

Values Description

TMN '1.1', '1.2', '2', '2a',
'2b', '3.1', '3.1a',
'3.1b' '3.2', '3.3'

Test model number

BW '1.4MHz', '3MHz',
'5MHz', '10MHz',
'15MHz', '20MHz',
'9RB', '11RB', '27RB',
'45RB', '64RB', '91RB',

Channel bandwidth, in MHz, returned as a character
vector. Nonstandard bandwidths '9RB', '11RB',
'27RB', '45RB', '64RB', and '91RB' specify custom
test models.

NDLRB Nonnegative integer Number of downlink resource blocks (NRB
DL)

CellRefP 1 Number of cell-specific reference signal antenna ports.
This argument is for informational purposes and is
read-only.

NCellID Integer from 0 to 503 Physical layer cell identity
CyclicPrefi
x

'Normal' Cyclic prefix length. This argument is for informational
purposes and is read-only.

CFI 1, 2, or 3 Control format indicator value
Ng 'Sixth', 'Half', 'One',

'Two'
HICH group multiplier

PHICHDurati
on

'Normal', 'Extended' PHICH duration

NSubframe 0 (default), nonnegative
scalar integer

Subframe number. This argument is for informational
purposes and is read-only.

2 Functions

2-1184

Parameter
Field

Values Description

TotSubframe
s

Nonnegative scalar integer Total number of subframes to generate

Windowing Nonnegative scalar integer Number of time-domain samples over which windowing
and overlapping of OFDM symbols is applied

Nfft Positive integer Number of IFFT points used in the OFDM modulation
DuplexMode 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

CellRSPower Numeric value Cell-specific reference symbol power adjustment, in dB
PDSCH Scalar structure PDSCH transmission configuration substructure
PSSPower Numeric value Primary synchronization signal (PSS) symbol power

adjustment, in dB
SSSPower Numeric value Secondary synchronization signal (SSS) symbol power

adjustment, in dB
PBCHPower Numeric value PBCH symbol power adjustment, in dB
PCFICHPower Numeric value PCFICH symbol power adjustment, in dB
NAllocatedP
DCCHREG

Nonnegative integer Number of allocated PDCCH REGs. This argument is
derived from tmn and bw.

PDCCHPower Numeric value PDCCH symbol power adjustment, in dB
PDSCHPowerB
oosted

Numeric value PDSCH symbol power adjustment, in dB, for the
boosted physical resource blocks (PRBs)

PDSCHPowerD
eboosted

Numeric value PDSCH symbol power adjustment, in dB, for the de-
boosted physical resource blocks (PRBs)

These fields are present only when DuplexMode is set to 'TDD'.
 SSC Integer from 0 to 9

8 (default)

Special subframe configuration (SSC)

SSC enumerates the special subframe configuration. TS
36.211 [2], Section 4.2 specifies the special subframe
configurations (lengths of DwPTS, GP, and UpPTS).

 TDDConfig Integer from 1 to 6

3 (default)

Uplink-downlink configuration

TDDConfig enumerates the subframe uplink-downlink
configuration to be used in this frame. TS 36.211 [2],
Section 4.2 specifies uplink-downlink configurations
(uplink, downlink, and special subframe combinations).

PDSCH Substructure

The substructure PDSCH relates to the physical channel configuration and contains these fields:

 lteTestModel

2-1185

Parameter
Field

Values Description

NLayers 1 Number of transmission layers, returned as 1. This
argument is for informational purposes and is read-only.

TxScheme 'Port0' Transmission scheme. The E-TMs have a single antenna
port. This argument is for informational purposes and is
read-only.

Modulation Cell array of one or two
character vectors. Valid
values of character vectors
include: 'QPSK', '16QAM',
'64QAM', '256QAM',
'1024QAM'

Modulation formats, specifying the modulation formats
for boosted and deboosted PRBs. This argument is for
informational purposes and is read-only.

Data Types: struct

Version History
Introduced in R2014a

IFFT size output

The output structure tm includes the Nfft field, which contains the number of IFFT points used in
the OFDM modulation.

References
[1] 3GPP TS 36.141. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS)

Conformance Testing.” 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and
Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteTestModelTool | lteRMCDL | lteRMCUL

2 Functions

2-1186

https://www.3gpp.org
https://www.3gpp.org

lteTestModelTool
Generate downlink test model waveform

Syntax
lteTestModelTool
[waveform,grid,tm] = lteTestModelTool(tmn,bw,ncellid,duplexmode)
[waveform,grid,tm] = lteTestModelTool(tm)

Description
lteTestModelTool starts the LTE Waveform Generator app for the parameterization and
generation of the E-UTRA test model (E-TM) waveforms.

[waveform,grid,tm] = lteTestModelTool(tmn,bw,ncellid,duplexmode) accepts inputs
for the test model number and channel bandwidth for the generated waveform. Optionally, accepts
inputs for the physical cell identity and duplex mode.

[waveform,grid,tm] = lteTestModelTool(tm) where a user-defined test model configuration
structure is provided as an input.

Examples

Generate Downlink E-TM 2a Waveform

Generate a time domain signal, txWaveform, and a 2-dimensional array of the Resource Elements,
txGrid, for Test Model TS 36.141 E-TM 2a with 10MHz bandwidth. This is a 256QAM E-TM.

Specify test model number and bandwidth. Generate txWaveform. Plot the txGrid output.

[txWaveform,txGrid,tm] = lteTestModelTool('2a','10MHz');
plot(txGrid,'.')

 lteTestModelTool

2-1187

The plot of all the complex resource element symbols in the frame is dominated by the 256QAM
PDSCH constellation.

Generate Downlink Waveform Using Full E-TM Configuration Structure

Generate a time domain signal, txWaveform, and a 2-dimensional array of the Resource Elements,
txGrid, for Test Model TS 36.141 E-TM 3.2 with 15MHz bandwidth.

Specify test model number and bandwidth for tmCfg configuration structure and create it. Generate
txWaveform. View the waveform with a spectrum analyzer.

tmn = '3.2';
bw = '15MHz';
tmCfg = lteTestModel(tmn,bw);

[txWaveform,txGrid,tm] = lteTestModelTool(tmCfg);

saScope = spectrumAnalyzer(SampleRate = tm.SamplingRate);
saScope(txWaveform)

2 Functions

2-1188

Input Arguments
tmn — Test model number
'1.1' | '1.2' | '2' | '2a' | '2b' | '3.1' | '3.1a' | '3.1b' | '3.2' | '3.3'

Test model number, specified as a character vector or string scalar. Use double quotes for string. For
more information on these test model numbers, see TS 36.141 [1], Section 6.1.
Example: '3.2'
Data Types: char | string

bw — Channel bandwidth
'1.4MHz' | '3MHz' | '5MHz' | '10MHz' | '15MHz' | '20MHz' | '9RB' | '11RB' | '27RB' | '45RB'
| '64RB' | '91RB'

Channel bandwidth, specified as a character vector or string scalar. Use double quotes for string. You
can set the nonstandard bandwidths, '9RB','11RB','27RB','45RB','64RB', and '91RB', only
when tmn is '1.1'. These nonstandard bandwidths specify custom test models.
Example: '15MHz'
Data Types: char | string

ncellid — Physical layer cell identity
1 or 10 (default) | optional | integer

 lteTestModelTool

2-1189

Physical layer cell identity, specified as an integer. If you do not specify this argument, the default is 1
for standard bandwidths and 10 for non-standard bandwidths.
Example: 1
Data Types: double

duplexmode — Duplex mode of the generated waveform
'FDD' (default) | optional | 'TDD'

Duplex mode of the generated waveform, specified as 'FDD' or 'TDD'. Optional.
Example: 'FDD'
Data Types: char | string

tm — User-defined test model configuration
scalar structure

User-defined test model configuration, specified as a scalar structure. You can use lteTestModel to
generate the various tm configuration structures as per TS 36.141, Section 6 [1]. This configuration
structure then can be modified as per requirements and used to generate the waveform.
Data Types: struct

Output Arguments
waveform — Generated E-TM time-domain waveform
numeric matrix

Generated E-TM time-domain waveform, returned as a T-by-P numeric matrix, where P is the number
of antennas and T is the number of time-domain samples. TS 36.141 [1], Section 6 fixes P = 1, making
waveform a T-by-1 column vector.
Data Types: double

grid — Resource grid
2-D numeric array

Resource grid, returned as a 2-D numeric array of resource elements for a number of subframes
across a single antenna port. The number of subframes (10 for FDD and 20 for TDD), start from
subframe zero, across a single antenna port, as specified in TS 36.141 [1], Section 6.1. Resource
grids are populated as described in “Represent Resource Grids”.
Data Types: double

tm — Test model configuration
scalar structure

E-UTRA test model (E-TM) configuration, returned as a scalar structure. tm contains the following
fields.

Test model configuration, returned as a scalar structure containing information about the OFDM
modulated waveform as described in lteOFDMInfo and test model specific configuration parameters
as described in lteTestModel. These fields are included in the output structure:

2 Functions

2-1190

Parameter
Field

Values Description

TMN '1.1', '1.2', '2', '2a',
'2b', '3.1', '3.1a',
'3.1b' '3.2', '3.3'

Test model number

BW '1.4MHz', '3MHz',
'5MHz', '10MHz',
'15MHz', '20MHz',
'9RB', '11RB', '27RB',
'45RB', '64RB', '91RB',

Channel bandwidth type, in MHz, returned as a
character vector. Non-standard bandwidths, '9RB',
'11RB', '27RB', '45RB', '64RB', and '91RB',
specify custom test models.

NDLRB Nonnegative integer Number of downlink resource blocks (NRB
DL)

CellRefP 1 Number of cell-specific reference signal antenna ports.
This argument is for informational purposes and is
read-only.

NCellID Integer from 0 to 503 Physical layer cell identity
CyclicPrefi
x

'Normal' Cyclic prefix length. This argument is for informational
purposes and is read-only.

CFI 1, 2, or 3 Control format indicator value
Ng 'Sixth', 'Half', 'One',

'Two'
HICH group multiplier

PHICHDurati
on

'Normal', 'Extended' PHICH duration

NSubframe 0 (default), nonnegative
scalar integer

Subframe number

This argument is for informational purposes and is
read-only.

TotSubframe
s

Nonnegative scalar integer Total number of subframes to generate

Windowing Nonnegative scalar integer Number of time-domain samples over which windowing
and overlapping of OFDM symbols is applied

DuplexMode 'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

CellRSPower Numeric value Cell-specific reference symbol power adjustment, in dB
PDSCH Scalar structure PDSCH transmission configuration substructure
PSSPower Numeric value Primary synchronization signal (PSS) symbol power

adjustment, in dB
SSSPower Numeric value Secondary synchronization signal (SSS) symbol power

adjustment, in dB
PBCHPower Numeric value PBCH symbol power adjustment, in dB
PCFICHPower Numeric value PCFICH symbol power adjustment, in dB

 lteTestModelTool

2-1191

Parameter
Field

Values Description

NAllocatedP
DCCHREG

Nonnegative integer Number of allocated PDCCH REGs. This argument is
derived from tmn and bw.

PDCCHPower Numeric value PDCCH symbol power adjustment, in dB
PDSCHPowerB
oosted

Numeric value PDSCH symbol power adjustment, in dB, for the
boosted physical resource blocks (PRBs)

PDSCHPowerD
eboosted

Numeric value PDSCH symbol power adjustment, in dB, for the de-
boosted physical resource blocks (PRBs)

These fields are present only when DuplexMode is set to 'TDD'.
 SSC Integer from 0 to 9

8 (default)

Special subframe configuration (SSC)

SSC enumerates the special subframe configuration. TS
36.211 [2], Section 4.2 specifies the special subframe
configurations (lengths of DwPTS, GP, and UpPTS).

 TDDConfig Integer from 1 to 6

3 (default)

Uplink–downlink configuration

TDDConfig enumerates the subframe uplink-downlink
configuration to be used in this frame. TS 36.211 [2],
Section 4.2 specifies uplink-downlink configurations
(uplink, downlink, and special subframe combinations).

AllocatedPR
B

Numeric array Allocated physical resource block list

SamplingRat
e

Numeric value Sampling rate of the time-domain waveform

Nfft Positive integer Number of fast Fourier transform (FFT) points

PDSCH substructure

The substructure PDSCH relates to the physical channel configuration and contains these fields:

Parameter
Field

Values Description

NLayers 1 Number of transmission layers, returned as 1. This
argument is for informational purposes and is read-only.

TxScheme 'Port0' Transmission scheme. The E-TMs have a single antenna
port. This argument is for informational purposes and is
read-only.

Modulation Cell array of one or two
character vectors. Valid
values of character vectors
include: 'QPSK', '16QAM',
'64QAM', '256QAM',
'1024QAM'

Modulation formats, specifying the modulation formats
for boosted and deboosted PRBs. This argument is for
informational purposes and is read-only.

Data Types: struct

2 Functions

2-1192

Version History
Introduced in R2014a

This function now opens the LTE Waveform Generator app
Behavior changed in R2019b

In previous releases, the input-free syntaxes of this function opened the LTE Test Model Generator
app. Starting in R2019b, input-free calls to this function open the LTE Waveform Generator app for
an E-TM waveform.

References
[1] 3GPP TS 36.141. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS)

Conformance Testing.” 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and
Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
Apps
LTE Waveform Generator

Functions
lteTestModel | lteDLConformanceTestTool | lteRMCDLTool | lteRMCULTool

Topics
“Generate a Test Model”

 lteTestModelTool

2-1193

https://www.3gpp.org
https://www.3gpp.org

lteTurboDecode
Turbo decoding

Syntax
out = lteTurboDecode(in)
out = lteTurboDecode(in,nturbodecits)

Description
out = lteTurboDecode(in) returns the result of turbo decoding the input data in. The function
can decode single data vectors or cell arrays of data vectors. In the case of cell array input, the
output is a cell array containing the separately decoded input array vectors. The input data is
assumed to be soft bit data that has been encoded with the parallel concatenated convolutional code
(PCCC), as defined in TS 36.212 [1], Section 5.1.3.2. Each input data vector is assumed to be
structured as three encoded parity streams concatenated in a block-wise fashion, [S P1 P2], where
S is the vector of systematic bits, P1 is the vector of encoder 1 bits, and P2 is the vector of encoder 2
bits. The decoder uses a default value of 5 iteration cycles. It returns the decoded bits in output
vector out after performing turbo decoding using a sub-log-MAP (Max-Log-MAP) algorithm.

out = lteTurboDecode(in,nturbodecits) provides control over the number of turbo decoding
iteration cycles via parameter nturbodecits. The nturbodecits is an optional parameter. If it is
not provided, it uses the default value of 5 iteration cycles.

Examples

Turbo Decode Input Data

Perform turbo decoding of soft bits obtained from a noisy constellation.

Create a bit stream, turbo encode the bit stream, and modulate it. Create noise, add it to the
modulated symbols. Display the transmitted and received symbols on a scatter plot.

txBits = randi([0 1],6144,1);
codedData = lteTurboEncode(txBits);
txSymbols = lteSymbolModulate(codedData,'QPSK');
noise = 0.5*complex(randn(size(txSymbols)),randn(size(txSymbols)));
rxSymbols = txSymbols + noise;

scatter(real(rxSymbols),imag(rxSymbols),'co');
hold on;

scatter(real(txSymbols),imag(txSymbols),'rx')
legend('Rx constellation','Tx constellation')

2 Functions

2-1194

Demodulate the symbols and turbo decode soft bits. Compare the transmitted and recovered bits.

softBits = lteSymbolDemodulate(rxSymbols,'QPSK','Soft');
rxBits = lteTurboDecode(softBits);
numberErrors = sum(rxBits ~= int8(txBits))

numberErrors = 0

Input Arguments
in — Soft bit input data
numeric vector | numeric cell array of vectors

Soft bit input data, specified as a numeric vector or a cell array of vectors. The decoder expects the
input bits to be encoded with the parallel concatenated convolutional code (PCCC), as defined in TS
36.212 [1], Section 5.1.3.
Data Types: int8 | double | cell

nturbodecits — Number of turbo decoding iteration cycles
5 (default) | optional | positive scalar integer (1...30)

Number of turbo decoder iteration cycles, specified as a positive scalar integer between 1 and 30.
Optional.
Data Types: double

 lteTurboDecode

2-1195

Output Arguments
out — Turbo decoded bits
integer column vector | cell array of integer column vectors

Turbo decoded bits, returned as an integer column vector or a cell array of integer column vectors.
Data Types: int8 | cell

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteTurboEncode | lteRateRecoverTurbo | lteCodeBlockDesegment | lteDLSCHDecode |
lteULSCHDecode | lteConvolutionalDecode

2 Functions

2-1196

https://www.3gpp.org

lteTurboEncode
Turbo encoding

Syntax
out = lteTurboEncode(in)

Description
out = lteTurboEncode(in) returns the result of turbo encoding the input data, in. Only a finite
number of acceptable data vector lengths can be coded. For more information, see TS 36.212 [1],
Table 5.1.3-3. Filler bits are supported through negative input values.

The encoder is a parallel concatenated convolutional code (PCCC) with two 8-state constituent
encoders and a contention-free interleaver. The coding rate of turbo encoder is 1/3. The three
encoded parity streams are concatenated block-wise to form the encoded output, [S P1 P2], where
S is the vector of systematic bits, P1 is the vector of encoder 1 bits, and P2 is the vector of encoder 2
bits. To support the correct processing of filler bits, negative input bit values are specially processed.
They are treated as logical 0 at the input to both encoders but their negative values are passed
directly through to the associated output positions in subblocks S and P1.

Examples

Turbo Encode Input Data

Perform turbo encoding for a cell array input.

bits = lteTurboEncode({ones(40,1),ones(6144,1)})

bits=1×2 cell array
 {132x1 int8} {18444x1 int8}

Input Arguments
in — Input data
numeric vector | numeric cell array of vectors

Input data, specified as a numeric vector or a cell array of vectors.
Data Types: int8 | double | cell

Output Arguments
out — Turbo encoded bits
integer column vector | cell array of integer column vectors

 lteTurboEncode

2-1197

Turbo encoded bits, returned as an integer column vector or a cell array of integer column vectors. If
the input is a cell array, the output is a cell array containing the separately encoded input array
vectors.
Data Types: int8 | cell

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteTurboDecode | lteCodeBlockSegment | lteRateMatchTurbo | lteDLSCH | lteULSCH |
lteConvolutionalEncode

2 Functions

2-1198

https://www.3gpp.org

lteTransmitDiversityDecode
Orthogonal space frequency block code decoding

Syntax
[out,csi] = lteTransmitDiversityDecode(in,hest)

Description
[out,csi] = lteTransmitDiversityDecode(in,hest) performs orthogonal space frequency
block code (OSFBC) decoding of received symbols, in, and channel estimate, hest, returning the
result in out.

Examples

Perform OSFBC decoding of PDSCH symbols

This example shows orthogonal space frequency block code (OSFBC) decoding of PDSCH symbols,
using ideal channel estimates.

Generate a resource grid using multiple antennas to transmit a single PDSCH codeword.

enb = lteRMCDL('R.11');
enb.TotSubframes = 1;
[~,txGrid] = lteRMCDLTool(enb,[1;0;0;1]);

Extract the PDSCH symbols from this transmit grid

[ind,indInfo] = ltePDSCHIndices(enb,enb.PDSCH,enb.PDSCH.PRBSet);
pdschSym = txGrid(ind);

Create an ideal (identity) channel estimate

hest = permute(repmat(eye(enb.CellRefP),[1 1 indInfo.Gd]),[3 1 2]);

Deprecode the PDSCH symbols using the channel estimates

[out,csi] = lteTransmitDiversityDecode(pdschSym,hest);

Input Arguments
in — Received input symbols
numeric matrix

Received input symbols, specified as a numeric matrix. It has size M-by-NRxAnts, where M is the
number of received symbols for each of NRxAnts receive antennas.
Data Types: double
Complex Number Support: Yes

 lteTransmitDiversityDecode

2-1199

hest — Channel estimate
3-D numeric array

Channel estimate, specified as a 3-D numeric array. It has size M-by-NRxAnts-by-CellRefP. M is the
number of received symbols in in. NRxAnts is the number of receive antennas. CellRefP is the
number of cell-specific reference signal antenna ports.
Data Types: double
Complex Number Support: Yes

Output Arguments
out — Decoded received symbols
complex-valued numeric column vector

Decoded received symbols, returned as a complex-valued numeric column vector. It has size M-by-1,
where M is the number of received symbols for each receive antenna.
Data Types: double
Complex Number Support: Yes

csi — Soft channel state information
numeric column vector

Soft channel state information (CSI), returned as a numeric column vector. It has size M-by-1, where
M is the number of received symbols for each receive antenna. csi provides an estimate of the
received RE gain for each received RE.
Data Types: double

Version History
Introduced in R2014a

See Also
lteDLDeprecode

2 Functions

2-1200

lteUCI3Decode
PUCCH format 3 transmission UCI decoding

Syntax
ucibits = lteUCI3Decode(cw,n)

Description
ucibits = lteUCI3Decode(cw,n) returns a column vector of decoded UCI bits, ucibits,
resulting from decoding the soft bit column vector, cw. Where the output vector ucibits is expected
to contain n bits. ucibits is empty if no HARQ-ACK bits are detected.

The decoder uses a maximum likelihood (ML) approach, assuming that cw has been demodulated
using ltePUCCH3Decode, whose input had already been equalized to best restore the originally
transmitted complex values. Specifically, this function assumes that cw is properly scaled to reflect a
QPSK constellation (± sqrt(2)/2 amplitude for real and imaginary parts). If multiple decoded UCI bit
vectors have a likelihood equal to the maximum, ucibits is a matrix where each column represents
one of the equally likely bit vectors. If a minimum likelihood threshold is not met, ucibits is empty.

Examples

Encoding and decoding HARQ-ACK feedback for PUCCH Format 3

This example shows how to encode and decode an ACK using PUCCH format 3 transmission UCI
decoding.

Create a Tx ACK vector. Encode the vector using PUCCH format 3. Convert the logical bits into soft
data.

txAck = [1;0;0;1];

cw = lteUCI3Encode(txAck);

cw = (double(cw)-0.5)*sqrt(2.0);

Decode the received data using the PUCCH format 3 UCI decoder. Verify that the Rx ACK vector
matches the Tx ACK vector.

rxAck = lteUCI3Decode(cw,length(txAck))

rxAck = 4x1 logical array

 1
 0
 0
 1

 lteUCI3Decode

2-1201

Input Arguments
cw — Soft bits to decode
numeric column vector

Soft bits to decode, specified as a numeric column vector.
Data Types: int8 | double

n — Number of bits to return
positive scalar integer (1...22)

Number of bits to return, specified as a positive scalar integer from 1 through 22.
Data Types: double

Output Arguments
ucibits — Concatenated HARQ-ACK bits, periodic CSI bits, and Scheduling Request (SR) bit
logical column vector

Concatenated HARQ-ACK bits, periodic CSI bits, and Scheduling Request (SR) bit, returned as a
logical column vector. ucibits represents the [a0, a1, ... aN-1] bit sequence as described in TS 36.212
[1], Section 5.2.3.1. The number of bits returned, N, is defined by the input argument n.

ucibits is empty if no UCI bits are detected.
Data Types: logical

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteUCI3Encode | ltePUCCH3Decode

2 Functions

2-1202

https://www.3gpp.org

lteUCI3Encode
PUCCH format 3 transmission UCI encoding

Syntax
cw = lteUCI3Encode(ucibits)

Description
cw = lteUCI3Encode(ucibits) returns a column vector of coded UCI bits, cw, resulting from
processing of control information, ucibits for PUCCH format 3. The ucibits is a vector of
concatenated HARQ-ACK bits and any appended periodic CSI bits and/or scheduling request (SR)
bits.

The UCI processing is defined in TS 36.212 [1], Section 5.2.3.1, and consists of a (32,O) block code,
where O is the number of bits in ucibits. The coded bit vector, cw, is 48 bits long.

Examples

Encode HARQ-ACK Feedback for PUCCH Format 3

Encode and decode HARQ-ACK feedback for PUCCH format 3.

Create a Tx ACK vector. Encode the vector using PUCCH format 3. Turn logical bits into 'LLR' data.

txAck = [1;0;0;1];
cw = lteUCI3Encode(txAck);
cw(cw == 0) = -1;

Decode the received data using the PUCCH format 3 UCI decoder. Verify that the Rx ACK vector
matches the Tx ACK vector.

rxAck = lteUCI3Decode(cw,length(txAck))

rxAck = 4x1 logical array

 1
 0
 0
 1

Input Arguments
ucibits — Concatenated HARQ-ACK bits, periodic CSI bits, and Scheduling Request (SR) bit
logical vector of length 1–22

 lteUCI3Encode

2-1203

Concatenated HARQ-ACK bits, periodic CSI bits, and Scheduling Request (SR) bit, specified as a
logical vector containing from 1 to 22 bits. ucibits represents the [a0, a1, ... aN-1] bit sequence as
described in TS 36.212 [1], Section 5.2.3.1.
Data Types: logical | double

Output Arguments
cw — Coded UCI bits
48-by-1 integer column vector

Coded UCI bits, returned as a 48-by-1 integer column vector. This coded bit vector is 48 bits long.
Data Types: int8

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteUCI3Decode | ltePUCCH3

2 Functions

2-1204

https://www.3gpp.org

lteUCIDecode
PUCCH format 2, 2a, and 2b transmission UCI decoding

Syntax
ucibits = lteUCIDecode(cw,n)

Description
ucibits = lteUCIDecode(cw,n) returns a vector of decoded UCI bits, ucibits, resulting from
decoding the soft bit column vector, cw, where the output vector, ucibits, is expected to contain n
bits. ucibits is a column vector of CQI/PMI or RI bits (UCI), representing the CQI/PMI or RI
information fields described in TS 36.212, Section 5.2.3.3 [1]. n must be between 1 and 13. The
decoder uses a maximum likelihood approach assuming that cw has been demodulated using
ltePUCCH2Decode whose input had already been equalized to best restore the originally transmitted
complex values. If multiple decoded UCI bit vectors have a likelihood equal to the maximum, UCIBITS
will be a matrix where each column represents one of the equally likely bit vectors

Examples

Decode UCI Bits

Decode UCI bits representing RI=3 using N=2 bits. According to TS 36.212, Table 5.2.2.6-6 this maps
to the set of input bits [1;0].

cw = lteUCIEncode([1;0])

cw = 20x1 int8 column vector

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 ⋮

softBits = double(cw)/sqrt(2);
decodedUciBits = lteUCIDecode(softBits, 2)

decodedUciBits = 2x1 logical array

 1
 0

 lteUCIDecode

2-1205

The decoded UCI bits match the input bits.

Input Arguments
cw — Codeword of soft bits
numeric column vector

Codeword of soft bits, specified as a numeric column vector.
Data Types: logical | double

n — Number of bits
1...11

Number of bits, specified as a scalar integer from 1 to 11.
Data Types: double

Output Arguments
ucibits — Decoded UCI bits
logical column vector

Decoded UCI bits, returned as a logical column vector. UCI bits are CQI/PMI or RI information.
Data Types: logical

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteUCIEncode | lteUCI3Encode | ltePUCCH2Decode

2 Functions

2-1206

https://www.3gpp.org

lteUCIEncode
PUCCH format 2, 2a, and 2b transmission UCI encoding

Syntax
cw = lteUCIEncode(ucibits)

Description
cw = lteUCIEncode(ucibits) returns a column vector of coded UCI bits, cw, resulting from
processing of control information, ucibits. ucibits is a column vector of CQI/PMI or RI bits (UCI),
representing the CQI/PMI or RI information fields described in TS 36.212, Section 5.2.3.3 [1].
ucibits should be a vector containing up to 13 bits. For PUCCH formats 2a and 2b with extended
cyclic prefix, this vector should also contain the appended 1 or 2 HARQ-ACK bits for joint encoding.

The UCI processing is defined in TS 36.212, Section 5.2.3 [1], and consists of a (20,A) block code,
where A is the number of bits in ucibits. The coded bit vector, cw, is 20 bits long.

Examples

Encode UCI Bits

Encode UCI bits representing RI=3 using two bits. According to TS 36.212, Table 5.2.2.6-6 this maps
to the set of input bits [1; 0].

cw = lteUCIEncode([1;0])

cw = 20x1 int8 column vector

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 ⋮

Input Arguments
ucibits — Control information bits
logical vector of length 1 to 13

Control information bits, specified as a logical vector of length 1 to 13. This vector contains the
CQI/PMI or RI logical bits (UCI), representing the CQI/PMI or RI information fields. It should be up to

 lteUCIEncode

2-1207

13 bits in length. For PUCCH formats 2a and 2b with extended cyclic prefix, this vector should also
contain the appended 1 or 2 HARQ-ACK bits for joint encoding.
Data Types: logical

Output Arguments
cw — Coded UCI bits
20-by-1 integer column vector

Coded UCI bits, returned as a 20-by-1 integer column vector. The coded bit vector is 20 bits long.
Data Types: int8

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteUCIDecode | lteUCI3Decode | ltePUCCH2

2 Functions

2-1208

https://www.3gpp.org

lteULChannelEstimate
PUSCH uplink channel estimation

Syntax
[hest, noiseest] = lteULChannelEstimate(ue,chs,rxgrid)
[hest, noiseest] = lteULChannelEstimate(ue,chs,cec,rxgrid)
[hest, noiseest] = lteULChannelEstimate(ue,chs,cec,rxgrid,refgrid)
[hest, noiseest] = lteULChannelEstimate(ue,chs,rxgrid,refgrid)

Description
[hest, noiseest] = lteULChannelEstimate(ue,chs,rxgrid) returns an estimate for the
channel by averaging the least squares estimates of the reference symbols across time and copying
these estimates across the allocated resource elements within the time frequency grid. It returns the
estimated channel between each transmit and receive antenna and an estimate of the noise power
spectral density. See “Algorithms” on page 2-1215.

[hest, noiseest] = lteULChannelEstimate(ue,chs,cec,rxgrid) returns the estimated
channel using the method and parameters defined by the user in the channel estimator configuration
cec structure.

[hest, noiseest] = lteULChannelEstimate(ue,chs,cec,rxgrid,refgrid) returns the
estimated channel using the method and parameters defined by the channel estimation configuration
structure and the additional information about the transmitted symbols found in refgrid.

When cec.InterpType is set to 'None', values in refgrid are treated as reference symbols and
the resulting hest contains non-zero values in their locations.

[hest, noiseest] = lteULChannelEstimate(ue,chs,rxgrid,refgrid) returns the
estimated channel using the estimation method as described in TS 36.101 [1], Annex F4. The method
described utilizes extra channel information obtained through information of the transmitted symbols
found in refgrid. This additional information allows for an improved estimate of the channel and is
required for accurate EVM measurements. rxgrid and refgrid must only contain a whole subframe
worth of SC-FDMA symbols.

Examples

Estimate Channel Characteristics for PUSCH

Use lteULChannelEstimate to estimate the channel characteristics for a received resource grid.

Initialize a UE configuration structure to RMC A3-2. Initialize the channel estimation configuration
structure. Generate a transmission waveform. For the purpose of this example, we bypass the channel
stage of the system model and copy txWaveform to rxWaveform.

ue = lteRMCUL('A3-2');
ue.TotSubframes = 1;
cec = struct('FreqWindow',7,'TimeWindow',1,'InterpType','cubic');

 lteULChannelEstimate

2-1209

txWaveform = lteRMCULTool(ue,[1;0;0;1]);
rxWaveform = txWaveform;

Demodulate the SC-FDMA waveform and perform channel estimation operation on rxGrid.

rxGrid = lteSCFDMADemodulate(ue,rxWaveform);
hest = lteULChannelEstimate(ue,ue.PUSCH,cec,rxGrid);

Input Arguments
ue — UE-specific configuration
structure

UE-specific configuration, specified as a structure. ue can contain the following fields.

Parameter
Field

Required or
Optional

Values Description

NULRB Required 6, 15, 25, 50, 75, 100 Number of uplink resource blocks.
(NRB

UL)
NCellID Required Nonnegative scalar

integer
Physical layer cell identity

NSubframe Required 0 (default),
nonnegative scalar
integer

Subframe number

CyclicPref
ixUL

Optional 'Normal' (default),
'Extended'

Cyclic prefix length for uplink.

NTxAnts Optional 1 (default), 2, 4 Number of transmission antennas.
Hopping Optional 'Off' (default),

'Group', or
'Sequence'

Frequency hopping method.

SeqGroup Optional 0 (default), integer
from 0 to 29

PUSCH sequence group assignment
(ΔSS).

Only used if NDMRSID or NPUSCHID is
absent.

CyclicShif
t

Optional 0 (default), integer
from 0 to 7

Number of cyclic shifts used for PUSCH
DM-RS (yields nDMRS

(1)).

NPUSCHID Optional 0 (default),
nonnegative scalar
integer from 0 to 509

PUSCH virtual cell identity. If this field
is not present, NCellID is used for
group hopping sequence-shift pattern
initialization.

See footnote.

2 Functions

2-1210

Parameter
Field

Required or
Optional

Values Description

NDMRSID Optional 0 (default),
nonnegative scalar
integer from 0 to 509

DM-RS identity for cyclic shift hopping
(nID

csh_DMRS). If this field is not present,
NCellID is used for cyclic shift hopping
initialization.

See footnote.
1 The pseudorandom sequence generator for cyclic shift hopping is initialized according to

NDMRSID, if present — otherwise it is initialized according to the cell identity NCellID and the
sequence group assignment SeqGroup. Similarly, the sequence-shift pattern for group hopping is
initialized according to NPUSCHID, if present — otherwise it is initialized according to NCellID
and SeqGroup.

Data Types: struct

chs — PUSCH channel settings
structure

PUSCH channel settings, specified as a structure that can contain the following fields. The parameter
field PMI is only required if ue.NTxAnts is set to 2 or 4.

Parameter
Field

Required
or
Optional

Values Description

PRBSet Required Integer column
vector or two-
column matrix

Physical resource block set, specified as a 1-column or 2-
column matrix. This parameter field contains the zero-based
physical resource block (PRB) indices corresponding to the
slot-wise resource allocations for this PUSCH.

If PRBSet is a column vector, the resource allocation is the
same in both slots of the subframe. To specify differing PRBs
for each slot in a subframe, use a 2-column matrix. The PRB
indices are zero based.

NLayers Optional 1 (default), 2, 3, 4 Number of transmission layers
DynCyclicShi
ft

Optional 0 (default), integer
from 0 to 7

Cyclic shift for DM-RS (yields nDMRS
(2)).

OrthoCover Optional 'Off' (default),
'On'

Applies ('On'), or does not apply ('Off'), orthogonal cover
sequence w (Activate-DMRS-with OCC).

The following field is required only when ue.NTxAnts is set to 2 or 4.
 PMI Optional nonnegative scalar

integer (0,...,23)

0 (default)

Scalar precoder matrix indication (PMI) to be used during
precoding

of the DRS reference symbols

Data Types: struct

rxgrid — Received resource element grid
3-D array

 lteULChannelEstimate

2-1211

Received resource element grid, specified as an NSC-by-NSym-by-NR array of complex symbols.

• NSC is the number of subcarriers
• NSym = NSF × NSymPerSF

• NSF is the total number of subframes. If NSF is greater than one, the correct region is extracted
from the returned hest array. The location of the estimated subframe within hest is specified
using the parameter field cec.Window.

• NSymPerSF is the number of SC-FDMA symbols per subframe.

• For normal cyclic prefix, each subframe contains 14 SC-FDMA symbols.
• For extended cyclic prefix, each subframe contains 12 SC-FDMA symbols.

• NR is the number of receive antennas

Data Types: double
Complex Number Support: Yes

cec — Channel estimator configuration
structure

Channel estimator configuration, specified as a structure with these fields.

Parameter
Field

Required
or
Optional

Values Description

FreqWindow Required Nonnegative
scalar integer

Size of window in resource elements used to average over
frequency during channel estimation

The window size must be either an odd number or a multiple
of 12.

TimeWindow Required Nonnegative
scalar integer

Size of window in resource elements used to average over
time during channel estimation

The window size must be an odd number.
InterpType Required 'nearest',

'linear',
'natural',
'cubic', 'v4',
'none'

See footnote.

Type of 2-D interpolation used during interpolation. For
details, see griddata. Supported choices are shown in the
following table.

Value Description
'nearest' Nearest neighbor interpolation
'linear' Linear interpolation
'natural' Natural neighbor interpolation
'cubic' Cubic interpolation
'v4' MATLAB 4 griddata method
'none' Disables interpolation

2 Functions

2-1212

Parameter
Field

Required
or
Optional

Values Description

PilotAverage Optional 'UserDefined'(d
efault),
'TestEVM'

See footnote.

Type of pilot averaging

Reference Optional 'Antennas'
(default),
'Layers',
'None'

See footnote.

Specifies point of reference (signals to internally generate)
for channel estimation

The following field is required only when rxgrid contains more than one subframe. See footnote.
 Window Optional 'Left', 'Right',

'Centred',
'Centered'

If more than one subframe is input this parameter is required
to indicate the position of the subframe from rxgrid and
refgrid containing the desired channel estimate. Only channel
estimates for this subframe will be returned. For the
'Centred' and 'Centered' settings, the window size must
be odd.

 lteULChannelEstimate

2-1213

Parameter
Field

Required
or
Optional

Values Description

1 For cec.InterpType = 'none', no interpolation is performed between pilot symbols and no virtual pilots
are created. hest will contain channel estimates in the locations of transmitted reference symbols for
each received antenna and all other elements of hest are zero. The averaging of pilot symbols estimates
described by cec.TimeWindow and cec.FreqWindow are still performed.

2 The 'UserDefined' pilot averaging uses a rectangular kernel of size cec.FreqWindow-by-
cec.TimeWindow and performs a 2-D filtering operation upon the pilots. Pilots near the edge of the
resource grid are averaged less as they have no neighbors outside of the grid. For cec.FreqWindow =
12×X (i.e. any multiple of 12) and cec.TimeWindow = 1 the estimator enters a special case where an
averaging window of (12×X)-in-frequency is used to average the pilot estimates; the averaging is always
applied across (12×X) subcarriers, even at the upper and lower band edges; therefore the first (6×X)
symbols at the upper and lower band edge have the same channel estimate. This operation ensures that
averaging is always done on 12 (or a multiple of 12) symbols. This provides the appropriate despreading
operation required for the case multi-antenna transmission where the DM-RS signals associated with each
antenna occupy the same time/frequency locations but use different orthogonal cover codes to allow them
to be differentiated at the receiver. The 'TestEVM' pilot averaging ignores other structure fields in cec,
and follows the method described in TS 36.101, Annex F for the purposes of transmitter EVM testing.

3 Setting cec.Reference to 'Antennas' uses the PUSCH DMRS after precoding onto the transmission
antennas as the reference for channel estimation. In this case, the precoding matrix indicated in chs.PMI
is used to precode the DMRS layers onto antennas, and the channel estimate, hest, is a matrix of size M-
by-N-by-NRxAnts-by-chs.NTxAnts. Setting cec.Reference to 'Layers' uses the PUSCH DMRS
without precoding as the reference for channel estimation. The channel estimate, hest, is of size M-by-N-
by-NRxAnts-by-chs.NLayers. Setting cec.Reference to 'None' generates no internal reference
signals, and the channel estimation can be performed on arbitrary known REs as given by the refgrid
argument. This approach can be used to provide a refgrid containing the SRS signals created on all
NTxAnts, allowing for full-rank channel estimation for the purposes of PMI selection when the PUSCH is
transmitted with less than full rank.

4 When rxgrid contains more than one subframe, cec.Window provides control of the location of the
subframe for which channel estimation is performed. This allows channel estimation for the subframe of
interest to be aided by the presence of pilot symbols occupying the same resource block in subframes
before and/or after that subframe. For example, if rxgrid contains five subframes, 'Left' estimates the
last first subframe in rxgrid, 'Centred'/'Centered' estimates the third (middle) subframe, and
'Right' estimates the last subframe. The parameter ue.NSubframe corresponds to the chosen
subframe. So, with three subframes and cec.Window = 'Right', rxgrid corresponds to subframes
(ue.NSubframe-2, ue.NSubframe-1, ue.NSubframe). The hest output will be the same size as rxgrid
and will correspond to the same subframe numbers. All locations other than the estimated subframe will
contain zeros.

Data Types: struct

refgrid — Reference array of known transmitted data symbols in their correct locations
3-D numeric array

Reference array of known transmitted data symbols in their correct locations, specified as an NSC-by-
NSym-by-NT array of complex symbols. All other locations, such as DM-RS Symbols and unknown data
symbol locations, must be represented by a NaN. The first two dimensions of rxgrid and refgrid
must be the same.

• NSC is the number of subcarriers.

2 Functions

2-1214

• NSym = NSF × NSymPerSF

• NSF is the total number of subframes. If NSF is greater than one, the correct region is extracted
from the returned hest array. The location of the estimated subframe within hest is specified
using the parameter field cec.Window.

• NSymPerSF is the number of SC-FDMA symbols per subframe.

• For normal cyclic prefix, each subframe contains 14 SC-FDMA symbols.
• For extended cyclic prefix, each subframe contains 12 SC-FDMA symbols.

• NT is the number of transmit antennas, ue.NTxAnts

For cec.InterpType = 'None', values in refgrid are treated as reference symbols and the
resulting hest contains non-zero values in their locations. A typical use for refgrid is to provide
values of the SRS transmitted at some point during the time span of rxgrid. The SRS values can be
used to enhance the channel estimation.
Data Types: double
Complex Number Support: Yes

Output Arguments
hest — Channel estimate between each transmit and receive antenna
4-D array

Channel estimate between each transmit and receive antenna, returned as an NSC-by-NSym-by-NR-by-
NT array of complex symbols.

• NSC is the number of subcarriers.
• NSym is the number of SC-FDMA symbols.
• NR is the number of receive antennas.
• NT is the number of transmit antennas, ue.NTxAnts.

Optionally, the channel estimator can be configured to use the DM-RS layers as the reference signal.
In this case, the 4-D array is an NSC-by-NSym-by-NR-by-NLayers array of complex symbols, where NLayers
is the number of transmission layers.

noiseest — Noise estimate
numeric scalar

Noise estimate, returned as a numeric scalar. This output is the power spectral density of the noise
present on the estimated channel response coefficients.

Algorithms
The channel estimation algorithm is described in the following steps.

1 Extract the demodulation reference signals, or pilot symbols, for a transmit-receive antenna pair
from the allocated physical resource blocks within the received subframe.

2 Average the least-squares estimates to reduce any unwanted noise from the pilot symbols.
3 Using the cleaned pilot symbol estimates, interpolate to obtain an estimate of the channel for the

entire number of subframes passed into the function.

 lteULChannelEstimate

2-1215

Least-Squares Estimation

The least-squares estimates of the reference signals are obtained by dividing the received pilot
symbols by their expected value. The least-squares estimates are affected by any system noise. This
noise needs to be removed or reduced to achieve a reasonable estimation of the channel at pilot
symbol locations.

Noise Reduction and Interpolation

To minimize the effects of noise on the pilot symbol estimates, the least-squares estimates are
averaged. This simple method produces a substantial reduction in the level of noise found on the pilot
symbols. The pilot symbol averaging method uses an averaging window defined by the user. The
averaging window size is measured in resource elements; any pilot symbols located within the
window are used to average the value of the pilot symbol found at the center of the window.

Then, the averaged pilot symbol estimates are used to perform a 2-D interpolation across allocated
physical resource blocks. The location of pilot symbols within the subframe is not ideally suited to
interpolation. To account for this positioning, virtual pilots are created and placed out with the area
of the current subframe. This placement allows complete and accurate interpolation to be performed.

Note The PUSCH channel estimator is only able to deal with contiguous allocation of resource blocks
in time and frequency.

Version History
Introduced in R2013b

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteEqualizeMIMO | lteEqualizeMMSE | lteEqualizeZF | lteSCFDMADemodulate |
lteULFrameOffset | lteULPerfectChannelEstimate | griddata | lteEqualizeULMIMO

2 Functions

2-1216

https://www.3gpp.org

lteULChannelEstimateNPUSCH
NPUSCH channel estimation

Syntax
[hEst,noiseEst] = lteULChannelEstimateNPUSCH(ue,chs,rxGrid)
[hEst,noiseEst] = lteULChannelEstimateNPUSCH(ue,chs,cec,rxGrid)
[hEst,noiseEst] = lteULChannelEstimateNPUSCH(___ ,stateIn)

Description
[hEst,noiseEst] = lteULChannelEstimateNPUSCH(ue,chs,rxGrid) estimates the channel
between transmit and receive antennas for user equipment (UE) settings ue, channel transmission
configuration chs, and received resource grid rxGrid. The function returns hEst, the estimated
channel, and noiseEst, the estimated noise power spectral density.

The function calculates hEst and noiseEst by averaging least-squares estimates of the narrowband
physical uplink shared channel (NPUSCH) demodulation reference signal (DRS) symbols over time
and copying these symbols across the allocated resource elements (REs) within the time-frequency
grid.

[hEst,noiseEst] = lteULChannelEstimateNPUSCH(ue,chs,cec,rxGrid) specifies cec, a
structure containing the method and parameters to use for channel estimation.

[hEst,noiseEst] = lteULChannelEstimateNPUSCH(___ ,stateIn) specifies stateIn, the
initial encoder state for NPUSCH DRS symbol generation, in addition to any input argument
combination from previous syntaxes..

Examples

Estimate Uplink Channel Characteristics

Perform NPUSCH channel estimation on a received resource grid.

Configure UE-specific settings.

ue = struct('NNCellID',0,'NBULSubcarrierSpacing','15kHz','NSlot',0);

Specify a channel transmission configuration.

chs = struct('NPUSCHFormat','Data','NRUsc',1,'NULSlots',16,'NRU',1, ...
 'NRep',1,'NBULSubcarrierSet',0,'Modulation','QPSK');

Configure the channel estimation type and parameters.

cec = struct('FreqWindow',7,'TimeWindow',1,'InterpType','cubic','PilotAverage','UserDefined');

Generate the NPUSCH DRS symbols and allocate them to the appropriate locations on a resource
grid.

 lteULChannelEstimateNPUSCH

2-1217

grid = lteNBResourceGrid(ue);
grid(lteNPUSCHDRSIndices(ue,chs)) = lteNPUSCHDRS(ue,chs);

Generate a waveform by performing single-carrier frequency-division multiple access (SC-FDMA)
modulation on the NPUSCH DRS symbols.

waveform = lteSCFDMAModulate(ue,chs,grid);

Perform SC-FDMA demodulation, assuming that the received waveform matches the transmitted
waveform.

rxGrid = lteSCFDMADemodulate(ue,chs,waveform);

Estimate the channel.

[hEst,noiseEst] = lteULChannelEstimateNPUSCH(ue,chs,cec,rxGrid);

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure containing these fields.

Field Values Description Data Types
NBULSubcarrierSpac
ing

'3.75kHz', '15kHz' NB-IoT uplink
subcarrier spacing

To set a subcarrier
spacing of 3.75 kHz,
specify this field as
'3.75kHz'. To set a
subcarrier spacing of 15
kHz, specify this field as
'15kHz'.

char, string

NNCellID Integer in the interval
[0, 503]

Narrowband physical
layer cell identity (PCI)

double

NFrame 0 (default), nonnegative
integer

Frame number double

NSlot Nonnegative integer Slot number

When you specify the
NPUSCHFormat field as
'Data' and the
SeqGroupHopping
field as 'Off' in the
chs input, the function
ignores this field.

double

Data Types: struct

chs — Channel transmission configuration
structure

2 Functions

2-1218

Channel transmission configuration, specified as a structure containing these fields.

Field Values Description Data Types
NPUSCHFormat 'Data', 'Control' NPUSCH format

To indicate that the
NPUSCH carries
narrowband uplink
shared channel (UL-
SCH) data, specify this
field as 'Data'. To
indicate that the
NPUSCH carries uplink
control information,
specify this field as
'Control'.

char, string

NRUsc 1, 3, 6, 12 Number of consecutive
subcarriers in a
resource unit (RU)

If you specify the
NPUSCHFormat field as
'Control' or the
NBULSubcarrierSpac
ing field of the ue input
as '3.75kHz', then you
must specify this field
as 1 .

double

NRep 1, 2, 4, 8, 16, 32, 64,
128

Number of repetitions
for a codeword

double

NRU 1, 2, 3, 4, 5, 6, 8, 10 Number of RUs double

 lteULChannelEstimateNPUSCH

2-1219

Field Values Description Data Types
NULSlots 2, 4, 8, 16 Number of slots per RU

If you specify the
NPUSCHFormat field as
'Control', then you
must specify this field
as 4.

If you specify the
NPUSCHFormat field as
'Data', then you must
specify this field as:

• 16 when you specify
the NRUsc field as 1

• 8 when you specify
the NRUsc field as 3

• 4 when you specify
the NRUsc field as 6

• 2 when you specify
the NRUsc field as
12

double

2 Functions

2-1220

Field Values Description Data Types
BaseSeqIdx Integer in the interval

[0, 29]

Default depends on the
value of the NRUsc field.

Multitone NPUSCH
DRS base sequence
index

• When you specify
the NRUsc field as 3,
specify this field as
an integer in the
interval [0, 11]. If
you do not specify
this field, the
function sets it to the
value of
mod(ue.NNCellID,
12).

• When you specify
the NRUsc field as 6,
specify this field as
an integer in the
interval [0, 13]. If
you do not specify
this field, the
function sets it to the
value of
mod(ue.NNCellID,
14).

• When you specify
the NRUsc field as
12, specify this field
as an integer in the
interval [0, 29]. If
you do not specify
this field, the
function sets it to the
value of
mod(ue.NNCellID,
30).

• When you specify
the NRUsc field as
any other value, the
function does not
use this field.

Dependencies. To
enable this field, specify
the NRUsc field as 3, 6,
or 12.

double

 lteULChannelEstimateNPUSCH

2-1221

Field Values Description Data Types
SeqGroupHopping 'On' (default), 'Off' To enable sequence-

group hopping, specify
this field as 'On'. To
disable sequence group
hopping, specify this
field as 'Off'. For
more information, see
section 5.5.1.3 of [1].

char, string

SeqGroup 0 (default), integer in
the interval [0, 29]

Sequence-group
assignment for
sequence shift pattern
calculation

For more information,
see section 10.1.4.1.3 of
[1].

Dependencies. To
enable this field, specify
the SeqGroupHopping
field as 'On'.

double

CyclicShift 0 (default), integer in
the interval [0, 3]

Cyclic shift

• When you specify
the NRUsc field as 3,
specify this field as
an integer in the
interval [0, 2].

• When you specify
the NRUsc field as 6,
specify this field as
an integer in the
interval [0, 3].

Dependencies. To
enable this field, specify
the NRUsc field as 3 or
6.

double

2 Functions

2-1222

Field Values Description Data Types
NBULSubcarrierSet Integer in the interval

[0, 47], vector of
integers in the interval
[0, 11]

NB-IoT uplink
subcarrier indices, in
zero-based form

If you specify the
NPUSCHFormat field as
'Control', specify this
field as an integer in the
interval [0, 11].

If you specify the
NPUSCHFormat field as
'Data' and the
NBULSubcarrierSpac
ing field of the ue input
as '3.75kHz', specify
this field as an integer
in the interval [0, 47].

If you specify the
NPUSCHFormat field as
'Data' and the
NBULSubcarrierSpac
ing field of the ue input
as '15kHz', specify this
field as a vector of
integers in the interval
[0, 11].

double

Data Types: struct

rxGrid — Received resource grid
complex-valued matrix

Received resource grid, specified as a complex-valued matrix of size T-by-P.

• T is the number of time-domain samples.
• P is the number of transmit antennas.

You can generate this input by performing SC-FDMA demodulation on a received resource grid using
the lteSCFDMADemodulate function.
Data Types: double
Complex Number Support: Yes

cec — Channel estimation configuration
structure

Channel estimation configuration, specified as a structure containing these fields.

 lteULChannelEstimateNPUSCH

2-1223

Field Values Description Data Types
FreqWindow Positive odd integer,

positive multiple of 12
Size of window for
frequency averaging, in
resource elements

double

TimeWindow Positive odd integer Size of window for time
averaging, in resource
elements

double

InterpType 'nearest', 'linear',
'natural', 'cubic',
'v4', 'none'

Type of interpolation
between pilot symbols,
specified as one of these
values.

• 'nearest' — Use
nearest neighbor
interpolation

• 'linear' — Use
linear interpolation

• 'natural' — Use
natural neighbor
interpolation

• 'cubic' — Use cubic
interpolation

• 'v4' — Use the
MATLAB 4 griddata
method

• 'none' — The function
performs no
interpolation between
pilot symbols and does
not create virtual
pilots. The hEst output
contains channel
estimates in the
locations of the
transmitted NPUSCH
DRS symbols for each
receive antenna, and
all other elements of
hEst are 0. The
function still performs
pilot symbol averaging
in accordance with the
values you specify for
the FreqWindow and
TimeWindow fields.

For more information, see
the griddata function.

char, string

2 Functions

2-1224

Field Values Description Data Types
PilotAverage 'TestEVM',

'UserDefined'
Type of pilot averaging

If you specify this field as
'TestEVM', the function
ignores any other fields
you specify. In this case,
the function performs pilot
averaging according to the
method set out in and
Annex F of [2].

When you specify this field
as 'UserDefined', the
function performs pilot
averaging with a
rectangular kernel of size
FreqWindow-by-
TimeWindow. The function
also performs a two-
dimensional filtering
operation on the pilots.
The pilots near the edge of
the resource grid either
have no neighbors or a
limited number of
neighbors through the
creation of virtual pilots.
Consequently, these pilots
are not averaged in the
same way as pilots that
are not near the edge of
the resource grid.

char, string

Data Types: struct

stateIn — Encoder state
struct() (default) | structure

Encoder state for NPUSCH DRS generation, specified as a structure. This input corresponds to the
stateIn input of the lteNPUSCHDRS function. This input contains the internal state of each
transport block in these fields.

Field Values Description Data Types
SlotIdx Integer in the interval

[0, (chs.NRU ×
chs.NULSlots ×
chs.NRep) – 1]

Index of a slot within a
bundle, in zero-based
form

double

InitNSlot Nonnegative integer Slot number for
scrambling sequence
initialization

double

 lteULChannelEstimateNPUSCH

2-1225

Field Values Description Data Types
InitNFrame Nonnegative integer Frame number for

scrambling sequence
initialization

double

EndOfBlk Logical 1 (true) or 0
(false)

To indicate that the
transmission has
reached the end of a
transport block, specify
this field as 1 (true).
Otherwise, specify this
field as 0 (false).

logical

EndOfTx Logical 1 (true) or 0
(false)

To indicate that the
transmission has
reached the end of a
bundle, specify this field
as 1 (true). Otherwise,
specify this field as 0
(false).

logical

GhpNSlot Nonnegative integer Slot number for the first
slot in the RU

Dependencies. To
enable this field, specify
the NPUSCHFormat
field as 'Data' and the
NRUsc field as 1 in the
chs input.

double

Data Types: struct

Output Arguments
hEst — Channel estimate
complex-valued array

Channel estimate, returned as a complex-valued array of size K-by-L-by-R.

• K is the total number of subcarriers.
• L is the number of SC-FDMA symbols.
• R is the number of receive antennas.

Data Types: double
Complex Number Support: Yes

noiseEst — Noise power spectral density
real-valued scalar

Noise power spectral density, returned as a real-valued scalar. This output represents the power
spectral density of the noise present on the estimated channel response coefficients.
Data Types: double

2 Functions

2-1226

Version History
Introduced in R2020a

References
[1] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). https://www.3gpp.org.

[2] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)
radio transmission and reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. https://www.3gpp.org.

See Also
Functions
griddata | lteEqualizeMMSE | lteEqualizeZF | lteNPUSCHDRS | lteSCFDMADemodulate |
lteULChannelEstimate | lteULFrameOffsetNPUSCH | lteULPerfectChannelEstimate

 lteULChannelEstimateNPUSCH

2-1227

https://www.3gpp.org
https://www.3gpp.org

lteULChannelEstimatePUCCH1
PUCCH format 1 uplink channel estimation

Syntax
[hest,noiseest] = lteULChannelEstimatePUCCH1(ue,chs,rxgrid)
[hest,noiseest] = lteULChannelEstimatePUCCH1(ue,chs,cec,rxgrid)
[hest,noiseest] = lteULChannelEstimatePUCCH1(ue,chs,cec,rxgrid,refgrid)
[hest,noiseest] = lteULChannelEstimatePUCCH1(ue,chs,rxgrid,refgrid)

Description
[hest,noiseest] = lteULChannelEstimatePUCCH1(ue,chs,rxgrid) returns an estimate for
the channel by averaging the least squares estimates of the reference symbols across time and
copying these across the allocated resource elements within the time frequency grid.
lteULChannelEstimatePUCCH1 returns hest, the estimated channel between each transmit and
receive antenna and noiseest, an estimate of the noise power spectral density.

[hest,noiseest] = lteULChannelEstimatePUCCH1(ue,chs,cec,rxgrid) returns the
estimated channel using the method and parameters defined by the user in the channel estimator
configuration structure, cec.

[hest,noiseest] = lteULChannelEstimatePUCCH1(ue,chs,cec,rxgrid,refgrid) returns
the estimated channel using the method and parameters defined by the channel estimation
configuration structure and the additional information about the transmitted symbols found in
refgrid. The rxgrid and refgrid inputs must have the same dimensions. For cec.InterpType
= 'None', values in refgrid are treated as reference symbols and the resulting hest will contain
non-zero values in their locations.

[hest,noiseest] = lteULChannelEstimatePUCCH1(ue,chs,rxgrid,refgrid) returns the
estimated channel using the estimation method as described in TS 36.101, Annex F4 [1]. The method
described utilizes extra channel information obtained through information of the transmitted symbols
found in refgrid. This additional information allows for an improved estimate of the channel and is
required for accurate EVM measurements. rxgrid and refgrid must only contain a whole subframe
worth of SC-FDMA symbols.

Examples

Estimate Channel Characteristics for PUCCH Format 1

Use the lteULChannelEstimatePUCCH1 function to estimate channel characteristics for PUCCH
Format 1

Initialize a UE configuration structure, PUCCH settings, and create a resource grid.

ue = struct('NULRB',6,'NCellID',0,'NSubframe',0,'Hopping','Off');
ue.CyclicPrefixUL = 'Normal';
ue.NTxAnts = 1;
pucch1.ResourceIdx = 0;

2 Functions

2-1228

pucch1.DeltaShift = 1;
pucch1.CyclicShifts = 0;
reGrid = lteULResourceGrid(ue);
reGrid(ltePUCCH1DRSIndices(ue,pucch1)) = ltePUCCH1DRS(ue,pucch1);

For the purpose of this example, we skip SC-FDMA modulation, channel and SC-FDMA demodulation
stages of the system model and use reGrid as the received resource grid. Initialize the channel
estimation configuration structure and perform channel estimation operation on reGrid.

cec = struct('FreqWindow',12,'TimeWindow',1,'InterpType','Cubic');
hest = lteULChannelEstimatePUCCH1(ue,pucch1,cec,reGrid);

Input Arguments
ue — UE-specific configuration settings
structure

UE-specific configuration settings, specified as a structure that can contain the following fields.

Parameter Field Required or
Optional

Values Description

NULRB Required Scalar integer from 6 to 110 Number of uplink resource blocks.
(NRB

UL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
NTxAnts Optional 1 (default), 2, 4 Number of transmission antennas.
Hopping Optional 'Off' (default), 'Group' Frequency hopping method.
NPUCCHID Optional Integer from 0 to 503 PUCCH virtual cell identity. If this

field is not present, NCellID is
used as the identity.

Data Types: struct

chs — PUCCH settings
structure

PUCCH channel settings, specified as a structure that can contain the following fields.

 lteULChannelEstimatePUCCH1

2-1229

Parameter Field Required or
Optional

Values Description

ResourceIdx Optional 0 (default), integer from 0 to 2047
or vector of integers.

PUCCH resource indices, specified
as an integer or a vector of
integers. Values range from 0 to
2047. These indices determine the
physical resource blocks, cyclic
shift and orthogonal cover used
for transmission. (nPUCCH

(1)). Define
one index for each transmission
antenna.

ResourceSize Optional 0 (default), integer from 0 to 98. Size of resource allocated to
PUCCH format 2 (NRB

(2))

DeltaShift Optional 1 (default), 2, 3 Delta shift, specified as 1, 2, or 3.
(Δshift)

DeltaOffset Optional 0 (default), 1, 2 (Δoffset). Warning: The use of this
parameter field is not advised. It
applies only to 3GPP releases
preceding v8.5.0. This parameter
will be removed in a future
release.

CyclicShifts Optional 0 (default), integer from 0 to 7 Number of cyclic shifts used for
format 1 in resource blocks (RBs)
with a mixture of format 1 and
format 2 PUCCH, specified as an
integer from 0 to 7. (Ncs

(1))

Data Types: struct

rxgrid — Received resource element grid
3-D array

Received resource element grid, specified as an NSC-by-NSym-by-NR array of complex symbols.

• NSC is the number of subcarriers
• NSym = NSF × NSymPerSF

• NSF is the total number of subframes. If NSF is greater than one, the correct region is extracted
from the returned hest array. The location of the estimated subframe within hest is specified
using the parameter field cec.Window.

• NSymPerSF is the number of SC-FDMA symbols per subframe.

• For normal cyclic prefix, each subframe contains 14 SC-FDMA symbols.
• For extended cyclic prefix, each subframe contains 12 SC-FDMA symbols.

• NR is the number of receive antennas

Data Types: double
Complex Number Support: Yes

2 Functions

2-1230

cec — Channel estimator configuration
structure

Channel estimator configuration, specified as a structure with these fields.

Parameter Field Required or
Optional

Values Description

FreqWindow Optional Odd scalar integer or a multiple of
12

Size of window used to average
over frequency, in resource
elements (REs), specified as a
scalar integer.

TimeWindow Optional Odd scalar integer Size of window used to average
over time, in resource elements
(REs), specified as a scalar integer.

InterpType Optional 'nearest', 'linear',
'natural', 'cubic', 'v4',
'none'

See footnote.

Type of 2-D interpolation used
during interpolation. For details,
see griddata. Supported choices
are shown in the following table.

Value Description
'neares
t'

Nearest neighbor
interpolation

'linear
'

Linear interpolation

'natura
l'

Natural neighbor
interpolation

'cubic' Cubic interpolation
'v4' MATLAB 4 griddata

method
'none' Disables interpolation

PilotAverage Optional 'UserDefined'(default),
'TestEVM'

See footnote.

Type of pilot averaging

The following parameter is required only if rxgrid contains more than one subframe. See footnote.
Window Optional 'Left', 'Right', 'Centred',

'Centered'
If more than one subframe is input
this parameter is required to
indicate the position of the
subframe from rxgrid and refgrid
containing the desired channel
estimate. Only channel estimates
for this subframe will be returned.
For the 'Centred' and
'Centered' settings, the window
size must be odd.

 lteULChannelEstimatePUCCH1

2-1231

Parameter Field Required or
Optional

Values Description

1 For cec.InterpType = 'none', no interpolation is performed between pilot symbols and no virtual pilots
are created. hest will contain channel estimates in the locations of transmitted reference symbols for
each received antenna and all other elements of hest are zero. The averaging of pilot symbols estimates
described by cec.TimeWindow and cec.FreqWindow are still performed.

2 The 'UserDefined' pilot averaging uses a rectangular kernel of size cec.FreqWindow-by-
cec.TimeWindow and performs a 2-D filtering operation upon the pilots. Pilots near the edge of the
resource grid are averaged less as they have no neighbors outside of the grid. For cec.FreqWindow =
12×X (i.e. any multiple of 12) and cec.TimeWindow = 1 the estimator enters a special case where an
averaging window of (12×X)-in-frequency is used to average the pilot estimates; the averaging is always
applied across (12×X) subcarriers, even at the upper and lower band edges; therefore the first (6×X)
symbols at the upper and lower band edge have the same channel estimate. This operation ensures that
averaging is always done on 12 (or a multiple of 12) symbols. This provides the appropriate despreading
operation required for the case multi-antenna transmission where the DM-RS signals associated with each
antenna occupy the same time/frequency locations but use different orthogonal cover codes to allow them
to be differentiated at the receiver. The 'TestEVM' pilot averaging ignores other structure fields in cec,
and follows the method described in TS 36.101, Annex F for the purposes of transmitter EVM testing.

3 When rxgrid contains more than one subframe, cec.Window provides control of the location of the
subframe for which channel estimation is performed. This allows channel estimation for the subframe of
interest to be aided by the presence of pilot symbols occupying the same resource block in subframes
before and/or after that subframe. For example, if rxgrid contains five subframes, 'Left' estimates the
last first subframe in rxgrid, 'Centred'/'Centered' estimates the third (middle) subframe, and
'Right' estimates the last subframe. The parameter ue.NSubframe corresponds to the chosen
subframe. So, with three subframes and cec.Window = 'Right', rxgrid corresponds to subframes
(ue.NSubframe-2, ue.NSubframe-1, ue.NSubframe). The hest output will be the same size as rxgrid
and will correspond to the same subframe numbers. All locations other than the estimated subframe will
contain zeros.

Data Types: struct

refgrid — Reference array of known transmitted data symbols in their correct locations
3-D numeric array

Reference array of known transmitted data symbols in their correct locations, specified as an NSC-by-
NSym-by-NT array of complex symbols. All other locations, such as DM-RS Symbols and unknown data
symbol locations, must be represented by a NaN. The first two dimensions of rxgrid and refgrid
must be the same.

• NSC is the number of subcarriers.
• NSym = NSF × NSymPerSF

• NSF is the total number of subframes. If NSF is greater than one, the correct region is extracted
from the returned hest array. The location of the estimated subframe within hest is specified
using the parameter field cec.Window.

• NSymPerSF is the number of SC-FDMA symbols per subframe.

• For normal cyclic prefix, each subframe contains 14 SC-FDMA symbols.
• For extended cyclic prefix, each subframe contains 12 SC-FDMA symbols.

• NT is the number of transmit antennas, ue.NTxAnts

2 Functions

2-1232

For cec.InterpType = 'None', values in refgrid are treated as reference symbols and the
resulting hest contains non-zero values in their locations. A typical use for refgrid is to provide
values of the SRS transmitted at some point during the time span of rxgrid. The SRS values can be
used to enhance the channel estimation.
Data Types: double
Complex Number Support: Yes

Output Arguments
hest — Channel estimate between each transmit and receive antenna
3-D array

Channel estimate between each transmit and receive antenna, returned as a NSC-by-NSym-by-NR. array
of complex symbols. NSC is the total number of subcarriers, NSym is the number of SC-FDMA symbols,
and NR is the number of receive antennas.

noiseest — Noise estimate
numeric scalar

Noise estimate, returned as a numeric scalar. This output is the power spectral density of the noise
present on the estimated channel response coefficients.

Algorithms
The channel estimation algorithm functions as described in the following steps.

1 Extract the PUCCH format 1 demodulation reference signals (DM-RS), or pilot symbols, for a
transmit-receive antenna pair from the allocated physical resource blocks within the received
subframe.

2 Average the least-squares estimates to reduce any unwanted noise from the pilot symbols.
3 Using the cleaned pilot symbol estimates, interpolate to obtain an estimate of the channel for the

allocated subframe slot passed into the function.

Least-Squares Estimation

The least-squares estimates of the reference signals are obtained by dividing the received pilot
symbols by their expected value. The least-squares estimates are affected by any system noise. This
noise needs to be removed or reduced to achieve a reasonable estimation of the channel at pilot
symbol locations.

Noise Reduction and Interpolation

To minimize the effects of noise on the pilot symbol estimates, the least-squares estimates are
averaged. This simple method produces a substantial reduction in the level of noise found on the pilot
symbols. The pilot symbol averaging method uses an averaging window defined by the user. The
averaging window size is measured in resource elements; any pilot symbols located within the
window are used to average the value of the pilot symbol found at the center of the window.

Then, the averaged pilot symbol estimates are used to perform a 2-D interpolation across the slot of
the subframe that was allocated to the PUCCH format 1 data. The location of pilot symbols within the
subframe is not ideally suited to interpolation. To account for this positioning, virtual pilots are

 lteULChannelEstimatePUCCH1

2-1233

created and placed out with the area of the current subframe. This placement allows complete and
accurate interpolation to be performed.

Version History
Introduced in R2013b

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteSCFDMADemodulate | lteULFrameOffsetPUCCH1 | lteULChannelEstimate |
lteULPerfectChannelEstimate | griddata

2 Functions

2-1234

https://www.3gpp.org

lteULChannelEstimatePUCCH2
PUCCH format 2 uplink channel estimation

Syntax
[hest,noiseest] = lteULChannelEstimatePUCCH2(ue,chs,rxgrid,rxack2)
[hest,noiseest] = lteULChannelEstimatePUCCH2(ue,chs,cec,rxgrid,rxack2)
[hest,noiseest] = lteULChannelEstimatePUCCH2(ue,chs,cec,rxgrid,rxack2,
refgrid)
[hest,noiseest] = lteULChannelEstimatePUCCH2(ue,chs,rxgrid,rxack2,refgrid)

Description
[hest,noiseest] = lteULChannelEstimatePUCCH2(ue,chs,rxgrid,rxack2) returns an
estimate for the channel by averaging the least squares estimates of the reference symbols across
time and copying these across the allocated resource elements within the time frequency grid. It
returns hest, the estimated channel between each transmit and receive antenna and noiseest, an
estimate of the noise power spectral density.

[hest,noiseest] = lteULChannelEstimatePUCCH2(ue,chs,cec,rxgrid,rxack2) returns
the estimated channel using the method and parameters defined by the user in the channel estimator
configuration structure, cec.

[hest,noiseest] = lteULChannelEstimatePUCCH2(ue,chs,cec,rxgrid,rxack2,
refgrid) returns the estimated channel using the method and parameters defined by the channel
estimation configuration structure (cec), and the additional information about the transmitted
symbols found in refgrid. The rxgrid and refgrid inputs must have the same dimensions. For
cec.InterpType = 'None', values in refgrid are treated as reference symbols and the resulting
hest contains non-zero values in their locations.

[hest,noiseest] = lteULChannelEstimatePUCCH2(ue,chs,rxgrid,rxack2,refgrid)
returns the estimated channel using the estimation method, as described in TS 36.101, Annex F4 [1].
The method described utilizes extra channel information obtained through information of the
transmitted symbols found in refgrid. This additional information allows for an improved estimate
of the channel and is required for accurate EVM measurements.

Examples

Estimate Channel Characteristics for PUCCH Format 2

Use the lteULChannelEstimatePUCCH2 function to estimate channel characteristics for PUCCH
Format 2

Initialize a UE configuration structure, PUCCH settings, and create a resource grid. For the purpose
of this example, we bypass the SC-FDMA modulation, channel and SC-FDMA demodulation stages of
the system model and copy the txGrid to an rxGrid.

ue = struct('NULRB',6,'NCellID',0,'NSubframe',0,'Hopping','Off');
ue.CyclicPrefixUL = 'Normal';

 lteULChannelEstimatePUCCH2

2-1235

ue.NTxAnts = 1;
pucch2.ResourceIdx = 0;
pucch2.ResourceSize = 0;
pucch2.CyclicShifts = 0;
txGrid = lteULResourceGrid(ue);
txAck = [1;1];
drsIndices = ltePUCCH2DRSIndices(ue,pucch2);

txGrid(drsIndices) = ltePUCCH2DRS(ue,pucch2,txAck);
rxGrid = txGrid;

The channel estimator uses the PUCCH Format 2 DRS to estimate the channel, so decode the hybrid
ARQ indicators from the PUCCH Format 2 DM-RS. Initialize the channel estimation configuration
structure and perform channel estimation operation on rxGrid.

rxAck = ltePUCCH2DRSDecode(ue,pucch2,length(txAck),rxGrid(drsIndices));
cec = struct('FreqWindow',12,'TimeWindow',1,'InterpType','cubic');
hest = lteULChannelEstimatePUCCH2(ue,pucch2,cec,rxGrid,rxAck);

Input Arguments
ue — UE-specific configuration settings
structure

UE-specific configuration settings, specified as a structure that can contain the following fields.

Parameter Field Required or
Optional

Values Description

NULRB Required Scalar integer from 6 to 110 Number of uplink resource blocks.
(NRB

UL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
NTxAnts Optional 1 (default), 2, 4 Number of transmission antennas.
Hopping Optional 'Off' (default), 'Group' Frequency hopping method.
NPUCCHID Optional Integer from 0 to 503 PUCCH virtual cell identity. If this

field is not present, NCellID is
used as the identity.

Data Types: struct

chs — PUCCH channel settings
structure

PUCCH channel settings, specified as a structure that can contain the following fields.

2 Functions

2-1236

Parameter Field Required or
Optional

Values Description

ResourceIdx Optional 0 (default), integer from 0 to 1185
or vector of integers.

PUCCH resource indices which
determine the physical resource
blocks, cyclic shift, and orthogonal
cover used for transmission.
(nPUCCH

(2)). Define one index for
each transmission antenna.

ResourceSize Optional 0 (default), integer from 0 to 98. Size of resource allocated to
PUCCH format 2 (NRB

(2))

CyclicShifts Optional 0 (default), integer from 0 to 7 Number of cyclic shifts used for
format 1 in resource blocks (RBs)
with a mixture of format 1 and
format 2 PUCCH, specified as an
integer from 0 to 7. (Ncs

(1))

Data Types: struct

rxgrid — Received resource element grid
3-D array

Received resource element grid, specified as an NSC-by-NSym-by-NR array of complex symbols.

• NSC is the number of subcarriers
• NSym = NSF × NSymPerSF

• NSF is the total number of subframes. If NSF is greater than one, the correct region is extracted
from the returned hest array. The location of the estimated subframe within hest is specified
using the parameter field cec.Window.

• NSymPerSF is the number of SC-FDMA symbols per subframe.

• For normal cyclic prefix, each subframe contains 14 SC-FDMA symbols.
• For extended cyclic prefix, each subframe contains 12 SC-FDMA symbols.

• NR is the number of receive antennas

Data Types: double
Complex Number Support: Yes

rxack2 — Hybrid ARQ indicators
logical value

Hybrid ARQ indicators, specified as a row vector of either 1 or 2 indicators, decoded from the PUCCH
Format 2 DRS. This is required as the channel estimator uses the PUCCH Format 2 DM-RS to
estimate the channel. rxack2 can be obtained for example by using the lteULFrameOffsetPUCCH2
function.
Data Types: logical

cec — Channel estimator configuration
structure

 lteULChannelEstimatePUCCH2

2-1237

Channel estimator configuration, specified as a structure with these fields.

Parameter Field Required or
Optional

Values Description

FreqWindow Optional Odd scalar integer or a multiple of
12

Size of window used to average
over frequency, in resource
elements (REs), specified as a
scalar integer.

TimeWindow Optional Odd scalar integer Size of window used to average
over time, in resource elements
(REs), specified as a scalar integer.

InterpType Optional 'nearest', 'linear',
'natural', 'cubic', 'v4',
'none'

See footnote.

Type of 2-D interpolation used
during interpolation. For details,
see griddata. Supported choices
are shown in the following table.

Value Description
'neares
t'

Nearest neighbor
interpolation

'linear
'

Linear interpolation

'natura
l'

Natural neighbor
interpolation

'cubic' Cubic interpolation
'v4' MATLAB 4 griddata

method
'none' Disables interpolation

PilotAverage Optional 'UserDefined' (default),
'TestEVM'

See footnote.

Type of pilot averaging

The following parameter is required only if rxgrid contains more than one subframe. See footnote.
Window Optional 'Left', 'Right', 'Centred',

'Centered'
If more than one subframe is input
this parameter is required to
indicate the position of the
subframe from rxgrid and refgrid
containing the desired channel
estimate. Only channel estimates
for this subframe will be returned.
For the 'Centred' and
'Centered' settings, the window
size must be odd.

2 Functions

2-1238

Parameter Field Required or
Optional

Values Description

1 For cec.InterpType = 'none', no interpolation is performed between pilot symbols and no virtual pilots
are created. hest will contain channel estimates in the locations of transmitted reference symbols for
each received antenna and all other elements of hest are zero. The averaging of pilot symbols estimates
described by cec.TimeWindow and cec.FreqWindow are still performed.

2 The 'UserDefined' pilot averaging uses a rectangular kernel of size cec.FreqWindow-by-
cec.TimeWindow and performs a 2-D filtering operation upon the pilots. Pilots near the edge of the
resource grid are averaged less as they have no neighbors outside of the grid. For cec.FreqWindow =
12×X (i.e. any multiple of 12) and cec.TimeWindow = 1 the estimator enters a special case where an
averaging window of (12×X)-in-frequency is used to average the pilot estimates; the averaging is always
applied across (12×X) subcarriers, even at the upper and lower band edges; therefore the first (6×X)
symbols at the upper and lower band edge have the same channel estimate. This operation ensures that
averaging is always done on 12 (or a multiple of 12) symbols. This provides the appropriate despreading
operation required for the case multi-antenna transmission where the DM-RS signals associated with each
antenna occupy the same time/frequency locations but use different orthogonal cover codes to allow them
to be differentiated at the receiver. The 'TestEVM' pilot averaging ignores other structure fields in cec,
and follows the method described in TS 36.101, Annex F for the purposes of transmitter EVM testing.

3 When rxgrid contains more than one subframe, cec.Window provides control of the location of the
subframe for which channel estimation is performed. This allows channel estimation for the subframe of
interest to be aided by the presence of pilot symbols occupying the same resource block in subframes
before and/or after that subframe. For example, if rxgrid contains five subframes, 'Left' estimates the
last first subframe in rxgrid, 'Centred'/'Centered' estimates the third (middle) subframe, and
'Right' estimates the last subframe. The parameter ue.NSubframe corresponds to the chosen
subframe. So, with three subframes and cec.Window = 'Right', rxgrid corresponds to subframes
(ue.NSubframe-2, ue.NSubframe-1, ue.NSubframe). The hest output will be the same size as rxgrid
and will correspond to the same subframe numbers. All locations other than the estimated subframe will
contain zeros.

Data Types: struct

refgrid — Reference array of known transmitted data symbols in their correct locations
3-D numeric array

Reference array of known transmitted data symbols in their correct locations, specified as an NSC-by-
NSym-by-NT array of complex symbols. All other locations, such as DM-RS Symbols and unknown data
symbol locations, must be represented by a NaN. The first two dimensions of rxgrid and refgrid
must be the same.

• NSC is the number of subcarriers.
• NSym = NSF × NSymPerSF

• NSF is the total number of subframes. If NSF is greater than one, the correct region is extracted
from the returned hest array. The location of the estimated subframe within hest is specified
using the parameter field cec.Window.

• NSymPerSF is the number of SC-FDMA symbols per subframe.

• For normal cyclic prefix, each subframe contains 14 SC-FDMA symbols.
• For extended cyclic prefix, each subframe contains 12 SC-FDMA symbols.

• NT is the number of transmit antennas, ue.NTxAnts

 lteULChannelEstimatePUCCH2

2-1239

For cec.InterpType = 'None', values in refgrid are treated as reference symbols and the
resulting hest contains non-zero values in their locations. A typical use for refgrid is to provide
values of the SRS transmitted at some point during the time span of rxgrid. The SRS values can be
used to enhance the channel estimation.
Data Types: double
Complex Number Support: Yes

Output Arguments
hest — Channel estimate between each transmit and receive antenna
3-D array

Channel estimate between each transmit and receive antenna, returned as an NSC-by-NSym-by-NR
array of complex symbols. NSC is the total number of subcarriers, NSym is the number of SC-FDMA
symbols, and NR is the number of receive antennas.

noiseest — Noise estimate
numeric scalar

Noise estimate, returned as a numeric scalar. This output is the power spectral density of the noise
present on the estimated channel response coefficients.

Algorithms
The channel estimation algorithm functions as described in the following steps.

1 Extract the PUCCH format 2 demodulation reference signals (DM-RS), or pilot symbols, for a
transmit-receive antenna pair from the allocated physical resource blocks within the received
subframe.

2 Average the least-squares estimates to reduce any unwanted noise from the pilot symbols.
3 Using the cleaned pilot symbol estimates, interpolate to obtain an estimate of the channel for the

allocated subframe slot.

Least-Squares Estimation

The least-squares estimates of the reference signals are obtained by dividing the received pilot
symbols by their expected value. The least-squares estimates are affected by any system noise. This
noise needs to be removed or reduced to achieve a reasonable estimation of the channel at pilot
symbol locations.

Noise Reduction and Interpolation

To minimize the effects of noise on the pilot symbol estimates, the least-squares estimates are
averaged. This simple method produces a substantial reduction in the level of noise found on the pilot
symbols. The pilot symbol averaging method uses an averaging window defined by the user. The
averaging window size is measured in resource elements; any pilot symbols located within the
window are used to average the value of the pilot symbol found at the center of the window.

Then, the averaged pilot symbol estimates are used to perform a 2-D interpolation across the slot of
the subframe that was allocated to the PUCCH format 2 data. The location of pilot symbols within the
subframe is not ideally suited to interpolation. To account for this positioning, virtual pilots are

2 Functions

2-1240

created and placed out with the area of the current subframe. This placement allows complete and
accurate interpolation to be performed.

Version History
Introduced in R2013b

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteSCFDMADemodulate | lteULFrameOffsetPUCCH2 | lteULChannelEstimate |
lteULPerfectChannelEstimate | griddata

 lteULChannelEstimatePUCCH2

2-1241

https://www.3gpp.org

lteULChannelEstimatePUCCH3
PUCCH format 3 uplink channel estimation

Syntax
[hest,noiseest] = lteULChannelEstimatePUCCH3(ue,chs,rxgrid)
[hest,noiseest] = lteULChannelEstimatePUCCH3(ue,chs,cec,rxgrid)
[hest,noiseest] = lteULChannelEstimatePUCCH3(ue,chs,cec,rxgrid,refgrid)
[hest,noiseest] = lteULChannelEstimatePUCCH3(ue,chs,rxgrid,refgrid)

Description
[hest,noiseest] = lteULChannelEstimatePUCCH3(ue,chs,rxgrid) returns an estimate for
the channel by averaging the least squares estimates of the reference symbols across time and
copying these across the allocated resource elements within the time frequency grid. It returns hest,
the estimated channel between each transmit and receive antenna and noiseest, an estimate of the
noise power spectral density.

[hest,noiseest] = lteULChannelEstimatePUCCH3(ue,chs,cec,rxgrid) returns the
estimated channel using the method and parameters defined by the user in the channel estimator
configuration structure, cec.

[hest,noiseest] = lteULChannelEstimatePUCCH3(ue,chs,cec,rxgrid,refgrid) returns
the estimated channel using the method and parameters defined by the channel estimation
configuration structure and the additional information about the transmitted symbols found in
refgrid. rxgrid and refgrid must have the same dimensions. For cec.InterpType = 'None',
values in refgrid are treated as reference symbols and the resulting hest contains non-zero values
in their locations.

[hest,noiseest] = lteULChannelEstimatePUCCH3(ue,chs,rxgrid,refgrid) returns the
estimated channel using the estimation method, as described in TS 36.101, Annex F4 [1]. The method
described utilizes extra channel information obtained through information of the transmitted symbols
found in refgrid. This additional information allows for an improved estimate of the channel and is
required for accurate EVM measurements. rxgrid and refgrid must have the same dimensions.
rxgrid and refgrid must only contain a whole subframe worth of SC-FDMA symbols.

Examples

Estimate Channel Characteristics for PUCCH Format 3

Use the lteULChannelEstimatePUCCH3 function to estimate channel characteristics for PUCCH
Format 3

Initialize a UE configuration structure, PUCCH settings, and create a resource grid. For the purpose
of this example, we bypass the SC-FDMA modulation, channel and SC-FDMA demodulation stages of
the system model and copy the txGrid to an rxGrid.

ue = struct('NULRB',6,'NCellID',0,'NSubframe',0,'Hopping','Off');
ue.CyclicPrefixUL = 'Normal';

2 Functions

2-1242

ue.NTxAnts = 1;
pucch3 = struct('ResourceIdx',0);
txGrid = lteULResourceGrid(ue);
txGrid(ltePUCCH3DRSIndices(ue,pucch3)) = ltePUCCH3DRS(ue,pucch3);
rxGrid = txGrid;

Initialize the channel estimation configuration structure and perform channel estimation operation on
rxGrid.

cec = struct('FreqWindow',12,'TimeWindow',1,'InterpType','Cubic');
hest = lteULChannelEstimatePUCCH3(ue,pucch3,cec,rxGrid);

Input Arguments
ue — UE-specific cell-wide settings
structure

UE-specific cell-wide settings, specified as a structure with the following fields.

Parameter Field Required or
Optional

Values Description

NULRB Required Scalar integer from 6 to 110 Number of uplink resource blocks.
(NRB

UL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
NTxAnts Optional 1 (default), 2, 4 Number of transmission antennas.
Hopping Optional 'Off' (default), 'Group' Frequency hopping method.
Shortened Optional 0 (default), 1 Option to shorten the subframe by

omitting the last symbol, specified
as 0 or 1. If 1, the last symbol of
the subframe is not used. For
subframes with possible SRS
transmission, set Shortened to 1
to maintain a standard compliant
configuration.

NPUCCHID Optional Integer from 0 to 503 PUCCH virtual cell identity. If this
field is not present, NCellID is
used as the identity.

Data Types: struct

chs — PUCCH channel settings
structure

PUCCH channel settings, specified as a structure with the following fields.

 lteULChannelEstimatePUCCH3

2-1243

Parameter Field Required or
Optional

Values Description

ResourceIdx Optional 0 (default), integer from 0 to 549,
or vector of integers.

PUCCH resource indices which
determine the physical resource
blocks, cyclic shift, and orthogonal
cover used for transmission
(nPUCCH

(3)). Define one index for
each transmission antenna.

Data Types: struct

rxgrid — Received resource element grid
3-D array

Received resource element grid, specified as an NSC-by-NSym-by-NR array of complex symbols.

• NSC is the number of subcarriers
• NSym = NSF × NSymPerSF

• NSF is the total number of subframes. If NSF is greater than one, the correct region is extracted
from the returned hest array. The location of the estimated subframe within hest is specified
using the parameter field cec.Window.

• NSymPerSF is the number of SC-FDMA symbols per subframe.

• For normal cyclic prefix, each subframe contains 14 SC-FDMA symbols.
• For extended cyclic prefix, each subframe contains 12 SC-FDMA symbols.

• NR is the number of receive antennas

Data Types: double
Complex Number Support: Yes

cec — Channel estimator configuration
structure

Channel estimator configuration, specified as a structure that can contain the following fields.

Parameter Field Required or
Optional

Values Description

FreqWindow Optional Odd scalar integer or a multiple of
12

Size of window used to average
over frequency, in resource
elements (REs), specified as a
scalar integer.

TimeWindow Optional Odd scalar integer Size of window used to average
over time, in resource elements
(REs), specified as a scalar integer.

2 Functions

2-1244

Parameter Field Required or
Optional

Values Description

InterpType Optional 'nearest', 'linear',
'natural', 'cubic', 'v4',
'none'

See footnote.

Type of 2-D interpolation used
during interpolation. For details,
see griddata. Supported choices
are shown in the following table.

Value Description
'neares
t'

Nearest neighbor
interpolation

'linear
'

Linear interpolation

'natura
l'

Natural neighbor
interpolation

'cubic' Cubic interpolation
'v4' MATLAB 4 griddata

method
'none' Disables interpolation

PilotAverage Optional 'UserDefined'(default),
'TestEVM'

See footnote.

Type of pilot averaging

The following parameter is required only if rxgrid contains more than one subframe. See footnote.
Window Optional 'Left', 'Right', 'Centred',

'Centered'
If more than one subframe is input
this parameter is required to
indicate the position of the
subframe from rxgrid and refgrid
containing the desired channel
estimate. Only channel estimates
for this subframe will be returned.
For the 'Centred' and
'Centered' settings, the window
size must be odd.

 lteULChannelEstimatePUCCH3

2-1245

Parameter Field Required or
Optional

Values Description

1 For cec.InterpType = 'none', no interpolation is performed between pilot symbols and no virtual pilots
are created. hest will contain channel estimates in the locations of transmitted reference symbols for
each received antenna and all other elements of hest are zero. The averaging of pilot symbols estimates
described by cec.TimeWindow and cec.FreqWindow are still performed.

2 The 'UserDefined' pilot averaging uses a rectangular kernel of size cec.FreqWindow-by-
cec.TimeWindow and performs a 2-D filtering operation upon the pilots. Pilots near the edge of the
resource grid are averaged less as they have no neighbors outside of the grid. For cec.FreqWindow =
12×X (i.e. any multiple of 12) and cec.TimeWindow = 1 the estimator enters a special case where an
averaging window of (12×X)-in-frequency is used to average the pilot estimates; the averaging is always
applied across (12×X) subcarriers, even at the upper and lower band edges; therefore the first (6×X)
symbols at the upper and lower band edge have the same channel estimate. This operation ensures that
averaging is always done on 12 (or a multiple of 12) symbols. This provides the appropriate despreading
operation required for the case multi-antenna transmission where the DM-RS signals associated with each
antenna occupy the same time/frequency locations but use different orthogonal cover codes to allow them
to be differentiated at the receiver. The 'TestEVM' pilot averaging ignores other structure fields in cec,
and follows the method described in TS 36.101, Annex F for the purposes of transmitter EVM testing.

3 When rxgrid contains more than one subframe, cec.Window provides control of the location of the
subframe for which channel estimation is performed. This allows channel estimation for the subframe of
interest to be aided by the presence of pilot symbols occupying the same resource block in subframes
before and/or after that subframe. For example, if rxgrid contains five subframes, 'Left' estimates the
last first subframe in rxgrid, 'Centred'/'Centered' estimates the third (middle) subframe, and
'Right' estimates the last subframe. The parameter ue.NSubframe corresponds to the chosen
subframe. So, with three subframes and cec.Window = 'Right', rxgrid corresponds to subframes
(ue.NSubframe-2, ue.NSubframe-1, ue.NSubframe). The hest output will be the same size as rxgrid
and will correspond to the same subframe numbers. All locations other than the estimated subframe will
contain zeros.

Data Types: struct

refgrid — Reference array of known transmitted data symbols in their correct locations
3-D numeric array

Reference array of known transmitted data symbols in their correct locations, specified as an NSC-by-
NSym-by-NT array of complex symbols. All other locations, such as DM-RS Symbols and unknown data
symbol locations, must be represented by a NaN. The first two dimensions of rxgrid and refgrid
must be the same.

• NSC is the number of subcarriers.
• NSym = NSF × NSymPerSF

• NSF is the total number of subframes. If NSF is greater than one, the correct region is extracted
from the returned hest array. The location of the estimated subframe within hest is specified
using the parameter field cec.Window.

• NSymPerSF is the number of SC-FDMA symbols per subframe.

• For normal cyclic prefix, each subframe contains 14 SC-FDMA symbols.
• For extended cyclic prefix, each subframe contains 12 SC-FDMA symbols.

• NT is the number of transmit antennas, ue.NTxAnts

2 Functions

2-1246

For cec.InterpType = 'None', values in refgrid are treated as reference symbols and the
resulting hest contains non-zero values in their locations. A typical use for refgrid is to provide
values of the SRS transmitted at some point during the time span of rxgrid. The SRS values can be
used to enhance the channel estimation.
Data Types: double
Complex Number Support: Yes

Output Arguments
hest — Channel estimate between each transmit and receive antenna
3-D array

Channel estimate between each transmit and receive antenna, returned as a NSC-by-NSym-by-NR. array
of complex symbols. NSC is the total number of subcarriers, NSym is the number of SC-FDMA symbols,
and NR is the number of receive antennas.

noiseest — Noise estimate
numeric scalar

Noise estimate, returned as a numeric scalar. This output is the power spectral density of the noise
present on the estimated channel response coefficients.

Algorithms
The channel estimation algorithm functions as described in the following steps.

1 Extract the PUCCH format 3 demodulation reference signals (DM-RS), or pilot symbols, for a
transmit-receive antenna pair from the allocated physical resource blocks within the received
subframe.

2 Average the least-squares estimates to reduce any unwanted noise from the pilot symbols.
3 Using the cleaned pilot symbol estimates, interpolate to obtain an estimate of the channel for the

allocated subframe slot.

Least-Squares Estimation

The least-squares estimates of the reference signals are obtained by dividing the received pilot
symbols by their expected value. The least-squares estimates are affected by any system noise. This
noise needs to be removed or reduced to achieve a reasonable estimation of the channel at pilot
symbol locations.

Noise Reduction and Interpolation

To minimize the effects of noise on the pilot symbol estimates, the least-squares estimates are
averaged. This simple method produces a substantial reduction in the level of noise found on the pilot
symbols. The pilot symbol averaging method uses an averaging window defined by the user. The
averaging window size is measured in resource elements; any pilot symbols located within the
window are used to average the value of the pilot symbol found at the center of the window.

Then, the averaged pilot symbol estimates are used to perform a 2-D interpolation across the slot of
the subframe that was allocated to the PUCCH format 3 data. The location of pilot symbols within the
subframe is not ideally suited to interpolation. To account for this positioning, virtual pilots are

 lteULChannelEstimatePUCCH3

2-1247

created and placed out with the area of the current subframe. This placement allows complete and
accurate interpolation to be performed.

Version History
Introduced in R2013b

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteSCFDMADemodulate | lteULFrameOffsetPUCCH3 | lteULChannelEstimate |
lteULPerfectChannelEstimate | griddata

2 Functions

2-1248

https://www.3gpp.org

lteULDeprecode
SC-FDMA deprecoding

Syntax
out = lteULDeprecode(in,nrb)
out = lteULDeprecode(in,n,resourcetype)

Description
out = lteULDeprecode(in,nrb) performs SC-FDMA deprecoding of the complex modulation
symbols in for PUSCH or NPUSCH configuration with a bandwidth of nrb resource blocks.

out = lteULDeprecode(in,n,resourcetype) performs SC-FDMA deprecoding of the complex
modulation symbols in for PUSCH or NPUSCH configuration with a bandwidth of n resource blocks
or subcarriers.

Examples

Deprecode Symbols After SC-FDMA Demodulation

Deprecode symbols after SC-FDMA demodulation and symbol extraction from the received resource
grid.

Create an UL RMC configuration structure, resource grid, and bit stream.

rmc = lteRMCUL('A3-2');
[puschInd, info] = ltePUSCHIndices(rmc,rmc.PUSCH);
ueDim = lteULResourceGridSize(rmc);
bits = randi([0,1],info.G,rmc.PUSCH.NLayers);

Scramble bits, create modulated symbols, and perform UL precoding and resource mapping.

scrBits = lteULScramble(rmc,bits);
symbols = lteSymbolModulate(scrBits,rmc.PUSCH.Modulation);
precodedSymbols = lteULPrecode(symbols,rmc.NULRB);
grid = lteULResourceGrid(rmc);
grid(puschInd) = precodedSymbols;

Perform SC-FDMA modulation and demodulation.

[timeDomainSig,infoScfdma] = lteSCFDMAModulate(rmc,grid);
rxGrid = lteSCFDMADemodulate(rmc,timeDomainSig);

Extract PUSCH from grid and perform UL deprecoding.

rxPrecoded = rxGrid(puschInd);
dePrecodedSymbols = lteULDeprecode(rxPrecoded,rmc.NULRB);

 lteULDeprecode

2-1249

Input Arguments
in — Complex modulation symbols
numeric matrix

Complex modulation symbols, specified as an NSym-by-NL matrix of complex symbols. NSym is the
number of symbols and NL is the number of layers.
Data Types: double
Complex Number Support: Yes

nrb — Number of resource blocks
nonnegative integer

Number of resource blocks, specified as a nonnegative integer.
Data Types: double

n — Number of resource blocks or subcarriers
nonnegative integer

Number of resource blocks or subcarriers, specified as a nonnegative integer.

Dependencies

If the resourcetype is 'PRB', then n is the number of resource blocks. If the resourcetype is
'Subcarrier', then n is the number of subcarriers.
Data Types: double

resourcetype — Resource type
'PRB' | 'Subcarrier'

Resource type, specified as 'PRB' or 'Subcarrier'.
Data Types: char | string

Output Arguments
out — Deprecoded PUSCH output symbols
numeric matrix

Deprecoded PUSCH output symbols, returned as an NSym-by-NL matrix of complex symbols. NSym is
the number of symbols, and NL is the number of layers.

The dimension and size of the input and output symbol matrices are the same.

Version History
Introduced in R2014a

See Also
lteULPrecode | ltePUSCHDeprecode | lteLayerDemap | ltePUSCHDecode

2 Functions

2-1250

lteULDescramble
PUSCH descrambling

Syntax
out = lteULDescramble(ue,chs,in)
out = lteULDescramble(ue,in)
out = lteULDescramble(in,nsubframe,cellid,rnti)

Description
out = lteULDescramble(ue,chs,in) performs PUSCH descrambling of the soft bit vector, in, or
cell array in case of two codewords, according to UE-specific settings in the ue structure and UL-SCH
related parameters in the chs structure. It performs PUSCH descrambling to undo the processing
described in TS 36.212, Section 5.3.1 [1] and returns a soft bit vector or cell array of vectors, out.
This syntax supports the descrambling of control information bits if they are present in the soft bits
in in conjunction with information bits. The descrambling of the control information bits is done by
establishing the correct locations of placeholder bits with the help of UL-SCH-related parameters
present in chs. The descrambler skips the ‘x’ placeholder bits to undo the processing defined in TS
36.212, Section 5.3.1 [1].

Multiple codewords can be parameterized by two different forms of the chs structure. Each
codeword can be defined by separate elements of a 1-by-2 structure array, or the codeword
parameters can be combined together in the fields of a single scalar, 1-by-1, structure. In the latter
case, any scalar field values apply to both codewords and a scalar NLayers is the total number. For
further details, see “UL-SCH Parameterization”.

out = lteULDescramble(ue,in) performs PUSCH descrambling of the soft bit input, in, but
takes only the UE-specific settings in the ue structure. The in input should contain only the
scrambled data bits resulting in descrambling of transport data only. The ue structure must include
the NCellID, NSubframe, and RNTI fields.

out = lteULDescramble(in,nsubframe,cellid,rnti) performs PUSCH descrambling of soft
bits, in, for subframe number, nsubframe, cell identity, cellid, and specified radio network
temporary identifier (RNTI), rnti. This syntax performs only block descrambling and expects the
input, in, to contain only the scrambled data bits. If the in vector contains placeholder bits, they are
not descrambled correctly because the placeholder bits are not skipped during the descrambling
process. Thus, this function syntax descrambles only the transport data bits.

Examples

Scramble and Descramble PUSCH Vector

Perform scrambling and descrambling of vector in. The scrambled bits are modulated to QPSK
symbols. Noise is added to these symbols, which are then demodulated to produce soft bits. These
soft bits are finally descrambled.

in = ones(10,1);
ue = struct('NCellID',100,'NSubframe',0,'RNTI',61);

 lteULDescramble

2-1251

scrBits = lteULScramble(ue,in);
txSymbols = lteSymbolModulate(scrBits,'QPSK');
noise = 0.01*complex(randn(size(txSymbols)),randn(size(txSymbols)));
rxSymbols = txSymbols + noise;
softBits = lteSymbolDemodulate(rxSymbols,'QPSK','Soft');
descram = lteULDescramble(ue,softBits)

descram = 10×1

 0.7125
 0.7202
 0.7254
 0.7028
 0.6845
 0.7037
 0.7157
 0.7429
 0.7039
 0.6794

Input Arguments
ue — UE-specific settings
scalar structure

UE-specific settings, specified as a scalar structure that can contain the following fields.

NCellID — Physical layer cell identity
scalar integer

Physical layer cell identity, specified as a scalar integer.
Data Types: double

NSubframe — Subframe number
scalar integer

Subframe number, specified as a scalar integer.
Data Types: double

RNTI — Radio network temporary identifier
numeric scalar

Radio network temporary identifier, 16-bit, specified as a numeric scalar.
Data Types: double

CyclicPrefixUL — Cyclic prefix length
'Normal' (default) | optional | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

2 Functions

2-1252

Shortened — Shorten subframe flag
0 (default) | optional | 1

Shorten subframe flag, specified as 0 or 1. If 1, the last symbol of the subframe is not used and rate
matching is adjusted accordingly. This setting is required for subframes with possible SRS
transmission.
Data Types: logical | double

Data Types: struct

chs — UL-SCH channel-specific settings
structure

UL-SCH channel-specific settings, specified as a structure that can contain the following fields.

Modulation — Modulation scheme associated with each transport block
'QPSK' | '16QAM' | '64QAM' | '256QAM'

Modulation scheme associated with each transport block, specified as 'QPSK', '16QAM', '64QAM',
or '256QAM'
Data Types: char | string

NLayers — Number of transmission layers
1 (default) | optional | 2 | 3 | 4

Number of transmission layers, total or per codeword, specified as 1, 2, 3, or 4.
Data Types: double

ORI — Number of uncoded RI bits
0 (default) | optional | nonnegative scalar integer

Number of uncoded RI bits, specified as a nonnegative scalar integer.
Data Types: double

OACK — Number of uncoded HARQ-ACK bits
0 (default) | optional | nonnegative scalar integer

Number of uncoded HARQ-ACK bits, specified as a nonnegative scalar integer.
Data Types: double

QdRI — Number of coded RI symbols in UL-SCH
0 (default) | optional | nonnegative scalar integer

Number of coded RI symbols in UL-SCH, specified as a nonnegative scalar integer. (Q’_RI)
Data Types: double

QdACK — Number of coded HARQ-ACK symbols in UL-SCH
0 (default) | optional | nonnegative scalar integer

Number of coded HARQ-ACK symbols in UL-SCH, specified as a nonnegative scalar integer. (Q'_ACK)
Data Types: double

 lteULDescramble

2-1253

Data Types: struct

in — Soft bit input data
numeric column vector | cell array of numeric column vectors

Soft bit input data, specified as a numeric column vector or cell array of numeric column vectors. This
argument contains one or two vectors corresponding to the number of codewords to be scrambled.
Data Types: double | cell

nsubframe — Subframe number
scalar integer

Subframe number, specified as a scalar integer.
Data Types: double

cellid — Physical layer cell identity
scalar integer

Physical layer cell identity, specified as a scalar integer.
Data Types: double

rnti — Radio network temporary identifier
numeric scalar

Radio network temporary identifier, 16-bit, specified as a numeric scalar.
Data Types: double

Output Arguments
out — PUSCH descrambled output bits
numeric column vector | cell array of numeric column vectors

PUSCH descrambled output bits, returned as a numeric column vector or cell array of numeric
column vectors.
Data Types: double

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteULScramble | lteSymbolDemodulate | ltePUSCHDecode

2 Functions

2-1254

https://www.3gpp.org

lteULFrameOffset
PUSCH DM-RS uplink subframe timing estimate

Syntax
offset = lteULFrameOffset(ue,chs,waveform)
[offset,corr] = lteULFrameOffset(ue,chs,waveform)

Description
offset = lteULFrameOffset(ue,chs,waveform) performs synchronization using PUSCH DM-
RS signals for the time-domain waveform, waveform, given UE-specific settings, ue, and PUSCH
configuration, chs.

The returned value offset indicates the number of samples from the start of the waveform,
waveform, to the position in that waveform where the first subframe containing the DM-RS begins.

offset provides subframe timing; frame timing can be achieved by using offset with the subframe
number, ue.NSubframe. This information is consistent with real-world operation, since the base
station knows when, or in which subframe, to expect uplink transmissions.

[offset,corr] = lteULFrameOffset(ue,chs,waveform) also returns a complex matrix corr,
which is the signal used to extract the timing offset.

Examples

Synchronize and SCFDMA Demodulate Delayed Transmission

Synchronization and demodulation of transmission which has been delayed by 5 samples.

Initialize waveform and insert a 5 sample delay.

ue = lteRMCUL('A3-2');
waveform = lteRMCULTool(ue,[1;0;0;1]);
tx = [zeros(5,1); waveform];

Determine offset and demodulate the waveform.

offset = lteULFrameOffset(ue,ue.PUSCH,tx)

offset = 5

rxGrid = lteSCFDMADemodulate(ue,tx(1+offset:end));

View PUSCH Transmission Correlation Peaks

View the correlation peak for a delayed transmit waveform. The transmission contains PUSCH
demodulation reference signal (DM-RS) symbols available for estimating the waveform timing.

 lteULFrameOffset

2-1255

UE Configuration

Configure UE-specific settings and generate the transmit waveform.

ue = lteRMCUL('A3-2');
tx = lteRMCULTool(ue,[1;0;0;1]);

Determine Offset

Calculate timing offset and return the correlations for the transmit waveform and for a delayed
version of the transmit waveform.

[~,corr] = lteULFrameOffset(ue,ue.PUSCH,tx);
txDelayed = [zeros(6,1); tx];
[offset,corrDelayed] = lteULFrameOffset(ue,ue.PUSCH,txDelayed);

Plot the correlation data before and after delay is added. Zoom in on the x-axis to view correlation
peaks.

plot(corr)
hold on
plot(corrDelayed)
hold off
xlim([0 100])

Correct the timing offset and demodulate the received waveform.

2 Functions

2-1256

rxGrid = lteSCFDMADemodulate(ue,txDelayed(1+offset:end));

Input Arguments
ue — UE-specific settings
scalar structure

UE-specific settings, specified as a scalar structure with the following fields.

Parameter Field Required or
Optional

Values Description

NULRB Required Scalar integer from 6 to 110 Number of uplink resource blocks.
(NRB

UL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
NTxAnts Optional 1 (default), 2, 4 Number of transmission antennas.
Hopping Optional 'Off' (default), 'Group', or

'Sequence'
Frequency hopping method.

SeqGroup Optional 0 (default), integer from 0 to 29 PUSCH sequence group
assignment (ΔSS).

Only used if NDMRSID or
NPUSCHID is absent.

CyclicShift Optional 0 (default), integer from 0 to 7 Number of cyclic shifts used for
PUSCH DM-RS (yields nDMRS

(1)).

NPUSCHID Optional 0 (default), nonnegative scalar
integer from 0 to 509

PUSCH virtual cell identity. If this
field is not present, NCellID is
used for group hopping sequence-
shift pattern initialization.

See footnote.
NDMRSID Optional 0 (default), nonnegative scalar

integer from 0 to 509
DM-RS identity for cyclic shift
hopping (nID

csh_DMRS). If this field is
not present, NCellID is used for
cyclic shift hopping initialization.

See footnote.
1 The pseudorandom sequence generator for cyclic shift hopping is initialized according to NDMRSID, if

present — otherwise it is initialized according to the cell identity NCellID and the sequence group
assignment SeqGroup. Similarly, the sequence-shift pattern for group hopping is initialized according to
NPUSCHID, if present — otherwise it is initialized according to NCellID and SeqGroup.

Data Types: struct

chs — PUSCH configuration
scalar structure

 lteULFrameOffset

2-1257

PUSCH configuration, specified as a scalar structure with the following fields.

Parameter Field Required or
Optional

Values Description

PRBSet Required Integer column vector or two-
column matrix

0-based physical resource block
indices (PRBs) for the slots of the
current PUSCH resource
allocation. As a column vector, the
resource allocation is the same in
both slots of the subframe. As a
two-column matrix, it specifies
different PRBs for each slot in a
subframe.

NLayers Optional 1 (default), 2, 3, 4 Number of transmission layers.
DynCyclicShift Optional 0 (default), integer from 0 to 7 Cyclic shift for DM-RS (yields

nDMRS
(2)).

OrthCover Optional 'Off' (default), 'On' Applies ('On'), or does not apply
('Off'), orthogonal cover
sequence w (Activate-DMRS-with
OCC).

The following field is required only when ue.NTxAnts is set to 2 or 4.
 PMI Optional 0 (default), nonnegative scalar

integer from 0 to 23.
Scalar precoder matrix indication
(PMI) to be used during precoding

See lteULPMIInfo.

Data Types: struct

waveform — Time-domain waveform
numeric matrix

Time-domain waveform, specified as a numeric matrix. waveform must be a NS-by-NR matrix, where
NS is the number of time-domain samples and NR is the number of receive antennas. waveform
should be at least one subframe long and contain the DM-RS signals.

Generate waveform by SC-FDMA modulation of a resource matrix using the lteSCFDMAModulate
function, or by using one of the channel model functions, lteFadingChannel, lteHSTChannel, or
lteMovingChannel.
Data Types: double
Complex Number Support: Yes

Output Arguments
offset — Offset number of samples
scalar integer

Offset number of samples, returned as a scalar integer. This output is the number of samples from the
start of the waveform to the position in that waveform where the first subframe containing the DM-
RS begins. offset is computed by extracting the timing of the peak of the correlation between

2 Functions

2-1258

waveform and internally generated reference waveforms containing DM-RS signals. The correlation
is performed separately for each antenna and the antenna with the strongest correlation is used to
compute offset.

Note offset is the position of mod(max(abs(corr),LSF)), where LSF is the subframe length.

corr — Signal used to extract the timing offset
complex-valued numeric matrix

Signal used to extract the timing offset, returned as a complex-valued numeric matrix. corr has the
same dimensions as waveform.

Version History
Introduced in R2014a

See Also
lteFrequencyCorrect | lteFrequencyOffset | lteFadingChannel | lteMovingChannel |
lteHSTChannel | lteSCFDMADemodulate

 lteULFrameOffset

2-1259

lteULFrameOffsetNPUSCH
Estimate NPUSCH DRS timing offset

Syntax
[offset,corr] = lteULFrameOffsetNPUSCH(ue,chs,waveform)
[offset,corr] = lteULFrameOffsetNPUSCH(ue,chs,waveform,stateIn)

Description
[offset,corr] = lteULFrameOffsetNPUSCH(ue,chs,waveform) performs slot
synchronization on waveform, the input time-domain waveform, by using the narrowband physical
uplink shared channel (NPUSCH) demodulation reference signal (DRS) symbols for user equipment
(UE) settings ue and channel transmission configuration chs.

The function returns offset, the number of samples between the start of waveform and the sample
within waveform at which the NPUSCH DRS symbols begin. The function also returns corr, the
signal that the function uses to calculate offset.

The offset estimation process comprises these steps.

1 Extract the timing of the peak correlation between waveform and internally generated reference
waveforms containing the NPUSCH DRS symbols.

2 Calculate the correlation for each antenna.
3 Compute the offset for the antenna with the strongest correlation.

[offset,corr] = lteULFrameOffsetNPUSCH(ue,chs,waveform,stateIn) specifies
stateIn, the initial encoder state for NPUSCH DRS symbol generation.

Examples

Estimate NPUSCH DRS Timing Offset

Synchronize and demodulate a transmission containing NPUSCH DRS symbols.

Configure UE-specific settings.

ue = struct('NNCellID',0,'NBULSubcarrierSpacing','15kHz','NSlot',0);

Specify a channel transmission configuration.

chs = struct('NPUSCHFormat','Data','NRUsc',1,'NULSlots',16,'NRU',1, ...
 'NRep',1,'NBULSubcarrierSet',0,'Modulation','QPSK');

Generate the NPUSCH DRS symbols and allocate them to the appropriate locations on a resource
grid.

grid = lteNBResourceGrid(ue);
grid(lteNPUSCHDRSIndices(ue,chs)) = lteNPUSCHDRS(ue,chs);

2 Functions

2-1260

Generate a waveform by performing single-carrier frequency-division multiple access (SC-FDMA)
modulation on the NPUSCH DRS symbols.

txWaveform = lteSCFDMAModulate(ue,chs,grid);

Create a received waveform by adding a time delay of 11 samples.

delay = 11;
waveform = [zeros(delay,1); txWaveform];

Specify an empty encoder state and calculate the timing offset in samples. Confirm that the result
matches the added delay.

stateIn = struct();
[offset,corr] = lteULFrameOffsetNPUSCH(ue,chs,waveform,stateIn);
disp(isequal(offset,delay))

 1

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure containing these fields.

Field Values Description Data Types
NBULSubcarrierSpac
ing

'3.75kHz', '15kHz' NB-IoT uplink
subcarrier spacing

To set a subcarrier
spacing of 3.75 kHz,
specify this field as
'3.75kHz'. To set a
subcarrier spacing of 15
kHz, specify this field as
'15kHz'.

char, string

Windowing Nonnegative even
integer

Default depends on the
value of the
NBULSubcarrierSpac
ing field

Number of time-domain
samples over which the
function applies
windowing and
overlapping of SC-
FDMA symbols

double

NNCellID Integer in the interval
[0, 503]

Narrowband physical
layer cell identity (PCI)

double

NFrame 0 (default), nonnegative
integer

Frame number double

 lteULFrameOffsetNPUSCH

2-1261

Field Values Description Data Types
NSlot Nonnegative integer Slot number

When you specify the
NPUSCHFormat field as
'Data' and the
SeqGroupHopping
field as 'Off' in the
chs input, the function
ignores this field.

double

Data Types: struct

chs — Channel transmission configuration
structure

Channel transmission configuration, specified as a structure containing these fields.

Field Values Description Data Types
NPUSCHFormat 'Data', 'Control' NPUSCH format

To indicate that the
NPUSCH carries
narrowband uplink
shared channel (UL-
SCH) data, specify this
field as 'Data'. To
indicate that the
NPUSCH carries uplink
control information,
specify this field as
'Control'.

char, string

NRUsc 1, 3, 6, 12 Number of consecutive
subcarriers in a
resource unit (RU)

If you specify the
NPUSCHFormat field as
'Control' or the
NBULSubcarrierSpac
ing field of the ue input
as '3.75kHz', then you
must specify this field
as 1 .

double

NRep 1, 2, 4, 8, 16, 32, 64,
128

Number of repetitions
for a codeword

double

NRU 1, 2, 3, 4, 5, 6, 8, 10 Number of RUs double

2 Functions

2-1262

Field Values Description Data Types
NULSlots 2, 4, 8, 16 Number of slots per RU

If you specify the
NPUSCHFormat field as
'Control', then you
must specify this field
as 4.

If you specify the
NPUSCHFormat field as
'Data', then you must
specify this field as:

• 16 when you specify
the NRUsc field as 1

• 8 when you specify
the NRUsc field as 3

• 4 when you specify
the NRUsc field as 6

• 2 when you specify
the NRUsc field as
12

double

 lteULFrameOffsetNPUSCH

2-1263

Field Values Description Data Types
BaseSeqIdx Integer in the interval

[0, 29]. Default depends
on the value of the
NRUsc field.

Multitone NPUSCH
DRS base sequence
index

• When you specify
the NRUsc field as 3,
specify this field as
an integer in the
interval [0, 11]. If
you do not specify
this field, the
function sets it to the
value of
mod(ue.NNCellID,
12).

• When you specify
the NRUsc field as 6,
specify this field as
an integer in the
interval [0, 13]. If
you do not specify
this field, the
function sets it to the
value of
mod(ue.NNCellID,
14).

• When you specify
the NRUsc field as
12, specify this field
as an integer in the
interval [0, 29]. If
you do not specify
this field, the
function sets it to the
value of
mod(ue.NNCellID,
30).

• When you specify
the NRUsc field as
any other value, the
function does not
use this field.

Dependencies. To
enable this field, specify
the NRUsc field as 3, 6,
or 12.

double

2 Functions

2-1264

Field Values Description Data Types
SeqGroupHopping 'On' (default), 'Off' To enable sequence-

group hopping, specify
this field as 'On'. To
disable sequence group
hopping, specify this
field as 'Off'. For
more information, see
section 5.5.1.3 of [1].

char, string

SeqGroup 0 (default), integer in
the interval [0, 29]

Sequence-group
assignment for
sequence shift pattern
calculation. For more
information, see section
10.1.4.1.3 of [1].

Dependencies. To
enable this field, specify
the SeqGroupHopping
field as 'On'.

double

CyclicShift 0 (default), integer in
the interval [0, 3]

Cyclic shift

• When you specify
the NRUsc field as 3,
specify this field as
an integer in the
interval [0, 2].

• When you specify
the NRUsc field as 6,
specify this field as
an integer in the
interval [0, 3].

Dependencies. To
enable this field, specify
the NRUsc field as 3 or
6.

double

 lteULFrameOffsetNPUSCH

2-1265

Field Values Description Data Types
NBULSubcarrierSet Integer in the interval

[0, 47], vector of
integers in the interval
[0, 11]

NB-IoT uplink
subcarrier indices, in
zero-based form,
specified as one of these
values:

• An integer in the
interval [0, 11] when
you specify the
NPUSCHFormat field
as 'Control'

• An integer in the
interval [0, 47] when
you specify the
NPUSCHFormat field
as 'Data' and the
NBULSubcarrierSp
acing fields of the
ue input as
'3.75kHz'

• A vector of integers
in the interval [0, 11]
when you specify the
NPUSCHFormatfield
as 'Data' and the
NBULSubcarrierSp
acing fields of the
ue input as
'15kHz'.

double

Modulation 'BPSK', 'QPSK' Modulation type

To enable binary phase-
shift keying (BPSK),
specify this field as
'BPSK'. To enable
quadrature phase-shift
keying (QPSK), specify
this field as 'QPSK'.

If you specify the
NPUSCHFormat field as
'Control', then you
must specify this field
as 'BPSK'.

char, string

SlotIdx Integer in the interval
[0, (chs.NRU ×
chs.NULSlots ×
chs.NRep) – 1]

Index of a slot within a
bundle, in zero-based
form

double

2 Functions

2-1266

Data Types: struct

waveform — Time-domain waveform
complex-valued matrix

Time-domain waveform, specified as a complex-valued matrix of size T-by-R.

• T is the number of time-domain samples.
• R is the number of receive antennas.

You can generate this input by performing SC-FDMA modulation on a resource matrix using the
lteSCFDMAModulate function. Alternatively, you can generate this input by using either of these
channel model functions: lteFadingChannel or lteMovingChannel.
Data Types: double
Complex Number Support: Yes

stateIn — Encoder state
struct() (default) | structure

Encoder state for NPUSCH DRS generation, specified as a structure. This input corresponds to the
stateIn input of the lteNPUSCHDRS function. This input contains the internal state of each
transport block in these fields.

Field Values Description Data Types
SlotIdx Integer in the interval

[0, (chs.NRU ×
chs.NULSlots ×
chs.NRep) – 1]

Index of a slot within a
bundle, in zero-based
form

double

InitNSlot Nonnegative integer Slot number for
scrambling sequence
initialization

double

InitNFrame Nonnegative integer Frame number for
scrambling sequence
initialization

double

EndOfBlk Logical 1 (true) or 0
(false)

To indicate that the
transmission has
reached the end of a
transport block, specify
this field as 1 (true).
Otherwise, specify this
field as 0 (false).

logical

EndOfTx Logical 1 (true) or 0
(false)

To indicate that the
transmission has
reached the end of a
bundle, specify this field
as 1 (true). Otherwise,
specify this field as 0
(false).

logical

 lteULFrameOffsetNPUSCH

2-1267

Field Values Description Data Types
GhpNSlot Nonnegative integer Slot number for the first

slot in the RU

Dependencies. To
enable this field, specify
the NPUSCHFormat
field as 'Data' and the
NRUsc field as 1 in the
chs input.

double

Data Types: struct

Output Arguments
offset — Timing offset
integer

Timing offset, returned as an integer. This output represents the offset, in samples, between the start
of the waveform input and the sample within waveform at which the NPUSCH DRS symbols begin.
The function returns this output as the value of max(abs(corr)) modulo slot length.
Data Types: double

corr — Signal used to estimate timing offset
complex-valued matrix

Signal used to estimate timing offset, returned as a complex-valued matrix of the same dimensions as
the waveform input.
Data Types: double
Complex Number Support: Yes

Version History
Introduced in R2020a

References
[1] 3GPP TS 36.211. “Physical channels and modulation.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). https://www.3gpp.org.

See Also
Functions
lteFadingChannel | lteMovingChannel | lteNPUSCHDRS | lteSCFDMADemodulate |
lteULChannelEstimateNPUSCH

2 Functions

2-1268

https://www.3gpp.org

lteULFrameOffsetPUCCH1
PUCCH format 1 DM-RS uplink subframe timing estimate

Syntax
offset = lteULFrameOffsetPUCCH1(ue,chs,waveform)
[offset,corr] = lteULFrameOffsetPUCCH1(ue,chs,waveform)

Description
offset = lteULFrameOffsetPUCCH1(ue,chs,waveform) performs synchronization using
PUCCH format 1 demodulation reference signals (DM-RS) for the time-domain waveform, waveform,
given UE-specific settings, ue, and PUCCH format 1 configuration, chs.

The returned value offset indicates the number of samples from the start of the waveform
waveform to the position in that waveform where the first subframe containing the DM-RS begins.

offset provides subframe timing. Frame timing can be achieved by using offset with the subframe
number, ue.NSubframe. This behavior is consistent with real-world operation because the base
station knows when, or in which subframe, to expect uplink transmissions.

[offset,corr] = lteULFrameOffsetPUCCH1(ue,chs,waveform) also returns a complex
matrix corr, which is the signal used to extract the timing offset.

Examples

Synchronize and Demodulate Using PUCCH Format 1 DM-RS

Synchronize and demodulate a transmission that has been delayed by four samples using the PUCCH
format 1 demodulation reference signal (DM-RS) symbols.

Initialize configuration structures (ue and pucch1).

ue = struct('NULRB',6,'NCellID',0,'NSubframe',0,'Hopping','Off');
ue.CyclicPrefixUL = 'Normal';
ue.NTxAnts = 1;

pucch1 = struct('ResourceIdx',0);
pucch1.CyclicShifts = 0;
pucch1.DeltaShift = 1;
pucch1.ResourceSize = 0;

On the transmit side, populate reGrid, generate waveform, and insert a delay of four samples.

reGrid = lteULResourceGrid(ue);
reGrid(ltePUCCH1DRSIndices(ue,pucch1)) = ltePUCCH1DRS(ue,pucch1);
waveform = lteSCFDMAModulate(ue,reGrid);
tx = [zeros(4,1); waveform];

 lteULFrameOffsetPUCCH1

2-1269

On the receive side, perform synchronization using the PUCCH format 1 DM-RS symbols for the time-
domain waveform and demodulate adjusting for the frame timing estimate. Show estimated frame
timing offset.

fOffset = lteULFrameOffsetPUCCH1(ue,pucch1,tx)

fOffset = 4

rxGrid = lteSCFDMADemodulate(ue,tx(1+fOffset:end));

View PUCCH Format 1 DM-RS Transmission Correlation Peaks

View the correlation peak for a delayed transmit waveform. The transmission contains PUCCH format
1 demodulation reference signal (DM-RS) symbols available for estimating the waveform timing.

UE Configuration

Configure UE-specific settings and channel transmission parameters.

ue = struct('NULRB',6,'NCellID',0,'NSubframe',0,'Hopping','Off');
ue.CyclicPrefixUL = 'Normal';
ue.NTxAnts = 1;
pucch1 = struct('ResourceIdx',0,'CyclicShifts',0, ...
 'DeltaShift',1,'ResourceSize',0);

Generate Transmit Waveform

On the transmit side, populate a resource grid and generate a waveform containing PUCCH1 DM-RS.

reGrid = lteULResourceGrid(ue);
reGrid(ltePUCCH1DRSIndices(ue,pucch1)) = ltePUCCH1DRS(ue,pucch1);
tx = lteSCFDMAModulate(ue,reGrid);

Waveform Reception

On the receive side, calculate timing offset using the PUCCH format 1 DM-RS symbols for the time-
domain waveform. Estimate the correlations for the transmit waveform and for a delayed version of
the transmit waveform.

[~,corr] = lteULFrameOffsetPUCCH1(ue,pucch1,tx);
txDelayed = [zeros(7,1); tx];
[offset,corrDelayed] = lteULFrameOffsetPUCCH1(ue,pucch1,txDelayed);

Plot the correlation data before and after delay is added. Zoom in on the x-axis to view correlation
peaks.

plot(corr)
hold on
plot(corrDelayed)
hold off
xlim([0 100])

2 Functions

2-1270

Correct the timing offset and demodulate the received waveform.

rxGrid = lteSCFDMADemodulate(ue,txDelayed(1+offset:end));

Input Arguments
ue — UE-specific settings
scalar structure

UE-specific settings, specified as a scalar structure with the following fields.

Parameter Field Required or
Optional

Values Description

NULRB Required Scalar integer from 6 to 110 Number of uplink resource blocks.
(NRB

UL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
NTxAnts Optional 1 (default), 2, 4 Number of transmission antennas.
Hopping Optional 'Off' (default), 'Group' Frequency hopping method.

 lteULFrameOffsetPUCCH1

2-1271

Parameter Field Required or
Optional

Values Description

NPUCCHID Optional Integer from 0 to 503 PUCCH virtual cell identity. If this
field is not present, NCellID is
used as the identity.

Data Types: struct

chs — PUCCH format 1 configuration
scalar structure

PUCCH format 1 configuration, specified as a scalar structure with the following fields.

Parameter Field Required or
Optional

Values Description

ResourceIdx Optional 0 (default), integer from 0 to 2047
or vector of integers.

PUCCH resource indices, specified
as an integer or a vector of
integers. Values range from 0 to
2047. These indices determine the
physical resource blocks, cyclic
shift and orthogonal cover used
for transmission. (nPUCCH

(1)). Define
one index for each transmission
antenna.

ResourceSize Optional 0 (default), integer from 0 to 98. Size of resource allocated to
PUCCH format 2 (NRB

(2))

DeltaShift Optional 1 (default), 2, 3 Delta shift, specified as 1, 2, or 3.
(Δshift)

DeltaOffset Optional 0 (default), 1, 2 (Δoffset). Warning: The use of this
parameter field is not advised. It
applies only to 3GPP releases
preceding v8.5.0. This parameter
will be removed in a future
release.

CyclicShifts Optional 0 (default), integer from 0 to 7 Number of cyclic shifts used for
format 1 in resource blocks (RBs)
with a mixture of format 1 and
format 2 PUCCH, specified as an
integer from 0 to 7. (Ncs

(1))

Data Types: struct

waveform — Time-domain waveform
numeric matrix

Time-domain waveform, specified as a numeric matrix. waveform must be a NS-by-NR matrix, where
NS is the number of time-domain samples and NR is the number of receive antennas. waveform
should be at least one subframe long and contain the DM-RS signals.

2 Functions

2-1272

Generate waveform by SC-FDMA modulation of a resource matrix using lteSCFDMAModulate
function, or by using one of the channel model functions (lteFadingChannel, lteHSTChannel, or
lteMovingChannel).
Data Types: double
Complex Number Support: Yes

Output Arguments
offset — Number of samples from the start of the waveform to the position in that
waveform where the first subframe begins
scalar integer

Number of samples from the start of the waveform to the position in that waveform where the first
subframe containing the DM-RS begins, returned as a scalar integer. offset is computed by
extracting the timing of the peak of the correlation between waveform and internally generated
reference waveforms containing DM-RS signals. The correlation is performed separately for each
antenna and the antenna with the strongest correlation is used to compute offset.

Note offset is the position of mod(max(abs(corr),LSF)), where LSF is the subframe length.

corr — Signal used to extract the timing offset
numeric matrix

Signal used to extract the timing offset, returned as a complex numeric matrix. corr has the same
dimensions as waveform.

Version History
Introduced in R2014a

See Also
lteULFrameOffset | lteULFrameOffsetPUCCH2 | lteULFrameOffsetPUCCH3 |
lteFadingChannel | lteMovingChannel | lteHSTChannel | lteSCFDMADemodulate

 lteULFrameOffsetPUCCH1

2-1273

lteULFrameOffsetPUCCH2
PUCCH format 2 DM-RS uplink subframe timing estimate

Syntax
offset = lteULFrameOffsetPUCCH2(ue,chs,waveform,oack)
[offset,ack] = lteULFrameOffsetPUCCH2(ue,chs,waveform,oack)
[offset,ack,corr] = lteULFrameOffsetPUCCH2(ue,chs,waveform,oack)

Description
offset = lteULFrameOffsetPUCCH2(ue,chs,waveform,oack) performs synchronization using
PUCCH format 2 demodulation reference signals (DM-RS) for the time-domain waveform, waveform,
given UE-specific settings, ue, PUCCH format 2 configuration chs, and the number of Hybrid ARQ
indicators oack.

The returned value offset indicates the number of samples from the start of the waveform
waveform to the position in that waveform where the first subframe containing the DM-RS begins.

offset provides subframe timing; frame timing can be achieved by using offset with the subframe
number, ueNSubframe. This behavior is consistent with real-world operation because the base
station knows when, in which subframe, to expect uplink transmissions.

[offset,ack] = lteULFrameOffsetPUCCH2(ue,chs,waveform,oack) also returns a vector
ack of decoded PUCCH format 2 Hybrid ARQ indicators.

[offset,ack,corr] = lteULFrameOffsetPUCCH2(ue,chs,waveform,oack) also returns a
complex matrix corr, which is used to extract the timing offset.

Examples

Synchronize and Demodulate Using PUCCH Format 2 DM-RS

This example performs synchronization and uses the PUCCH format 2 DM-RS when demodulating a
transmission that has been delayed by 5 samples.

Initialize ue specific parameter structure, PUCCH2 structure, UL resource grid and txAck parameter.

ue.NULRB = 6;
ue.NCellID = 0;
ue.NSubframe = 0;
ue.Hopping = 'Off';
ue.CyclicPrefixUL = 'Normal';
ue.NTxAnts = 1;
pucch2.ResourceIdx = 0;
pucch2.ResourceSize = 0;
pucch2.CyclicShifts = 0;
rgrid = lteULResourceGrid(ue);
txAck = [1;1];
rgrid(ltePUCCH2DRSIndices(ue,pucch2)) = ltePUCCH2DRS(ue,pucch2,txAck);

2 Functions

2-1274

Generate modulated waveform and add a five sample delay.

waveform = lteSCFDMAModulate(ue,rgrid);
tx = [zeros(5,1);waveform];

Use PUCCH format 2 DM-RS to estimate UL frame offset timing, then demodulate the waveform.

offset = lteULFrameOffsetPUCCH2(ue,pucch2,tx,length(txAck))

offset = 5

rxGrid = lteSCFDMADemodulate(ue,tx(1+offset:end));

View PUCCH Format 2 H-ARQ Indicators

View the Hybrid ARQ indicators for a PUCCH format 2 transmission waveform. The transmission
contains PUCCH format 2 demodulation reference signal (DM-RS) symbols available for estimating
the waveform timing.

UE Configuration

Create configuration structures for ue and pucch2.

ue.NULRB = 6;
ue.NCellID = 0;
ue.NSubframe = 0;
ue.Hopping = 'Off';
ue.CyclicPrefixUL = 'Normal';
ue.NTxAnts = 1;

pucch2.ResourceIdx = 0;
pucch2.ResourceSize = 0;
pucch2.CyclicShifts = 0;

Generate Transmission Waveform

On the transmit side, populate a resource grid and generate a waveform containing PUCCH2 DM-RS.

reGrid = lteULResourceGrid(ue);
txAck = [0;1];
reGrid(ltePUCCH2DRSIndices(ue,pucch2)) = ltePUCCH2DRS(ue,pucch2,txAck);

tx = lteSCFDMAModulate(ue,reGrid);

Waveform Reception

On the receive side, calculate timing offset using the PUCCH2 DM-RS symbols for the time-domain
waveform and return decoded PUCCH format 2 Hybrid ARQ indicators.

[offset,ack] = lteULFrameOffsetPUCCH2(ue,pucch2,tx,length(txAck));
ack

ack = 2x1 logical array

 0
 1

 lteULFrameOffsetPUCCH2

2-1275

Correct the timing offset and demodulate the received waveform.

rxGrid = lteSCFDMADemodulate(ue,tx(1+offset:end));

View PUCCH Format 2 DM-RS Transmission Correlation Peaks

View the correlation peak for a transmission waveform that has been delayed. The transmission
contains PUCCH format 2 demodulation reference signal (DM-RS) symbols available for estimating
the waveform timing.

UE Configuration

Create configuration structures for ue and pucch2.

ue.NULRB = 6;
ue.NCellID = 0;
ue.NSubframe = 0;
ue.Hopping = 'Off';
ue.CyclicPrefixUL = 'Normal';
ue.NTxAnts = 1;

pucch2.ResourceIdx = 0;
pucch2.ResourceSize = 0;
pucch2.CyclicShifts = 0;

Generate Transmission Waveform

On the transmit side, populate a resource grid and generate a waveform containing PUCCH2 DM-RS.

reGrid = lteULResourceGrid(ue);
txAck = [1;1];
reGrid(ltePUCCH2DRSIndices(ue,pucch2)) = ltePUCCH2DRS(ue,pucch2,txAck);

tx = lteSCFDMAModulate(ue,reGrid);

Waveform Reception

On the receive side, calculate timing offset using the PUCCH2 DM-RS symbols for the time-domain
waveform and return the correlations for the transmit waveform and for a delayed version of the
transmit waveform.

[~,ack,corr] = lteULFrameOffsetPUCCH2(ue,pucch2,tx,length(txAck));

txDelayed = [zeros(5,1); tx];
[offset,ack,corrDelayed] = lteULFrameOffsetPUCCH2(ue,pucch2,txDelayed,length(txAck));

Plot the correlation data before and after delay is added. Zoom in on the x-axis to view correlation
peaks.

plot(corr)
hold on
plot(corrDelayed)
hold off
xlim([0 100])

2 Functions

2-1276

Correct the timing offset and demodulate the received waveform.

rrxGrid = lteSCFDMADemodulate(ue,txDelayed(1+offset:end));

Input Arguments
ue — UE-specific settings
scalar structure

UE-specific settings, specified as a scalar structure with the following fields.

Parameter Field Required or
Optional

Values Description

NULRB Required Scalar integer from 6 to 110 Number of uplink resource blocks.
(NRB

UL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
NTxAnts Optional 1 (default), 2, 4 Number of transmission antennas.
Hopping Optional 'Off' (default), 'Group' Frequency hopping method.

 lteULFrameOffsetPUCCH2

2-1277

Parameter Field Required or
Optional

Values Description

NPUCCHID Optional Integer from 0 to 503 PUCCH virtual cell identity. If this
field is not present, NCellID is
used as the identity.

Data Types: struct

chs — PUCCH format 2 configuration
scalar structure

PUCCH format 2 configuration, specified as a scalar structure with the following fields.

Parameter Field Required or
Optional

Values Description

ResourceIdx Optional 0 (default), integer from 0 to 1185
or vector of integers.

PUCCH resource indices which
determine the physical resource
blocks, cyclic shift, and orthogonal
cover used for transmission.
(nPUCCH

(2)). Define one index for
each transmission antenna.

ResourceSize Optional 0 (default), integer from 0 to 98. Size of resource allocated to
PUCCH format 2 (NRB

(2))

CyclicShifts Optional 0 (default), integer from 0 to 7 Number of cyclic shifts used for
format 1 in resource blocks (RBs)
with a mixture of format 1 and
format 2 PUCCH, specified as an
integer from 0 to 7. (Ncs

(1))

Data Types: struct

waveform — Time-domain waveform
numeric matrix

Time-domain waveform, specified as a numeric matrix. waveform must be a NS-by-NR matrix, where
NS is the number of time-domain samples and NR is the number of receive antennas. waveform
should be at least one subframe long and contain the DM-RS signals.

Generate waveform by SC-FDMA modulation of a resource matrix using the lteSCFDMAModulate
function, or by using one of the channel model functions, lteFadingChannel, lteHSTChannel, or
lteMovingChannel.
Data Types: double
Complex Number Support: Yes

oack — Number of uncoded Hybrid ARQ bits
1 | 2

Number of uncoded Hybrid ARQ bits expected, 1 (PUCCH format 2a) or 2 (PUCCH format 2b).
Data Types: double

2 Functions

2-1278

Output Arguments
offset — Number of samples from the start of the waveform to the position in that
waveform where the first subframe begins
scalar integer

Number of samples from the start of the waveform to the position in that waveform where the first
subframe containing the DM-RS begins, returned as a scalar integer. offset is computed by
extracting the timing of the peak of the correlation between waveform and internally generated
reference waveforms containing DM-RS signals. The correlation is performed separately for each
antenna and the antenna with the strongest correlation is used to compute offset. This process is
repeated for either one or two Hybrid ARQ indicators combination as specified by the parameter
oack. This correlation amounts to a maximum likelihood (ML) decoding of the Hybrid ARQ indicators,
which are signaled on the PUCCH format 2 DM-RS.

Note offset is the position of mod(max(abs(corr),LSF)), where LSF is the subframe length.

ack — Decoded PUCCH format 2 Hybrid ARQ bits
numeric vector or matrix

Decoded PUCCH format 2 Hybrid ARQ bits, returned as a numeric vector or matrix. If multiple
decoded Hybrid ARQ indicator vectors have a likelihood equal to the maximum, ack is a matrix where
each column represents one of the equally likely Hybrid ARQ indicator vectors.

corr — Signal used to extract the timing offset
numeric matrix

Signal used to extract the timing offset, returned as a complex numeric matrix. corr has the same
dimensions as waveform.

Version History
Introduced in R2014a

See Also
lteULFrameOffset | lteULFrameOffsetPUCCH1 | lteULFrameOffsetPUCCH3 |
lteFadingChannel | lteMovingChannel | lteHSTChannel | lteSCFDMADemodulate

 lteULFrameOffsetPUCCH2

2-1279

lteULFrameOffsetPUCCH3
PUCCH format 3 DM-RS uplink subframe timing estimate

Syntax
offset = lteULFrameOffsetPUCCH3(ue,chs,waveform)
[offset corr] = lteULFrameOffsetPUCCH3(ue,chs,waveform)

Description
offset = lteULFrameOffsetPUCCH3(ue,chs,waveform) performs synchronization using
PUCCH format 3 demodulation reference signals (DM-RS) for the time-domain waveform, waveform,
given UE-specific settings, ue, and PUCCH format 3 configuration, chs.

The returned value, offset, indicates the number of samples from the start of the waveform,
waveform, to the position in that waveform where the first subframe containing the DM-RS begins.

offset provides subframe timing; frame timing can be achieved by using offset with the subframe
number, ue.NSubframe. This behavior is consistent with real-world operation because the base
station knows when, or in which subframe, to expect uplink transmissions.

[offset corr] = lteULFrameOffsetPUCCH3(ue,chs,waveform) also returns a complex-
valued matrix corr, which is the signal used to extract the timing offset.

Examples

Synchronize and Demodulate Using PUCCH Format 3 DM-RS

Synchronize and demodulate a transmission that has been delayed by seven samples using the
PUCCH format 3 demodulation reference signal (DM-RS) symbols.

Initialize configuration structures (ue and pucch3).

ue = struct('NULRB',6,'NCellID',0,'NSubframe',0,'Hopping','Off');
ue.CyclicPrefixUL = 'Normal';
ue.NTxAnts = 1;
ue.Shortened = 0;

pucch3 = struct('ResourceIdx',0);

On the transmit side, populate reGrid, generate waveform, and insert a delay of seven samples.

reGrid = lteULResourceGrid(ue);
reGrid(ltePUCCH3DRSIndices(ue,pucch3)) = ltePUCCH3DRS(ue,pucch3);
waveform = lteSCFDMAModulate(ue,reGrid);
tx = [zeros(7,1); waveform];

On the receive side, perform synchronization using the PUCCH format 3 DM-RS symbols for the time-
domain waveform and demodulate adjusting for the frame timing estimate. Show estimated frame
timing offset.

2 Functions

2-1280

fOffset = lteULFrameOffsetPUCCH3(ue,pucch3,tx)

fOffset = 7

rxGrid = lteSCFDMADemodulate(ue,tx(1+fOffset:end));

View PUCCH Format 3 DM-RS Transmission Correlation Peaks

View the correlation peak for a transmission waveform that has been delayed. The transmission
contains PUCCH format 3 demodulation reference signal (DM-RS) symbols available for estimating
the waveform timing.

UE Configuration

Create configuration structures for ue and pucch3.

ue = struct('NULRB',6,'NCellID',0,'NSubframe',0,'Hopping','Off');
ue.CyclicPrefixUL = 'Normal';
ue.NTxAnts = 1;
ue.Shortened = 0;

pucch3 = struct('ResourceIdx',0);

Generate Transmission Waveform

On the transmit side, populate a resource grid and generate a waveform containing PUCCH3 DM-RS.

reGrid = lteULResourceGrid(ue);
reGrid(ltePUCCH3DRSIndices(ue,pucch3)) = ltePUCCH3DRS(ue,pucch3);

tx = lteSCFDMAModulate(ue,reGrid);

Waveform Reception

On the receive side, calculate timing offset using the PUCCH3 DM-RS symbols for the time-domain
waveform and return the correlations for the transmit waveform and for a delayed version of the
transmit waveform.

[~,corr] = lteULFrameOffsetPUCCH3(ue,pucch3,tx);

txDelayed = [zeros(7,1); tx];
[offset,corrDelayed] = lteULFrameOffsetPUCCH3(ue,pucch3,txDelayed);

Plot the correlation data before and after delay is added. Zoom in on the x-axis to view correlation
peaks.

plot(corr)
hold on
plot(corrDelayed)
hold off
xlim([0 100])

 lteULFrameOffsetPUCCH3

2-1281

Correct the timing offset and demodulate the received waveform.

rrxGrid = lteSCFDMADemodulate(ue,txDelayed(1+offset:end));

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure with the following fields.

Parameter Field Required or
Optional

Values Description

NULRB Required Scalar integer from 6 to 110 Number of uplink resource blocks.
(NRB

UL)
NCellID Required Integer from 0 to 503 Physical layer cell identity
NSubframe Required 0 (default), nonnegative scalar

integer
Subframe number

CyclicPrefixUL Optional 'Normal' (default), 'Extended' Cyclic prefix length
NTxAnts Optional 1 (default), 2, 4 Number of transmission antennas.
Hopping Optional 'Off' (default), 'Group' Frequency hopping method.

2 Functions

2-1282

Parameter Field Required or
Optional

Values Description

Shortened Optional 0 (default), 1 Option to shorten the subframe by
omitting the last symbol, specified
as 0 or 1. If 1, the last symbol of
the subframe is not used. For
subframes with possible SRS
transmission, set Shortened to 1
to maintain a standard compliant
configuration.

NPUCCHID Optional Integer from 0 to 503 PUCCH virtual cell identity. If this
field is not present, NCellID is
used as the identity.

Data Types: struct

chs — PUCCH format 3 configuration
scalar structure

PUCCH format 3 configuration, specified as a scalar structure with the following fields.

Parameter Field Required or
Optional

Values Description

ResourceIdx Optional 0 (default), integer from 0 to 549,
or vector of integers.

PUCCH resource indices which
determine the physical resource
blocks, cyclic shift, and orthogonal
cover used for transmission
(nPUCCH

(3)). Define one index for
each transmission antenna.

Data Types: struct

waveform — Time-domain waveform
numeric matrix

Time-domain waveform, specified as a numeric matrix. waveform must be a NS-by-NR matrix, where
NS is the number of time-domain samples and NR is the number of receive antennas. waveform
should be at least one subframe long and contain the DM-RS signals.

Generate waveform by SC-FDMA modulation of a resource matrix using the lteSCFDMAModulate
function, or by using one of the channel model functions, lteFadingChannel, lteHSTChannel, or
lteMovingChannel.
Data Types: double
Complex Number Support: Yes

Output Arguments
offset — Number of samples from the start of the waveform to the position in that
waveform where the first subframe begins
scalar integer

 lteULFrameOffsetPUCCH3

2-1283

Number of samples from the start of the waveform to the position in that waveform where the first
subframe begins, returned as a scalar integer. offset is computed by extracting the timing of the
peak of the correlation between waveform and internally generated reference waveforms containing
DM-RS signals. The correlation is performed separately for each antenna and the antenna with the
strongest correlation is used to compute offset.

Note offset is the position of mod(max(abs(corr),LSF)), where LSF is the subframe length.

corr — Signal used to extract the timing offset
numeric matrix

Signal used to extract the timing offset, returned as a numeric matrix. corr has the same dimensions
as waveform.

Version History
Introduced in R2014a

See Also
lteULFrameOffset | lteULFrameOffsetPUCCH1 | lteULFrameOffsetPUCCH2 |
lteFadingChannel | lteMovingChannel | lteHSTChannel | lteSCFDMADemodulate

2 Functions

2-1284

lteULPMIInfo
PUSCH precoder matrix indication reporting information

Syntax
info=lteULPMIInfo(ue,chs)

Description
info=lteULPMIInfo(ue,chs) returns a structure info containing information related to precoder
matrix indication (PMI) reporting.

You can use info.NSubbands to determine the correct size of the vector PMI required for closed-
loop spatial multiplexing operation. PMI is a column vector with info.NSubbands rows. Currently,
only wideband PMI reporting is defined by the standard. Thus, the number of subbands,
info.NSubbands, is always 1. This field and info.k are provided for consistency with the downlink
version of this function, ltePMIInfo.

Examples

Get PUSCH PMI Reporting Information

Get PMI reporting information for FRC A3-2.

ue = lteRMCUL('A3-2');
pmiInfo = lteULPMIInfo(ue, ue.PUSCH)

pmiInfo = struct with fields:
 k: 6
 NSubbands: 1
 MaxPMI: 0

Input Arguments
ue — UE-specific configuration
structure

UE-specific configuration, specified as a structure. ue can contain the following fields.

NULRB — Number of uplink resource blocks
6 | 15 | 25 | 50 | 75 | 100

Number of uplink resource blocks, specified as a positive scalar integer.
Data Types: double

NTxAnts — Number of transmission antennas
1 (default) | optional | 2 | 4

 lteULPMIInfo

2-1285

Number of transmission antennas, specified as a positive scalar integer. Optional. Valid values are 1,
2, and 4.
Data Types: double

Data Types: struct

chs — PUSCH channel settings
structure

PUSCH channel settings, specified as a structure with the following fields.

NLayers — Number of transmission layers
1 (default) | optional | 2 | 3 | 4

Number of transmission layers, specified as 1, 2, 3, or 4. Optional.
Data Types: double

Data Types: struct

Output Arguments
info — Information related to PMI reporting
structure

Information related to PMI reporting, returned as a structure with these fields.

k — Subband size
scalar integer

Subband size, in resource blocks (RBs), returned as a scalar integer. This parameter is equal to
NULRB.
Data Types: double

NSubbands — Number of subbands for PMI reporting
scalar integer

Number of subbands for PMI reporting, returned as a scalar integer. This parameter is equal to 1 for
wideband PMI.
Data Types: double

MaxPMI — Maximum permitted PMI value for the given configuration
scalar integer

Maximum permitted PMI value for the given configuration, returned as a scalar integer. Valid PMI
values range from 0 to MaxPMI.
Data Types: double

Version History
Introduced in R2014a

2 Functions

2-1286

See Also
lteULPMISelect | ltePUSCHPrecode | ltePUSCH

 lteULPMIInfo

2-1287

lteULPMISelect
PUSCH precoder matrix indication calculation

Syntax
pmi = lteULPMISelect(ue,chs,hest,noiseest)
pmi = lteULPMISelect(ue,chs,hest,noiseest,refgrid)
pmi = lteULPMISelect(ue,chs,hest,noiseest,refgrid,cec)

Description
pmi = lteULPMISelect(ue,chs,hest,noiseest) performs PUSCH precoder matrix indication
(PMI) calculation for given UE-specific settings, ue, channel configuration structure, chs, channel
estimate resource array, hest, and receiver noise variance, noiseest. The output, pmi, is a scalar
containing the PMI selected for closed-loop transmission.

hest is a 4-D array of size M-by-N-by-NRxAnts-by-NTxAnts, where M is the number of subcarriers,
N is the number of SC-FDMA symbols, NRxAnts is the number of receive antennas, and NTxAnts is
the number of transmit antennas.

noiseest is a scalar, an estimate of the received noise power spectral density.

pmi = lteULPMISelect(ue,chs,hest,noiseest,refgrid) provides an additional input
refgrid, a 3-D M-by-N-by-NTxAnts array containing known transmitted data symbols in their
correct locations. All other locations i.e. DRS Symbols and unknown data symbol locations should be
represented by a NaN. This is the same array as the additional refgrid input described for the
lteULChannelEstimate function. For PMI selection the symbols in refgrid are ignored, but the
non-NaN RE locations are used as RE locations at which to sample the channel estimate and perform
PMI estimation. This approach can be used to provide a refgrid containing for example the SRS RE
locations created on all NTxAnts, allowing for full-rank channel estimation for the purposes of PMI
selection when the PUSCH is transmitted with less than full rank.

pmi = lteULPMISelect(ue,chs,hest,noiseest,refgrid,cec) accepts channel estimator
configuration structure cec containing the field Reference.

Reference = 'None' will generate no internal reference signals, and the PMI estimation can be
performed on arbitrary known REs as given by the refgrid argument. This approach can be used to
provide a refgrid containing for example the SRS signals created on all NTxAnts, allowing for full-
rank PMI estimation for the purposes of PMI selection when the PUSCH is transmitted with less than
full rank. Reference = 'Antennas' or Reference = 'Layers' will use the PUSCH DMRS RE
indices as reference locations for PMI estimation; additional references can still be provided in
refgrid.

Examples

Calculate PUSCH PMI

This example creates an empty resource grid for RMC A3-2 and amend it for MIMO configuration.

2 Functions

2-1288

Initialize ue specific parameter structure and create an empty resource grid for RMC A3-2 and amend
it for MIMO configuration.

ue = lteRMCUL('A3-2');
ue.NTxAnts = 4;
ue.PUSCH.NLayers = 2;
rgrid = lteULResourceGrid(ue);
rgrid(ltePUSCHDRSIndices(ue,ue.PUSCH)) = ltePUSCHDRS(ue,ue.PUSCH);

Generate modulated waveform.

txWaveform = lteSCFDMAModulate(ue,rgrid);

Configure a fading channel.

chcfg.Seed = 100;
chcfg.DelayProfile = 'EPA';
chcfg.NRxAnts = 2;
chcfg.InitTime = 100;
chcfg.InitPhase = 'Random';
chcfg.ModelType = 'GMEDS';
chcfg.NTerms = 16;
chcfg.NormalizeTxAnts = 'On';
chcfg.NormalizePathGains = 'On';
chcfg.DopplerFreq = 50.0;
chcfg.MIMOCorrelation = 'Low';
chcfg.SamplingRate = 15360000;

Filter the transmit waveform through a fading channel and perform SC-FDMA demodulation.

rxWaveform = lteFadingChannel(chcfg,txWaveform);
rxSubframe = lteSCFDMADemodulate(ue,rxWaveform);

Estimate the corresponding channel and the noise power spectral density on the reference signal
subcarriers.

cec = struct('FreqWindow',12,'TimeWindow',1,'InterpType','cubic');
cec.PilotAverage = 'UserDefined';
cec.Reference = 'Antennas';

[hest,noiseEst] = lteULChannelEstimate(ue,ue.PUSCH,cec,rxSubframe);

Use this estimate to calculate the precoder matrix indication (PMI).

pmi = lteULPMISelect(ue,ue.PUSCH,hest,noiseEst)

pmi = 4

Input Arguments
ue — UE-specific settings
scalar structure

UE-specific settings, specified as a scalar structure with the following fields.

NULRB — Number of uplink (UL) resource blocks (RBs)
scalar integer

 lteULPMISelect

2-1289

Number of uplink (UL) resource blocks (RBs), specified as a scalar integer.
Data Types: double

CyclicPrefixUL — Cyclic prefix length
'Normal' (default) | optional | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

NTxAnts — Number of transmission antennas
1 (default) | optional | 2 | 4

Number of transmission antennas, specified as 1, 2, or 4.
Data Types: double

Data Types: struct

chs — Channel configuration structure
scalar structure

Channel configuration structure, specified as a scalar structure with the following fields.

PRBSet — Physical Resource Block indices
numeric column matrix

Physical Resource Block indices, specified as a numeric column matrix. PRBSet can be a 1- or 2-
column matrix, containing the 0-based Physical Resource Block indices (PRBs) corresponding to the
resource allocations for this PUSCH.
Data Types: double

NLayers — Number of transmission layers
1 (default) | optional | 2 | 3 | 4

Number of transmission layers, specified as 1, 2, 3, or 4.
Data Types: double

Data Types: struct

hest — Channel estimate
4-D numeric array

Channel estimate, specified as a 4-D numeric array of size M-by-N-by-NRxAnts-by-NTxAnts. M is the
number of subcarriers, N is the number of SC-FDMA symbols, NRxAnts is the number of receive
antennas and NTxAnts is the number of transmit antennas.
Data Types: double
Complex Number Support: Yes

noiseest — Receiver noise variance
numeric scalar

Receiver noise variance, specified as a numeric scalar. It is an estimate of the received noise power
spectral density.

2 Functions

2-1290

Data Types: double

refgrid — Transmitted data symbols
3-D numeric array

Transmitted data symbols, specified as a 3-D numeric array. refgrid is an M-by-N-by-NTxAnts array
containing known symbols in their correct locations.
Data Types: double
Complex Number Support: Yes

cec — Channel estimator configuration
scalar structure

Channel estimator configuration, specified as a scalar structure with the following fields.

Reference — Point of reference (indices to internally generate) for PMI estimation
'Antennas' (default) | optional | 'Layers' | 'None'

Point of reference (indices to internally generate) for PMI estimation. Reference = 'None'
generates no internal reference signals, and the PMI estimation can be performed on arbitrary known
REs as given by the refgrid argument. Reference = 'Antennas' or Reference = 'Layers'
uses the PUSCH DMRS RE indices as reference locations for PMI estimation; additional references
can still be provided in refgrid.
Data Types: char | string

Data Types: struct

Output Arguments
pmi — Precoder matrix indication selected for closed-loop transmission
numeric scalar (0...23)

Precoder matrix indication selected for closed-loop transmission, returned as a numeric scalar
between 0 and 23.

Version History
Introduced in R2014a

See Also
ltePUSCH | ltePUSCHPrecode | lteULPMIInfo

 lteULPMISelect

2-1291

lteULPerfectChannelEstimate
Uplink perfect channel estimation

Syntax
hest = lteULPerfectChannelEstimate(ue,channel)
hest = lteULPerfectChannelEstimate(ue,channel,offset)

hest = lteULPerfectChannelEstimate(ue,chs,channel)
hest = lteULPerfectChannelEstimate(ue,chs,channel,offset)

Description
hest = lteULPerfectChannelEstimate(ue,channel) performs perfect channel estimation for
a system configuration given user-equipment-specific (UE-specific) settings ue and propagation
channel configuration channel. The perfect channel estimates are produced only for fading channel
models created using the lteFadingChannel function.

This function provides a perfect multiple-input-multiple-output (MIMO) channel estimate after single-
carrier frequency-division multiple access (SC-FDMA) modulation. To obtain this estimate, the
function sets the channel with the specified configuration and sends a set of known symbols through
that channel for each transmit antenna in turn.

hest = lteULPerfectChannelEstimate(ue,channel,offset) performs perfect channel
estimation for the timing and frequency offset specified by offset. Specifying offset guarantees
that hest is the channel that results when the receiver is precisely synchronized.

hest = lteULPerfectChannelEstimate(ue,chs,channel) performs perfect channel
estimation for channel transmission configuration chs. This syntax supports SC-FDMA for LTE,
single-tone narrowband Internet of Things (NB-IoT), and multitone NB-IoT.

hest = lteULPerfectChannelEstimate(ue,chs,channel,offset) performs perfect channel
estimation for the channel transmission configuration and the specified timing and frequency offset.

Examples

Perform Uplink Perfect Channel Estimation

Perform uplink perfect channel estimation for a chosen propagation channel configuration.

Initialize UE-specific settings, specifying fields appropriate for an LTE uplink configuration.

ue.NULRB = 6;
ue.CyclicPrefixUL = 'Normal';
ue.NTxAnts = 2;
ue.TotSubframes = 1;

Specify propagation channel conditions.

channel.Seed = 1;
channel.DelayProfile = 'EPA';

2 Functions

2-1292

channel.NRxAnts = 4;
channel.DopplerFreq = 5.0;
channel.MIMOCorrelation = 'Low';
channel.InitPhase = 'Random';
channel.InitTime = 0.0;
channel.ModelType = 'GMEDS';
channel.NTerms = 16;
channel.NormalizeTxAnts = 'On';
channel.NormalizePathGains = 'On';

Perform uplink perfect channel estimation and display the dimension of the channel estimate array.

hest = lteULPerfectChannelEstimate(ue,channel);
disp(size(hest));

 72 14 4 2

Perform Uplink Perfect Channel Estimation on Time Offset Waveform

Perform uplink perfect channel estimation on a time offset waveform passed through a fading
channel.

Configuration Initialization

Initialize UE-specific settings by specifying fields appropriate for an LTE uplink configuration.

ue = lteRMCUL('A1-1','FDD',1);
ue.NULRB = 10;
ue.CyclicPrefixUL = 'Normal';
ue.NTxAnts = 4;
ue.TotSubframes = 1;

Specify the propagation channel configuration.

channel.Seed = 1;
channel.DelayProfile = 'EVA';
channel.NRxAnts = 2;
channel.DopplerFreq = 5.0;
channel.MIMOCorrelation = 'UplinkMedium';
channel.InitPhase = 'Random';
channel.InitTime = 0.0;
channel.ModelType = 'GMEDS';
channel.NTerms = 16;
channel.NormalizeTxAnts = 'On';
channel.NormalizePathGains = 'On';

Waveform Processing

Create a waveform and add samples for channel delay.

[txWaveform,txgrid,rmcCfg] = lteRMCULTool(ue,[1;0;0;1]);
txWaveform = [txWaveform; zeros(25,4)];
channel.SamplingRate = rmcCfg.SamplingRate;

Pass the waveform through a fading channel, generating time-domain receiver samples.

 lteULPerfectChannelEstimate

2-1293

rxWaveform = lteFadingChannel(channel,txWaveform);

Determine Timing Offset

Use the lteULFrameOffset function to estimate time offset.

offset = lteULFrameOffset(ue,ue.PUSCH,rxWaveform);
disp(offset);

 8

Modify the received waveform to account for the timing offset.

rxWaveform = rxWaveform(1+offset:end,:);

Demodulation and Uplink Perfect Channel Estimation

Generate frequency-domain receiver data by demodulating the received time-domain waveform.

grid = lteSCFDMADemodulate(ue,rxWaveform);

Perform uplink perfect channel estimation with the specified time offset.

hest = lteULPerfectChannelEstimate(ue,channel,offset);
disp(size(hest));

 120 14 2 4

Visualize Effect of Fading Channel

Plot resource element grids to show the impact of the fading channel on the transmitted signal and
recovery of the signal using the perfect channel estimate.

The output channel estimate is a 4-D array. The input specified ten resource blocks leading to 120
subcarriers per symbol. Normal cyclic prefix results in 14 symbols per subframe. The third and fourth
dimensions represent the two receive and four transmit antennas specified in the input configuration
structures.

Comparing the transmitted grid to the recovered grid shows how equalization of the received grid
with the perfect channel estimate recovers the transmission.

recoveredgrid = grid./hest;

subplot(2,2,1)
surf(abs(txgrid(:,:,1,1)))
title('Transmitted Grid')
subplot(2,2,2)
surf(abs(grid(:,:,1,1)))
title('Received Grid')
subplot(2,2,3)
surf(abs(hest(:,:,1,1)))
title('Perfect Channel Estimate')
subplot(2,2,4)
surf(abs(recoveredgrid(:,:,1,1)))
title('Recovered Grid')

2 Functions

2-1294

Perform Uplink Perfect Channel Estimation for NB-IoT configuration

Perform uplink perfect channel estimation for a chosen propagation channel configuration.

Initialize UE-specific settings, specifying fields appropriate for an NB-IoT uplink configuration.

ue.NBULSubcarrierSpacing = '15kHz';
ue.TotSlots = 10;

Specify propagation channel conditions.

channel.Seed = 5;
channel.DelayProfile = 'EPA';
channel.NRxAnts = 2;
channel.DopplerFreq = 5.0;
channel.MIMOCorrelation = 'Low';
channel.InitPhase = 'Random';
channel.InitTime = 0.0;
channel.ModelType = 'GMEDS';
channel.NTerms = 16;
channel.NormalizeTxAnts = 'On';
channel.NormalizePathGains = 'On';

Specify NPUSCH configuration information.

chs.NBULSubcarrierSet = 0;
chs.Modulation = 'QPSK';

 lteULPerfectChannelEstimate

2-1295

chs.NULSlots = 2;
chs.NRU = 2;
chs.NRep = 1;
chs.SlotIdx = 0;

Perform uplink perfect channel estimation and display the dimension of the channel estimate array.

hest = lteULPerfectChannelEstimate(ue,chs,channel);
disp(size(hest));

 12 70 2

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure. The fields you specify in ue determine whether the
function performs channel estimation for an LTE or NB-IoT configuration. To indicate an LTE
configuration, specify the NULRB field. To indicate an NB-IoT configuration, specify the
NBULSubcarrierSpacing field. The NTxAnts field is required for both LTE and NB-IoT
configurations. The other fields in ue are optional. The CyclicPrefixUL and TotSubframes fields
are applicable only for an LTE configuration. The TotSlots field is applicable only for an NB-IoT
configuration.

NULRB — Number of uplink resource blocks
integer in the interval [6, 110]

Number of uplink resource blocks, NRB
UL, specified as an integer in the interval [6, 110]. To perform

channel estimation for an LTE configuration, you must specify this field.
Data Types: double

CyclicPrefixUL — Cyclic prefix length
'Normal' (default) | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'. This field is optional.

Dependencies

This field applies only when you choose an LTE configuration by specifying the NULRB field.
Data Types: char

NTxAnts — Number of transmit antennas
1 (default) | 2 | 4

Number of transmit antennas, NTX, specified as 1, 2, or 4.
Data Types: double

TotSubframes — Total number of subframes to generate
1 (default) | nonnegative integer

Total number of subframes to generate, specified as a nonnegative integer.

2 Functions

2-1296

Data Types: double

NBULSubcarrierSpacing — NB-IoT uplink subcarrier spacing
'3.75kHz' | '15kHz'

NB-IoT uplink subcarrier spacing, specified as '3.75kHz' or '15kHz'. To set a subcarrier spacing of
3.75 kHz, specify NBULSubcarrierSpacing as '3.75kHz'. To set a subcarrier spacing of 15 kHz,
specify NBULSubcarrierSpacing as '15kHz'.

To perform channel estimation for an NB-IoT configuration, you must specify this field. To indicate an
LTE configuration, omit this field.
Data Types: char

TotSlots — Total number of slots to generate
1 (default) | nonnegative integer

Total number of slots to generate, specified as a nonnegative integer.
Data Types: double

Data Types: struct

channel — Propagation channel configuration structure
structure

Propagation channel configuration, specified as a structure. This argument must contain all the fields
required to parameterize the fading channel model, that is, to call the lteFadingChannel function.

Note Before execution of the channel, lteULPerfectChannelEstimate sets the SamplingRate
field internally to the sampling rate of the time domain waveform passed to the lteFadingChannel
function for filtering. Therefore, this channel input does not require the SamplingRate field. If one
is included, it is not used.

NRxAnts — Number of receive antennas
positive integer

Number of receive antennas, NRX, specified as a positive integer.
Data Types: double

MIMOCorrelation — Correlation between UE and eNodeB antennas
'Low' | 'Medium' | 'UplinkMedium' | 'High' | 'Custom'

Correlation between UE and Evolved Node B (eNodeB) antennas, specified as one of these values:

• 'Low' – No correlation between antennas
• 'Medium' – Correlation level is applicable to tests defined in TS 36.101 [1]
• 'UplinkMedium' – Correlation level is applicable to tests defined in TS 36.104 [2]
• 'High' – Strong correlation between antennas
• 'Custom' – Apply user-defined TxCorrelationMatrix and RxCorrelationMatrix

Data Types: char | string

 lteULPerfectChannelEstimate

2-1297

NormalizeTxAnts — Transmit antenna number normalization
'On' (default) | 'Off'

Transmit antenna number normalization, specified as 'On' or 'Off'. If you specify
NormalizeTxAnts as 'On', lteULPerfectChannelEstimate normalizes the model output by
1/√NTX. Normalization by the number of transmit antennas ensures that the output power per receive
antenna is unaffected by the number of transmit antennas. If you specify NormalizeTxAnts as
'Off', lteULPerfectChannelEstimate does not perform normalization. This field is optional.
Data Types: char | string

DelayProfile — Delay profile model
'EPA' | 'EVA' | 'ETU' | 'Custom' | 'Off'

Delay profile model, specified as 'EPA', 'EVA', 'ETU', 'Custom', or 'Off'. For more information,
see “Propagation Channel Models”.

Setting DelayProfile to 'Off' switches off fading completely and implements a static MIMO
channel model. In this case, the antenna geometry corresponds to the MIMOCorrelation and
NRxAnts fields, and the number of transmit antennas. The temporal part of the model for each link
between transmit and receive antennas consists of a single path with zero delay and constant unit
gain.
Data Types: char | string

DopplerFreq — Maximum Doppler frequency
nonnegative scalar

Maximum Doppler frequency, in Hz, specified as a nonnegative scalar.

Dependencies

This field applies only when you specify the DelayProfile field as a value other than 'Off'.
Data Types: double

SamplingRate — Sampling rate of input signal
nonnegative scalar

Sampling rate of input signal, specified as a nonnegative scalar.

Dependencies

This field applies only when you specify the DelayProfile field as a value other than 'Off'.
Data Types: double

InitTime — Fading process time offset
nonnegative scalar

Fading process time offset, in seconds, specified as a nonnegative scalar.

Dependencies

This field applies only when you specify the DelayProfile field as a value other than 'Off'.
Data Types: double

2 Functions

2-1298

NTerms — Number of oscillators used in fading path modeling
16 (default) | power of two

Number of oscillators used in fading path modeling, specified as a power of two. This field is optional

Dependencies

This field applies only when you specify the DelayProfile field as a value other than 'Off'.
Data Types: double

ModelType — Rayleigh fading model type
'GMEDS' (default) | 'Dent'

Rayleigh fading model type, specified as 'GMEDS' or 'Dent'. To model Rayleigh fading using the
generalized method of exact Doppler spread (GMEDS) described in [4], specify ModelType as
'GMEDS'. To model Rayleigh fading using the modified Jakes fading model described in [3], specify
ModelType as 'Dent'. This field is optional.

Note Specifying ModelType as 'Dent' is not recommended.

Dependencies

This field applies only when you specify the DelayProfile field as a value other than 'Off'.
Data Types: char | string

NormalizePathGains — Model output normalization indicator
'On' (default) | 'Off'

Model output normalization indicator, specified as 'On' or 'Off'. To normalize the model output
such that the average power is unity, specify NormalizePathGains as 'On'. To return the average
output power as the sum of the powers of the taps of the delay profile, specify
NormalizePathGains as 'Off'. This field is optional.

Dependencies

This field applies only when you specify the DelayProfile field as a value other than 'Off'.
Data Types: char | string

InitPhase — Phase initialization for sinusoidal components of model
'Random' (default) | real-valued scalar | 4-D array

Phase initialization for the sinusoidal components of the model, specified as one of these values:

• 'Random' – Randomly initialize the phases according to the value you specify in the Seed field
• A real-valued scalar – Specify the single initial value of the phases of all components, in radians
• An N-by-L-by-NTX-by-NRX array – Explicitly initialize the phase, in radians, of each component. In

this case, N is the number of phase initialization values per path and L is the number of paths

Note

• When you specify ModelType as 'GMEDS', N = 2×NTerms.

 lteULPerfectChannelEstimate

2-1299

• When you specify ModelType as 'Dent', N = NTerms.

Data Types: double | char | string

Seed — Random number generator seed
real-valued scalar

Random number generator seed, specified as a real-valued scalar. To use a random seed, specify
Seed as 0.

Note Seed values in the interval [0, 231 – 1 – (K(K – 1)/2)], where K = NTX × NRX and is the product of
the number of transmit and receive antennas, are recommended. Seed values outside of this interval
are not guaranteed to give distinct results.

Dependencies

This field applies only when you specify the DelayProfile field as a value other than 'Off' and the
InitPhase field as 'Random'.
Data Types: double

AveragePathGaindB — Average gains of the discrete paths
real-valued vector

Average gains of the discrete paths, in dB, specified as a real-valued vector.

Dependencies

This field applies only when you specify the DelayProfile field as 'Custom'.
Data Types: double

PathDelays — Delays of discrete paths
real-valued vector

Delays of the discrete paths, in seconds, specified as a real-valued vector.

Dependencies

This field applies only when you specify the DelayProfile field as 'Custom'.
Data Types: double

TxCorrelationMatrix — Correlation between each of the transmit antennas
NTX-by-NTX complex-valued matrix

Correlation between each of the transmit antennas, specified as an NTX-by-NTX complex-valued
matrix.

Dependencies

This field applies only when you specify the MIMOCorrelation field as 'Custom'.
Data Types: double
Complex Number Support: Yes

2 Functions

2-1300

RxCorrelationMatrix — Correlation between each of the receive antennas
NRX-by-NRX complex-valued matrix

Correlation between each of the receive antennas, specified as an NRX-by-NRX complex-valued matrix.

Dependencies

This field applies only when you specify the MIMOCorrelation field as 'Custom'.
Data Types: double
Complex Number Support: Yes

Data Types: struct

offset — Timing offset
nonnegative integer

Timing offset, in samples, specified as a nonnegative integer. The timing offset is specified from the
start of the output of the channel to the estimated SC-FDMA demodulation starting point. Specify the
timing offset, when known, to obtain the perfect channel estimate as seen by a synchronized receiver.
Use the lteULFrameOffset function to derive the value for offset.
Data Types: double

chs — NPUSCH information
structure

NPUSCH information, specified as a structure. For an NB-IoT configuration, you can set additional
uplink-specific parameters by specifying the NB-IoT-specific fields in chs. Except for the
NBULSubcarrierSet field, the fields in chs are applicable either when
ue.NBULSubcarrierSpacing is '3.75kHz' or when ue.NBULSubcarrierSpacing is '15kHz'
and length(NBULSubcarrierSet) is 1.

NBULSubcarrierSet — NB-IoT uplink subcarrier indices
vector of nonnegative integers (default) | nonnegative integer

NB-IoT uplink subcarrier indices, specified as a vector of nonnegative integers in the interval [0, 11]
or a nonnegative integer in the interval [0, 47]. The indices are in zero-based form. To use
lteULPerfectChannelEstimate for a single-tone NB-IoT configuration, you must specify
NBULSubcarrierSet as a scalar. If you do not specify NBULSubcarrierSet,
lteULPerfectChannelEstimate returns an estimate for a multi-tone NB-IoT configuration by
default.If you specify ue.NBULSubcarrierSpacing as '15kHz', this field is required.
Data Types: double

Modulation — Modulation type
'BPSK' | 'QPSK'

Modulation type, specified as 'BPSK' or 'QPSK'. For binary phase shift keying (BPSK), specify
Modulation as 'BPSK'. For quadrature phase shift keying (QPSK), specify Modulation as 'QPSK'.
Data Types: char

NULSlots — Number of slots per resource unit
positive integer

 lteULPerfectChannelEstimate

2-1301

Number of slots per resource unit (RU), specified as a positive integer. To use
lteULPerfectChannelEstimate for a single-tone NB-IoT configuration, you must specify this field.
Data Types: double

NRU — Number of RUs
positive integer

Number of RUs, specified as a positive integer. To use lteULPerfectChannelEstimate for a
single-tone NB-IoT configuration, you must specify this field.
Data Types: double

NRep — Number of repetitions for codeword
nonnegative integer

Number of repetitions for a codeword, specified as a nonnegative integer. To use
lteULPerfectChannelEstimate for a single-tone NB-IoT configuration, you must specify this field.
Data Types: double

SlotIdx — Relative slot index in an NPUSCH bundle
0 (default) | nonnegative integer

Relative slot index in an NPUSCH bundle, specified as a nonnegative integer. This field determines
the zero-based relative slot index in a bundle of time slots for transmission of a transport block or
control information bit. This field is optional.
Data Types: double

Output Arguments
hest — Perfect channel estimate
complex-valued 4-D array

Perfect channel estimate, returned as an NSC-by-NSYM-by-NRX-by-NTX complex-valued array, where NSC
is the number of subcarriers and NSYM is the number of SC-FDMA symbols.
Data Types: double
Complex Number Support: Yes

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.101. “User Equipment (UE) Radio Transmission and Reception.” 3rd Generation

Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal
Terrestrial Radio Access (E-UTRA).

[2] 3GPP TS 36.104. “Base Station (BS) radio transmission and reception.” 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal
Terrestrial Radio Access (E-UTRA).

2 Functions

2-1302

[3] Dent, P., Bottomley, G. E., and Croft, T. “Jakes Fading Model Revisited.” Electronics Letters. Vol.
29, Number 13, 1993, pp. 1162–1163.

[4] Pätzold, M., Wang, C., and Hogstad, B. O. “Two New Sum-of-Sinusoids-Based Methods for the
Efficient Generation of Multiple Uncorrelated Rayleigh Fading Waveforms.” IEEE
Transactions on Wireless Communications. Vol. 8, Number 6, 2009, pp. 3122–3131.

See Also
lteULChannelEstimate | lteULChannelEstimatePUCCH1 | lteULChannelEstimatePUCCH2 |
lteULChannelEstimatePUCCH3 | lteDLPerfectChannelEstimate

 lteULPerfectChannelEstimate

2-1303

lteULPrecode
SC-FDMA precoding

Syntax
out = lteULPrecode(in,nrb)
out = lteULPrecode(in,n,resourceType)

Description
out = lteULPrecode(in,nrb) performs SC-FDMA precoding of complex modulation symbols in
for PUSCH or NPUSCH configuration with a bandwidth of nrb resource blocks.

out = lteULPrecode(in,n,resourceType) performs SC-FDMA precoding of the complex
modulation symbols in for PUSCH or NPUSCH configuration with a bandwidth of n resource blocks
or subcarriers.

Examples

Perform SC-FDMA Precoding on Complex Modulation Symbols

UL precoding is a step in the PUSCH processing chain. The chain includes scrambling, symbol
mapping, UL precoding, RE mapping, and SC-FDMA modulation.

Create a UE-specific configuration structure, get PUSCH indices, and generate a bit stream sized
according to configuration structure.

ue = lteRMCUL('A3-2');
[puschInd, info] = ltePUSCHIndices(ue,ue.PUSCH);
ueDim = lteULResourceGridSize(ue);
bits = randi([0,1],info.G,ue.PUSCH.NLayers);

Perform scrambling, symbol modulation, and UL precoding.

scrBits = lteULScramble(ue,bits);
symbols = lteSymbolModulate(scrBits,ue.PUSCH.Modulation);
precodedSymbols = lteULPrecode(symbols,ue.NULRB);

Generate resource mapping grid, populate the grid with the precoded symbols, and perform SC-
FDMA modulation.

grid = lteULResourceGrid(ue);
grid(puschInd) = precodedSymbols;
[timeDomainSig,infoScfdma] = lteSCFDMAModulate(ue,grid);

2 Functions

2-1304

Three-Tone NB-IoT Uplink SC-FDMA Processing Chain

Generate an SC-FDMA modulated waveform for a three-tone NB-IoT uplink configuration by applying
the SC-FDMA processing chain, comprising symbol mapping, UL precoding, and SC-FDMA
modulation.

Specify an NB-IoT configuration with ten slots and a subcarrier spacing of 15 kHz.

NSlots = 10;
ue.NBULSubcarrierSpacing = '15kHz';

Set the subcarrier locations and generate random bits for transmission.

chs.NBULSubcarrierSet = 0:2;
bits = randi([0,1],7*NSlots*length(chs.NBULSubcarrierSet)*2,1);

Perform symbol modulation and generate precoded symbols.

symbols = lteSymbolModulate(bits,'QPSK');
precodedSymbols = lteULPrecode(symbols,length(chs.NBULSubcarrierSet),'Subcarrier');

Generate the narrowband resource array

grid = repmat(lteNBResourceGrid(ue),1,NSlots);
grid(chs.NBULSubcarrierSet + 1,:) = reshape(precodedSymbols,length(chs.NBULSubcarrierSet),7*NSlots);

Generate the SC-FDMA modulated waveform for the specified configuration and display its size.

waveform = lteSCFDMAModulate(ue,chs,grid);
size(waveform)

ans = 1×2

 9600 1

Single-Tone NB-IoT Uplink SC-FDMA Processing Chain

Generate an SC-FDMA modulated waveform for a single-tone NB-IoT uplink configuration by applying
the SC-FDMA processing chain, comprising symbol mapping, UL precoding, and SC-FDMA
modulation.

Specify an NB-IoT configuration with 16 slots and a subcarrier spacing of 3.75 kHz.

NSlots = 16;
ue.NBULSubcarrierSpacing = '3.75kHz';

Specify the channel transmission configuration.

chs = struct('NULSlots',4,'NRU',1,'NRep',4,'SlotIdx',0, ...
 'Modulation','BPSK','NBULSubcarrierSet',41);

Generate random bits for transmission, perform symbol modulation, and generate precoded symbols.

 lteULPrecode

2-1305

bits = randi([0,1],7*NSlots*length(chs.NBULSubcarrierSet),1);
symbols = lteSymbolModulate(bits,chs.Modulation);
precodedSymbols = lteULPrecode(symbols,length(chs.NBULSubcarrierSet),'Subcarrier');

Generate the narrowband resource array

grid = repmat(lteNBResourceGrid(ue),1,NSlots);
grid(chs.NBULSubcarrierSet+1,:) = reshape(precodedSymbols,length(chs.NBULSubcarrierSet),7*NSlots);

Generate the SC-FDMA modulated waveform for the specified configuration and display its size.

waveform = lteSCFDMAModulate(ue,chs,grid);
size(waveform)

ans = 1×2

 61440 1

Input Arguments
in — Complex modulation symbols
complex-valued matrix

Complex modulation symbols, specified as an NSym-by-NL complex-valued matrix. NSym is the number
of symbols and NL is the number of layers.
Data Types: double
Complex Number Support: Yes

nrb — Number of resource blocks
nonnegative integer

Number of resource blocks, specified as a nonnegative integer.
Data Types: double

n — Number of resource blocks or subcarriers
nonnegative integer

Number of resource blocks or subcarriers, specified as a nonnegative integer.

Dependencies

If the resourceType input is 'PRB', then n is the number of resource blocks. If the resourceType
is 'Subcarrier', then n is the number of subcarriers.
Data Types: double

resourceType — Resource type
'PRB' | 'Subcarrier'

Resource type, specified as 'PRB' or 'Subcarrier'.
Data Types: char | string

2 Functions

2-1306

Output Arguments
out — Precoded PUSCH symbols
complex-valued matrix

Precoded PUSCH symbols, returned as an NSym-by-NL complex-valued matrix. NSym is the number of
symbols, and NL is the number of layers.

The dimension and size of the input and output symbol matrices are the same.
Data Types: double
Complex Number Support: Yes

Version History
Introduced in R2014a

See Also
lteULDeprecode | lteLayerMap | ltePUSCHPrecode | ltePUSCH

 lteULPrecode

2-1307

lteULResourceGrid
Uplink subframe resource array

Syntax
grid = lteULResourceGrid(ue)
grid = lteULResourceGrid(ue,p)

Description
grid = lteULResourceGrid(ue) returns an empty resource array generated from the UE-specific
settings structure ue. For more information on the resource grid and the multidimensional array used
to represent the resource elements for one subframe across all configured antenna ports, see
“Represent Resource Grids”.

grid = lteULResourceGrid(ue,p) returns a resource array, where p directly specifies the
number of antenna planes in the array. In this case, NTxAnts is not required as a structure field of
ue.

Examples

Create UL Resource Array

Create an empty resource array representing the resource elements for 10 MHz bandwidth.

reGrid = lteULResourceGrid(struct('NULRB',50,'CyclicPrefixUL','Normal','NTxAnts',1));

Create Uplink Subframe Resource Array Using Optional Antenna Plane Input

Create an empty resource array that represents the uplink resource elements for 5 MHz bandwidth,
one subframe, extended cyclic prefix, and four antenna ports.

cfg = struct('NULRB',25,'CyclicPrefixUL','Extended');
p = 4;
gridul = lteULResourceGrid(cfg,p);
size(gridul)

ans = 1×3

 300 12 4

Input Arguments
ue — UE-specific settings
scalar structure

2 Functions

2-1308

UE-specific settings, specified as a scalar structure with the following fields.

NULRB — Number of uplink (UL) resource blocks (RBs)
scalar integer from 6 to 110

Number of uplink (UL) resource blocks (RBs), specified as a scalar integer from 6 to 110.
Data Types: double

CyclicPrefixUL — Cyclic prefix length
'Normal' (default) | optional | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

NTxAnts — Number of transmission antennas
1 (default) | optional | 2 | 4

Number of transmission antennas, specified as 1, 2, or 4.
Data Types: double

Data Types: struct

p — Number of antenna planes in the return array
scalar integer

Number of antenna planes in the return array, specified as a scalar integer.
Data Types: double

Output Arguments
grid — Empty resource grid
multidimensional numeric array

Empty resource grid, returned as an N-by-M-by-P numeric array. N is the number of subcarriers
(12×NULRB). M is the number of SC-FDMA symbols in a subframe, 14 for normal cyclic prefix and 12
for extended cyclic prefix. P is the number of transmission antennas. grid is used to represent the
resource elements for one subframe across all configured antenna ports.
Data Types: double

Version History
Introduced in R2014a

See Also
lteULResourceGridSize | lteResourceGrid | lteDLResourceGrid | lteSCFDMAModulate

 lteULResourceGrid

2-1309

lteULResourceGridSize
Uplink subframe resource array size

Syntax
d = lteULResourceGridSize(ue)
d = lteULResourceGridSize(ue,p)

Description
d = lteULResourceGridSize(ue) returns the size of the uplink resource array generated from
UE-specific settings ue. For more information on the resource grid and the multidimensional array
used to represent the resource elements for one subframe across all configured antenna ports, see
“Represent Resource Grids”.

d = lteULResourceGridSize(ue,p) also specifies the number of antenna planes in the array.

Examples

Get Uplink Subframe Resource Array Size

Configure UE-specific settings.

cfgul = struct(NULRB=6,NTxAnts=2,CyclicPrefixUL="Normal");

Get the uplink subframe resource array size.

d = lteResourceGridSize(cfgul);

Generate an uplink resource array of the appropriate size.

gridul = zeros(d);

Get Uplink Subframe Resource Array Size for Specified Antenna Planes

Configure UE-specific settings.

ue = struct(NULRB=25,CyclicPrefixUL="Normal");

Get the uplink subframe resource array size for the specified configuration and four antenna planes.

p = 4;
d = lteResourceGridSize(ue,p);

Create a resource array of the appropriate size.

gridul = zeros(d);

2 Functions

2-1310

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure containing these fields.

NULRB — Number of uplink RBs
integer in the interval [6, 110]

Number of uplink resource blocks (RBs), specified as an integer in the interval [6, 110].
Data Types: double

CyclicPrefixUL — Cyclic prefix length
"Normal" (default) | "Extended"

Cyclic prefix length, specified as "Normal" or "Extended".
Data Types: char | string

NTxAnts — Number of transmission antennas
1 (default) | 2 | 4

Number of transmission antennas, specified as 1, 2, or 4. If you use the syntax containing the p input,
the function ignores this field and uses the p input value instead.
Data Types: double

Data Types: struct

p — Number of antenna planes in uplink resource array
positive integer

Number of antenna planes in the uplink resource array, specified as a positive integer.
Data Types: double

Output Arguments
d — Uplink resource array size
three-element row vector

Uplink resource array size, returned as a three-element row vector of the form [N M P].

• N is the number of subcarriers, which is given by 12 × NRB, where NRB is the number of uplink
RBs.

• M is the number of SC-FDMA symbols in a subframe: 14 for normal cyclic prefix and 12 for
extended cyclic prefix.

• P is the number of transmission antennas.

Data Types: double

 lteULResourceGridSize

2-1311

Version History
Introduced in R2014a

See Also
lteULResourceGrid | lteResourceGridSize | lteDLResourceGridSize

2 Functions

2-1312

lteULSCH
Uplink shared channel

Syntax
[cwout,chinfo] = lteULSCH(ue,chs,trblkin)
[cwout,chinfo] = lteULSCH(ue,chs,trblkin,opts)
[cwout,chinfo] = lteULSCH(ue,chs,trblkin,cqi,ri,ack,opts)

Description
[cwout,chinfo] = lteULSCH(ue,chs,trblkin) performs complete UL-SCH transport coding
and UCI coding on the input information bits, trblkin, and returns the complete codewords in the
output, cwout. It encodes both a single transport block or pair of blocks, contained in a cell array, for
the case of spatial multiplexing schemes transmitting two codewords, represented by input trblkin
without any UCI data. The lowest order information bit of trblkin should be mapped to the most
significant bit of the transport block, as defined in TS 36.321 Section 6.1.1 [3]. The encoding process
also includes the channel interleaving. The transport encoding includes type-24A CRC calculation,
code block segmentation and type-24B CRC attachment, turbo encoding, rate matching, block
concatenation, and channel interleaving. For more information, see TS 36.212 Sections 5.2.2.1 to
5.2.2.5 and 5.2.2.8 [2]. Parameter information relating to the underlying UL-SCH and UCI coding is
available in structure chinfo.

The output chinfo is a structure containing information related to the UL-SCH coding process.

For multiple transport blocks, each structure in the array corresponds to one of the blocks. This
output is also available from the lteULSCHInfo function.

[cwout,chinfo] = lteULSCH(ue,chs,trblkin,opts) allows for the merging of the input chs
structure fields into chinfo at the output.

If the UL-SCH encoding is for a retransmission of a previously sent transport block, use the three
“Init” fields, 'InitPRBSet', 'InitCyclicPrefixUL', and 'InitShortened'. If any of these
fields are absent, their values are assumed to be the same as the values for the associated current
subframe fields, 'PRBSet', 'CyclicPrefixUL', and 'Shortened'.

opts is an optional input parameter which enables the concatenation or merging of the chs input
structure fields into the fields returned by chinfo. This parameter is useful for combining the high-
level configuration parameters with the fine-grained ones used in the encoding process.

opts allows additional control of the contents and format of the chinfo output.

[cwout,chinfo] = lteULSCH(ue,chs,trblkin,cqi,ri,ack,opts) encodes and multiplexes
the UCI input data, CQI, RI, and ACK, along with the information bits, trblkin, in the codeword,
cwout. For more information, see TS 36.212 Sections 5.2.2.6 to 5.2.2.8 [2]. Any of the trblkin, cqi,
ri, or ack vectors can be empty if that data is not present. If trblkin is empty, only UCI on UL-
SCH/PUSCH is processed, according to TS 36.212 Section 5.2.4 [2]. The coding of the UCI can be
controlled through the additional fields, BetaACK, BetaCQI, BetaRI, and NBundled, in the chs
input structure. Setting NBundled to 0 disables the TDD HARQ-ACK bundling scrambling; therefore,
it is off by default.

 lteULSCH

2-1313

Examples

Generate UL-SCH Codewords

Create coded information bits for a 3 MHz, Uplink A3-3 FRC.

Create an UL RMC configuration structure. Initialize the optional fields for a ue-specific setting
structure. Default settings are used if you don't initial optional fields. Create a transport block bit
stream, trBlk.

rmc = lteRMCUL('A3-3');
ue.CyclicPrefixUL = 'Normal';
ue.Shortened = 0;
trBlk = randi([0,1],rmc.PUSCH.TrBlkSizes(1),1);

Generate UL-SCH codewords for the A3-3 FRC.

cw = lteULSCH(ue,rmc.PUSCH,trBlk);

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure with the following fields.

Parameter Field Required
or Optional

Values Description

CyclicPrefixUL Optional 'Normal' (default),
'Extended'

Current cyclic prefix length

Shortened Optional 0 (default), 1 Option to shorten the subframe by
omitting the last symbol, specified
as 0 or 1. If 1, the last symbol of
the subframe is not used. For
subframes with possible SRS
transmission, set Shortened to 1
to maintain a standard compliant
configuration.

chs — Channel-specific transmission configuration
scalar structure

Channel-specific transmission configuration, specified as a structure that can contain the following
parameter fields.

2 Functions

2-1314

Parameter Field Required
or Optional

Values Description

Modulation Required 'QPSK', '16QAM', '64QAM',
or '256QAM'

Modulation type, specified as a
character vector, cell array of
character vectors, or string array. If
blocks, each cell is associated with
a transport block.

NLayers Optional 1 (default), 2, 3, 4 Total number of transmission layers
associated with the transport block
or blocks.

RV Required Integer vector (0,1,2,3). A
one or two column matrix
(for one or two codewords).

Specifies the redundancy version
for one or two codewords used in
the initial subframe number,
NSubframe. This parameter field is
only for informational purposes and
is read-only.

This parameter field is not required
if trblkin is [], which signifies
that the UL-SCH is carrying only
UCI and no transport data.

PRBSet Required Integer column vector or
two-column matrix

0-based physical resource block
indices (PRBs) for the slots of the
current PUSCH resource allocation.
As a column vector, the resource
allocation is the same in both slots
of the subframe. As a two-column
matrix, it specifies different PRBs
for each slot in a subframe.

The following three 'Init' fields should be used if the UL-SCH encoding is for a retransmission of a
previously sent transport block. If any of these fields are absent, its value is assumed to be the same as the
value for its associated current subframe field.
  InitPRBSet Optional 1- or 2-column integer

matrix, PRBSet (default)
PRB indices used in the initial
transmission PUSCH allocation. If
this field is absent, its value is
assumed to be the same as the
value for the associated current
subframe field, PRBSet.

  InitCyclicPrefixUL Optional 'Normal', 'Extended',
CyclicPrefixUL (default)

Cyclic prefix length of initial
transmit subframe. This is the
length used during the first
transmission of this transport block.
If this field is absent, its value is
assumed to be the same as the
value for the associated current
subframe field, CyclicPrefixUL.

 lteULSCH

2-1315

Parameter Field Required
or Optional

Values Description

  InitShortened Optional 0, 1, Shortened (default) Initial transmit subframe shortened
flag. If 1, the initial transmit
subframe was shortened for
possible SRS. If this field is absent,
its value is assumed to be the same
as the value for the associated
current subframe field, Shortened.

The coding of the UCI can be controlled through the following additional fields.
  BetaCQI Optional numeric scalar, 2.0 (default) Modulation and coding scheme

(MCS) offset for CQI and PMI bits
  BetaRI Optional numeric scalar, 2.0 (default) Modulation and coding scheme

(MCS) offset for RI bits
  BetaACK Optional numeric scalar, 2.0 (default) Modulation and coding scheme

(MCS) offset for HARQ-ACK bits.
This field was previously named
BetaHI; if this field is absent but
BetaHI is present, it is used as
before.

  NBundled Optional 0 (default), 1, …, 9 TDD HARQ-ACK bundling
scrambling sequence index. When
set to 0, the function disables the
TDD HARQ-ACK bundling
scrambling. Therefore, it is off by
default.

trblkin — Input transport blocks
numeric vector | cell array of numeric vectors

Input transport blocks, specified as a numeric vector or a cell array of numeric vectors.
Data Types: double | cell

opts — Options to control output contents and format
character vector | cell array of character vectors | string array

Options to control output contents and format, specified as a character vector, cell array of character
vectors, or string array. You may choose any of the option listed in this table. Use double quotes for
string.

Option Values Description
Channel parameter
merging

'nochsconcat' (default) Do not concatenate chs input structure into
chinfo.

'chsconcat' Concatenate chs input structure into chinfo.
Output structure
format

'cwseparate' (default) Information values for each codeword are
output in separate elements of the 1-by-
ncodewords structure array chinfo.

2 Functions

2-1316

Option Values Description
'cwcombined' Information values for each codeword are

combined into the fields of a single scalar, or 1-
by-1, structure.

Data Types: char | string | cell

cqi — CQI input data
numeric vector

CQI input data, specified as a numeric vector. Part of the UCI data.
Data Types: double

ri — RI input data
numeric vector

RI input data, specified as a numeric vector. Part of the UCI data.
Data Types: double

ack — HARQ-ACK input data
numeric vector

HARQ-ACK input data, specified as a numeric vector. Part of the UCI data.
Data Types: double

Output Arguments
cwout — Complete output codewords
integer column vector | cell array of integer column vectors

Complete output codewords, returned as an integer column vector or a cell array of integer column
vectors.
Data Types: int8 | cell

chinfo — Parameter information relating to the underlying UL-SCH and UCI coding
structure | structure array

Parameter information relating to the underlying UL-SCH and UCI coding, returned as a structure or
a structure array. If two transport blocks are encoded, chinfo is a structure array of two elements,
one for each block. Alternatively, you can create code block segmentation fields in this structure
independently, by calling the lteULSCHInfo function. chinfo contains the following fields.

Parameter Field Description Values Data Type
C Total number of code blocks nonnegative scalar

integer
int32

Km Lower code block size (K–) nonnegative scalar
integer

int32

Cm Number of code blocks of size Km (C–) nonnegative scalar
integer

int32

 lteULSCH

2-1317

Parameter Field Description Values Data Type
Kp Upper code block size (K+) nonnegative scalar

integer
int32

Cp Number of code blocks of size Kp (C+) nonnegative scalar
integer

int32

F Number of filler bits in first block nonnegative scalar
integer

int32

L Number of segment cyclic redundancy check
(CRC) bits

nonnegative scalar
integer

int32

Bout Total number of bits in all segments nonnegative scalar
integer

int32

G Number of coded and rate matched UL-SCH
data bits

nonnegative scalar
integer

int32

Qm Number of bits per symbol nonnegative scalar
integer

int32

Gd Number of coded and rate matched UL-SCH
data symbols (G′)

nonnegative scalar
integer

int32

OCQI Number of uncoded channel quality
information (CQI) bits

nonnegative scalar
integer

int32

ORI Number of uncoded symbols for RI nonnegative scalar
integer

int32

OACK Number of uncoded symbols for ACK/NACK nonnegative scalar
integer

int32

QdCQI Number of coded symbols for CQI (Q’_CQI) nonnegative scalar
integer

int32

QdRI Number of coded symbols for RI (Q’_RI) nonnegative scalar
integer

int32

QdACK Number of coded symbols for ACK/NACK
(Q’_ACK)

nonnegative scalar
integer

int32

NRE Number of resource elements (REs) used for
PUSCH transmission

nonnegative scalar
integer

int32

NLayers Number of layers associated with one
codeword

nonnegative scalar
integer

int32

Modulation Modulation scheme associated with one
codeword

'QPSK', '16QAM',
'64QAM'

char

RV RV value associated with one codeword scalar integer int32

Version History
Introduced in R2014a

2 Functions

2-1318

References
[1] 3GPP TS 36.104. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio

Transmission and Reception.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel
coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[3] 3GPP TS 36.321. “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control
(MAC) protocol Specification.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

See Also
lteULSCHDecode | lteULSCHInterleave | lteULSCHInfo | ltePUSCH

 lteULSCH

2-1319

https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org

lteULSCHDecode
Uplink shared channel decoding

Syntax
[trblkout,blkcrc,stateout] = lteULSCHDecode(ue,chs,trblklen,cwin,statein)

Description
[trblkout,blkcrc,stateout] = lteULSCHDecode(ue,chs,trblklen,cwin,statein)
returns the information bits trblkout decoded from the input soft LLR codewords data cwin. The
UL-SCH decoder includes channel deinterleaver, rate recovery, turbo decoding, block concatenation
and CRC calculations. The function also returns the type-24A transport block CRC decoding result in
blkcrc and the HARQ process decoding state in stateout. The initial HARQ process state can be
input via the optional statein parameter. The function is capable of processing both a single
codeword or pairs of codewords, contained in a cell array, for the case of spatial multiplexing
schemes transmitting two codewords. The type of the return variable trblkout is the same as input
cwin. If cwin is a cell array containing one or two codewords, trblkout returns a cell array of one
or two transport blocks. If cwin is a vector of soft data, trblkout returns a vector too. If decoding a
pair of codewords, pairs of modulation schemes and RV indicators are required to be defined in the
associated parameter fields below. This function only decodes the information bits, but supports the
presence of UCI data, CQI, RI, and HARQ-ACK, in the input codeword. UCI should be demultiplexed
then decoded separately.

Strictly speaking, because all the fields in structure ue are optional, it is legal for this parameter to
be an empty structure.

Multiple codewords can be parameterized by two different forms of the chs structure. Each
codeword can be defined by separate elements of a 1-by-2 structure array, or the codeword
parameters can be combined together in the fields of a single scalar, or 1-by-1, structure. Any scalar
field values apply to both codewords and a scalar NLayers is the total number. See “UL-SCH
Parameterization” for more details.

trblklen is an input vector (one or two elements in length) defining the transport block lengths that
the input code blocks should be rate recovered and decoded to.

cwin is an input parameter containing the floating point soft LLR data of the codewords to be
decoded. It can either be a single vector or a cell array containing one or two vectors. If the latter,
then all rate matching calculations assume that the pair were transmitting on a single PUSCH,
distributed across the total number of layers defined in chs, as per TS 36.211 [1].

statein is an optional input structure array (empty or one or two elements) which can input the
current decoder buffer state for each transport block in an active HARQ process. If statein is not an
empty array and it contains a non-empty field CBSBuffers then this field should contain a cell array
of vectors representing the LLR soft buffer states for the set of code blocks at the input to the turbo
decoder i.e. after explicit rate recovery. The updated buffer states after decoding are returned in the
CBSBuffers field in the output parameter stateout. The statein array would normally be
generated and recycled from the stateout of previous calls to lteULSCHDecode as part of a
sequence of HARQ transmissions.

2 Functions

2-1320

trblkout is the output parameter containing the decoded information bits. It is either a single
vector or a cell array containing one or two vectors, depending on the class and dimensionality of
cwin.

blkcrc is an output array (one or two elements) containing the result of the type-24A transport block
CRC decoding for the transport blocks.

stateout, the final output parameter, is a one element structure array containing the internal state
of each transport block decoder in the fields CBSBuffers, CBSCRC, blkcrc.

The stateout array would normally be reapplied via the statein variable of subsequent
lteULSCHDecode function calls as part of a sequence of HARQ retransmissions.

Examples

Decode UL-SCH

Generate and decode 2 transmissions (RV=0 then RV=2) as part of a single codeword HARQ process
for the A3-3 FRC.

Initialize one subframe of an FRC A3-3 transmission. Create a codeword with RV = 0. Turn logical
bits into 'LLR' data. Initialize the decoder states for the first HARQ transmission. The returned
decState contains the decoder buffer state for each transport block for an active HARQ process.

nsf = 1;
frc = lteRMCUL('A3-3');
trBlkLen = frc.PUSCH.TrBlkSizes(nsf);
trBlkData = randi([0,1],trBlkLen,1);

frc.PUSCH.RV = 0;
cw = lteULSCH(frc,frc.PUSCH,trBlkData);

cw(cw == 0) = -1;

decState = [];
[rxTrBlk,~,decState] = lteULSCHDecode(frc,frc.PUSCH,trBlkLen,cw,decState);

Create a second retransmitted codeword with RV = 2. Turn logical bits into 'LLR' data. The previous
transmission decoder buffer state, decState, is used as part of the sequence of active HARQ
transmissions.

frc.PUSCH.RV = 2;
cWord = lteULSCH(frc,frc.PUSCH,trBlkData);

cWord(cWord == 0) = -1;

rxTrBlk = lteULSCHDecode(frc,frc.PUSCH,trBlkLen,cWord,decState);

Input Arguments
ue — UE-specific settings
scalar structure

 lteULSCHDecode

2-1321

UE-specific settings, specified as a scalar structure with the following fields. Because all the fields in
structure ue are optional, this parameter can be an empty structure.

Parameter
Field

Required or
Optional

Values Description

CyclicPref
ixUL

Optional 'Normal' (default),
'Extended'

Cyclic prefix length.

Shortened Optional 0 (default), 1 Option to shorten the subframe by
omitting the last symbol, specified as 0
or 1. If 1, the last symbol of the
subframe is not used. For subframes
with possible SRS transmission, set
Shortened to 1 to maintain a standard
compliant configuration.

Data Types: struct

chs — UL-SCH related parameters
scalar structure

UL-SCH related parameters, specified as a scalar structure with the following fields.

Parameter
Field

Required or
Optional

Values Description

Modulation Required 'QPSK', '16QAM',
'64QAM', '256QAM'

Modulation scheme associated with
each transport block, specified as a
character vector, or if there are two
blocks, as a cell array of character
vectors or string array.

NLayers Optional 1 (default), 2, 3, 4 Number of transmission layers.

(total or per codeword)
RV Required 0, 1, 2, 3 Redundancy version indicators,

specified as a vector of 1 or 2 indicators.
QdCQI Optional nonnegative scalar

integer
Number of coded channel quality
information (CQI) symbols (Q’_CQI)

QdRI Optional Nonnegative scalar
integer

0 (default)

Number of coded symbols for RI (Q’_RI)

QdACK Optional nonnegative scalar
integer

0 (default)

Number of coded ACK symbols (Q'_ACK)

NTurboDecI
ts

Optional Scalar integer

5 (default)

Number of turbo decoder iteration
cycles

Data Types: struct

2 Functions

2-1322

trblklen — Transport block length
numeric vector

Transport block length, specified as a numeric vector (one or two elements in length) defining the
transport block lengths that the input code blocks should be rate recovered and decoded to.
Data Types: double

cwin — Soft LLR codeword data
numeric column vector | cell array of one or two column vectors

Soft LLR codeword data, specified as a numeric column vector or a cell array of one or two column
vectors. This argument contains the floating point soft LLR data of the codeword or codewords to be
decoded. It can either be a single vector or a cell array containing one or two vectors. If a cell array,
all rate matching calculations assume that the pair were transmitting on a single PUSCH, distributed
across the total number of layers defined in chs, as specified in [1].
Data Types: int8 | cell

statein — Initial HARQ process state
optional | structure array

Initial HARQ process state, specified as a structure array. It can be empty or have one or two
elements, which can input the current decoder buffer state for each transport block in an active
HARQ process.
Data Types: double

Output Arguments
trblkout — Decoded information bits
numeric vector | cell array

Decoded information bits, returned as a numeric vector or cell array. trblkout contains decoded
transport data blocks. It is either a single vector or a cell array containing one or two vectors,
depending on the class and dimensionality of cwin.
Data Types: double | cell

blkcrc — Type 24A transport block CRC decoding result
0 or 1

Type 24A transport block CRC decoding result, returned as 0 or 1.
Data Types: logical

stateout — HARQ process decoding state
structure | structure array

HARQ process decoding state, returned as a one-element structure array. It contains the internal
state of each transport block decoder. It contains the following parameter fields.

 lteULSCHDecode

2-1323

Parameter
Field

Description Values Data Type

CBSBuffers LLR soft buffer states for the set of
code blocks associated with a
single transport block. The buffers
are positioned at the input to the
turbo decoder, or after explicit rate
recovery.

Cell array of numeric
vectors

cell

CBSCRS Type-24B code block set CRC
decoding results

Numeric vector int8

BLKCRC Type-24A transport block CRC
decoding error

One- or two-element
numeric vector

logical

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteULSCH | lteULSCHDeinterleave | ltePUSCHDecode | lteULSCHInfo

2 Functions

2-1324

https://www.3gpp.org

lteULSCHDeinterleave
UL-SCH deinterleaving

Syntax
[cdata,ccqi,cri,cack] = lteULSCHDeinterleave(ue,chs,in)

Description
[cdata,ccqi,cri,cack] = lteULSCHDeinterleave(ue,chs,in) returns the deinterleaved
data vector cdata, encoded UCI vectors, ccqi,cri, and cack, or cell array of vectors, after
performing the demultiplexing and UL-SCH channel deinterleaving to undo the processing described
in TS 36.212, Sections 5.2.2.7 and 5.2.2.8 [1] for UE-specific settings, ue, and UL-SCH channel
specific configuration, chs.

The function expects the input in to be multiplexed and interleaved as per defined in TS 36.212,
Sections 5.2.2.7 and 5.2.2.8 [1]. This input can be a vector or a cell array of vectors, deinterleaved
and demultiplexed separately, and the outputs are of the same form. The size of the coded CQI
symbols and codeword number with it is multiplexed, to correctly perform the demultiplexing, are
deduced using the channel specific structure chs via the Modulation and QdCQI parameters. The
presence or absence of ccqi in the transmission is signaled via QdCQI parameter with nonzero
(number of coded CQI symbols) or zero value, respectively.

Multiple codewords can be parameterized by two different forms of the chs structure. Each
codeword can be defined by separate elements of a 1-by-2 structure array, or the codeword
parameters can be combined together in the fields of a single scalar, or 1-by-1, structure. Any scalar
field values apply to both codewords and a scalar NLayers is the total number. See “UL-SCH
Parameterization” for more details.

Examples

Interleave and Deinterleave UL-SCH

Perform back-to-back interleaving and deinterleaving of a vector of interleaver input bit indices.

Create UE-specific and propagation channel configuration structures.

ue.CyclicPrefixUL = 'Normal';
ue.Shortened = 0;
chs.Modulation = 'QPSK';
chs.NLayers = 1;
chs.QdCQI = 0;
chs.QdRI = 0;
chs.QdACK = 0;

There are 288 PUSCH QPSK symbols in two RBs and two bits per symbol for QPSK.

cdata = randi([0 1],2*288,1);
size(cdata)

 lteULSCHDeinterleave

2-1325

ans = 1×2

 576 1

interleaved = lteULSCHInterleave(ue,chs,cdata);
deinterleaved = lteULSCHDeinterleave(ue,chs,interleaved);
size(deinterleaved)

ans = 1×2

 576 1

The deinterleaved output is the same size as the data prior to interleaving.

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure with the following fields.

CyclicPrefixUL — Cyclic prefix length
'Normal' (default) | optional | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

Shortened — Shorten subframe flag
0 (default) | optional | 1

Shorten subframe flag, specified as 0 or 1. Optional. If 1, the last symbol of the subframe is not used.
It should be set if the current subframe contains a possible SRS transmission.
Data Types: logical | double

Data Types: struct

chs — UL-SCH related parameters
structure

UL-SCH related parameters, specified as a structure with the following fields.

Modulation — Modulation format
'QPSK' | '16QAM' | '64QAM' | '256QAM' | cell array of character vectors | string array

Modulation format, specified as 'QPSK', '16QAM', '64QAM', or '256QAM'. Use double quotes for
string. It there are two blocks, use a cell array of character vectors or a string array.
Data Types: char | string

NLayers — Number of transmission layers
1 (default) | optional | 2 | 3 | 4

Number of transmission layers, total or per codeword, specified as a positive scalar integer. Optional.

2 Functions

2-1326

Data Types: double

QdCQI — Number of coded symbols for CQI
0 (default) | optional | nonnegative scalar integer

Number of coded symbols for CQI, specified as a nonnegative scalar integer. Optional. (Q'_CQI)
Data Types: double

QdRI — Number of coded symbols for RI
0 (default) | optional | nonnegative scalar integer

Number of coded symbols for RI, specified as a nonnegative scalar integer. Optional. (Q'_RI)
Data Types: double

QdACK — Number of coded symbols for ACK/NACK
0 (default) | optional | nonnegative scalar integer

Number of coded symbols for ACK/NACK, specified as a nonnegative scalar integer. Optional.
(Q'_ACK)
Data Types: double

Data Types: struct

in — Input data
column vector | cell array of column vectors

Input data specified as a column vector or a cell array of column vectors.
Data Types: double | cell

Output Arguments
cdata — Deinterleaved data
column vector | cell array of column vectors

Deinterleaved data, returned as a column vector or cell array of column vectors.
Data Types: double | cell

ccqi — Encoded UCI
vector | cell array of vectors

Encoded UCI, returned as a vector or cell array of vectors.
Data Types: double | cell

cri — Encoded UCI
vector | cell array of vectors

Encoded UCI, returned as a vector or cell array of vectors.
Data Types: double | cell

cack — Encoded UCI
vector | cell array of vectors

 lteULSCHDeinterleave

2-1327

Encoded UCI, returned as a vector or cell array of vectors.
Data Types: double | cell

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteULSCHInterleave | lteULSCH | lteULSCHInfo | lteACKDecode | lteCQIDecode |
lteRIDecode | lteRateRecoverTurbo

2 Functions

2-1328

https://www.3gpp.org

lteULSCHInfo
UL-SCH coding information

Syntax
info = lteULSCHInfo(ue,chs,blklen)
info = lteULSCHInfo(ue,chs,blklen,opts)
info = lteULSCHInfo(ue,chs,blklen,ocqi,ori,oack)
info = lteULSCHInfo(ue,chs,blklen,ocqi,ori,oack,opts)

Description
info = lteULSCHInfo(ue,chs,blklen) provides information related to the entire UL-SCH
coding process, for UL-SCH data without UCI. It returns a structure array with fields covering the
transport channel (TrCH) encoding and UCI multiplexing. When UCI is present, it includes the coded
symbol capacities given UCI sizes, PUSCH resource allocations, and Beta offset values, which can be
useful in a number of UL-SCH- and PUSCH-related functions. These symbol capacities are calculated
from the Q' formulae in TS 36.212, Sections 5.2.2.6 and 5.2.4.1 [1]. The one- or two-element vector,
blklen, defines the length of the transmitted transport blocks.

By default, in the case of multiple transport blocks or codewords, each structure in the array
corresponds to one of the blocks. Note that the NLayers, Modulation, and RV fields at the output
contain only the value for the associated codeword and therefore have a different form to those given
in the input. In the case of NLayers the output returns the number of layers per codeword where the
input field represents the total number of transmission layers across all codewords.

If the UL-SCH encoding is for a retransmission of a previously sent transport block, use the three
“Init” fields, 'InitPRBSet', 'InitCyclicPrefixUL', and 'InitShortened'. If any of these
fields are absent, their values are assumed to be the same as the values for the associated current
subframe fields, 'PRBSet', 'CyclicPrefixUL', and 'Shortened'.

info = lteULSCHInfo(ue,chs,blklen,opts) formats the output through options specified by
opts. The optional parameter opts allows for the merging of the input chs structure fields into info
at the output.

info = lteULSCHInfo(ue,chs,blklen,ocqi,ori,oack) supports the multiplexing of both
transport and UCI data, CQI, RI, and HARQ-ACK, or UCI only. The number of uncoded UCI bits is
given by ocqi, ori and oack respectively. Any of the data length parameters can be zero if the
associated data is not present. The coding of the UCI can be controlled through the additional
BetaACK, BetaCQI, and BetaRI fields in the chs input structure.

info = lteULSCHInfo(ue,chs,blklen,ocqi,ori,oack,opts) supports the multiplexing of
both transport and UCI data (CQI, RI, HARQ-ACK) or UCI only.

Examples

Obtain UL-SCH Information for One Transport Block

Obtain information for UL-SCH coding of a single transport block of length 6712 bits.

 lteULSCHInfo

2-1329

Create a PUSCH configuration structure. Initialize the optional fields for a ue-specific setting
structure. Default settings are used if you don't initial optional fields. View the UL-SCH information.

pusch.Modulation = 'QPSK';
pusch.NLayers = 1;
pusch.PRBSet = [0:74].';
ue.CyclicPrefixUL = 'Normal';
ue.Shortened = 0;
blkLen = 6712;
info = lteULSCHInfo(ue,pusch,blkLen)

info = struct with fields:
 C: 2
 Km: 3328
 Cm: 0
 Kp: 3392
 Cp: 2
 F: 0
 L: 24
 Bout: 6784
 G: 21600
 Qm: 2
 Gd: 10800
 OCQI: 0
 ORI: 0
 OACK: 0
 QdCQI: 0
 QdRI: 0
 QdACK: 0
 NRE: 10800
 NLayers: 1
 Modulation: 'QPSK'

Obtain ULSCH Info for Transport Blocks in Structure Array

Obtain information for UL-SCH coding of two transport blocks (codewords) with UCI (3 bit RI, 2 bit
HARQ-ACK). Each element in the output array corresponds to a codeword.

Create a PUSCH configuration structure and an empty UE structure.

pusch.Modulation = {'QPSK' '16QAM'};
pusch.NLayers = 3;
pusch.PRBSet = [0:74].';
ue = struct();

Specify the number of CQI, RI, and HARQ-ACK bits

OCQI = 0;
ORI = 3;
OACK = 2;
blkLen = [6712 6712];

View the UL-SCH information

info = lteULSCHInfo(ue,pusch,blkLen ,OCQI,ORI,OACK)

2 Functions

2-1330

info=1×2 struct array with fields:
 C
 Km
 Cm
 Kp
 Cp
 F
 L
 Bout
 G
 Qm
 Gd
 OCQI
 ORI
 OACK
 QdCQI
 QdRI
 QdACK
 NRE
 NLayers
 Modulation
 ⋮

Obtain ULSCH Info for Transport Blocks in Scalar Structure

Obtain information in a single scalar structure for the UL-SCH coding of two transport blocks with
UCI, specifying 3-bit RI and 2-bit HARQ-ACK.

Create a PUSCH configuration structure and an empty UE structure.

pusch.Modulation={'QPSK' '16QAM'};
pusch.NLayers = 3;
pusch.PRBSet = [0:74].';
ue = struct();

Specify the number of CQI, RI, and HARQ-ACK bits.

OCQI = 0;
ORI = 3;
OACK = 2;
blkLen = [6712 6712];

View the UL-SCH information. Most fields in the structure contain two elements corresponding to
each codeword.

info = lteULSCHInfo(ue,pusch,blkLen,OCQI,ORI,OACK,'cwcombined')

info = struct with fields:
 C: [2 2]
 Km: [3328 3328]
 Cm: [0 0]
 Kp: [3392 3392]
 Cp: [2 2]
 F: [0 0]

 lteULSCHInfo

2-1331

 L: [24 24]
 Bout: [6784 6784]
 G: [21590 86360]
 Qm: [2 4]
 Gd: [10795 21590]
 OCQI: 0
 ORI: 3
 OACK: 2
 QdCQI: [0 0]
 QdRI: [5 5]
 QdACK: [4 4]
 NRE: [10800 21600]
 NLayers: [1 2]
 Modulation: {'QPSK' '16QAM'}

Input Arguments
ue — UE-specific configuration settings
structure

UE-specific configuration settings, specified as a structure that can contain the following fields.

Parameter Field Required
or Optional

Values Description

CyclicPrefixUL Optional 'Normal' (default),
'Extended'

Current cyclic prefix length

Shortened Optional 0 (default), 1 Option to shorten the subframe by
omitting the last symbol, specified
as 0 or 1. If 1, the last symbol of
the subframe is not used. For
subframes with possible SRS
transmission, set Shortened to 1
to maintain a standard compliant
configuration.

chs — Channel-specific transmission configuration
structure

Channel-specific transmission configuration, specified as a structure that can contain the following
parameter fields.

Parameter Field Required
or Optional

Values Description

Modulation Required 'QPSK', '16QAM',
'64QAM', or '256QAM'

Modulation type, specified as a
character vector, cell array of
character vectors, or string array. If
blocks, each cell is associated with a
transport block.

2 Functions

2-1332

Parameter Field Required
or Optional

Values Description

NLayers Optional 1 (default), 2, 3, 4 Total number of transmission layers
associated with the transport block or
blocks.

PRBSet Required Integer column vector or
two-column matrix

0-based physical resource block
indices (PRBs) for the slots of the
current PUSCH resource allocation. As
a column vector, the resource
allocation is the same in both slots of
the subframe. As a two-column matrix,
it specifies different PRBs for each slot
in a subframe.

RV Required Integer vector (0,1,2,3). A
one or two column matrix
(for one or two
codewords).

Specifies the redundancy version for
one or two codewords used in the
initial subframe number, NSubframe.
This parameter field is only for
informational purposes and is read-
only.

The following three 'Init' fields should be used if the UL-SCH encoding is for a retransmission of a previously
sent transport block. If any of these fields are absent, its value is assumed to be the same as the value for its
associated current subframe field.
  InitPRBSet Optional 1- or 2-column integer

matrix, PRBSet (default)
PRB indices used in the initial
transmission PUSCH allocation. If this
field is absent, its value is assumed to
be the same as the value for the
associated current subframe field,
PRBSet.

  InitCyclicPrefixUL Optional 'Normal', 'Extended',
CyclicPrefixUL
(default)

Cyclic prefix length of initial transmit
subframe. This is the length used
during the first transmission of this
transport block. If this field is absent,
its value is assumed to be the same as
the value for the associated current
subframe field, CyclicPrefixUL.

  InitShortened Optional 0, 1, Shortened (default) Initial transmit subframe shortened
flag. If 1, the initial transmit subframe
was shortened for possible SRS. If this
field is absent, its value is assumed to
be the same as the value for the
associated current subframe field,
Shortened.

The coding of the UCI can be controlled through the following additional fields.
  BetaCQI Optional numeric scalar, 2.0

(default)
Modulation and coding scheme (MCS)
offset for CQI and PMI bits

  BetaRI Optional numeric scalar, 2.0
(default)

Modulation and coding scheme (MCS)
offset for RI bits

 lteULSCHInfo

2-1333

Parameter Field Required
or Optional

Values Description

  BetaACK Optional numeric scalar, 2.0
(default)

Modulation and coding scheme (MCS)
offset for HARQ-ACK bits. This field
was previously named BetaHI; if this
field is absent but BetaHI is present, it
is used as before.

blklen — Length of transmitted transport blocks
numeric vector

Length of the transmitted transport blocks, specified as a one or two element numeric vector.
Data Types: double

opts — Output formatting options
character vector | cell array of character vectors | string array

Output formatting options, specified as a character vector, cell array of character vectors, or string
array. For convenience, you can specify several options as a single character vector or string scalar
by a space-separated list of values placed inside the quotes. Values for opts when specified as a
character vector include (use double quotes for string):

Option Values Description
Channel parameter
merging

'nochsconcat' (default) Do not concatenate chs input structure into
info.

'chsconcat' Concatenate chs input structure into info.
Output structure
format

'cwseparate' (default) Information values for each codeword are
output in separate elements of the 1-by-
ncodewords structure array info.

'cwcombined' Information values for each codeword are
combined into the fields of a single scalar, or 1-
by-1, structure.

Example: 'chsconcat cwcombined', "chsconcat cwcombined",
{'chsconcat','cwcombined'}, or ["chsconcat","cwcombined"] specify the same formatting
options.
Data Types: char | string | cell

ocqi — Number of uncoded CQI bits
numeric scalar

Number of uncoded CQI bits, specified as a numeric scalar.
Data Types: double

ori — Number of uncoded RI bits
numeric scalar

Number of uncoded RI bits, specified as a numeric scalar.
Data Types: double

2 Functions

2-1334

oack — Number of uncoded HARQ-ACK bits
numeric scalar

Number of uncoded HARQ-ACK bits, specified as a numeric scalar.
Data Types: double

Output Arguments
info — UL-SCH information
structure | structure array

UL-SCH information, returned as a structure or a structure array. If two transport blocks are
encoded, info is a structure array of two elements, one for each block. , It contains the following
parameter fields.

Parameter Field Description Values Data Type
C Total number of code blocks nonnegative scalar

integer
int32

Km Lower code block size (K–) nonnegative scalar
integer

int32

Cm Number of code blocks of size Km (C–) nonnegative scalar
integer

int32

Kp Upper code block size (K+) nonnegative scalar
integer

int32

Cp Number of code blocks of size Kp (C+) nonnegative scalar
integer

int32

F Number of filler bits in first block nonnegative scalar
integer

int32

L Number of segment cyclic redundancy check
(CRC) bits

nonnegative scalar
integer

int32

Bout Total number of bits in all segments nonnegative scalar
integer

int32

G Number of coded and rate matched UL-SCH
data bits

nonnegative scalar
integer

int32

Qm Number of bits per symbol nonnegative scalar
integer

int32

Gd Number of coded and rate matched UL-SCH
data symbols (G′)

nonnegative scalar
integer

int32

OCQI Number of uncoded channel quality
information (CQI) bits

nonnegative scalar
integer

int32

ORI Number of uncoded symbols for RI nonnegative scalar
integer

int32

OACK Number of uncoded symbols for ACK/NACK nonnegative scalar
integer

int32

 lteULSCHInfo

2-1335

Parameter Field Description Values Data Type
QdCQI Number of coded symbols for CQI (Q’_CQI) nonnegative scalar

integer
int32

QdRI Number of coded symbols for RI (Q’_RI) nonnegative scalar
integer

int32

QdACK Number of coded symbols for ACK/NACK
(Q’_ACK)

nonnegative scalar
integer

int32

NRE Number of resource elements (REs) used for
PUSCH transmission

nonnegative scalar
integer

int32

NLayers Number of layers associated with one
codeword

nonnegative scalar
integer

int32

Modulation Modulation scheme associated with one
codeword

'QPSK', '16QAM',
'64QAM'

char

RV RV value associated with one codeword scalar integer int32

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteULSCH | lteULSCHDecode | lteULSCHInterleave | ltePUSCHDecode | lteCQIEncode |
lteRIEncode | lteACKEncode

2 Functions

2-1336

https://www.3gpp.org

lteULSCHInterleave
UL-SCH interleaving

Syntax
out = lteULSCHInterleave(ue,chs,cdata)
out = lteULSCHInterleave(ue,chs,cdata,ccqi,cri,cack)

Description
out = lteULSCHInterleave(ue,chs,cdata) performs the UL-SCH channel interleaving on
input cdata containing encoded transport channel (TrCH) data without UCI. It performs the UL-SCH
data and UCI multiplexing and interleaving as defined in TS 36.212 Sections 5.2.2.7 and 5.2.2.8 [1].
This input can be a vector or a cell array of vectors, interleaved separately, and the output is of the
same form.

Multiple codewords can be parameterized by two different forms of the chs structure. Each
codeword can be defined by separate elements of a 1-by-2 structure array, or the codeword
parameters can be combined together in the fields of a single scalar, or 1-by-1, structure. Any scalar
field values apply to both codewords and a scalar NLayers is the total number. See “UL-SCH
Parameterization” for more details.

out = lteULSCHInterleave(ue,chs,cdata,ccqi,cri,cack) is as above except it also
supports UL-SCH channel interleaving on both cdata and encoded UCI in ccqi, cri and cack. If
any of these inputs are cell arrays, the output has the same form and any vector inputs are
interleaved into the first cell of the output only. Any of the input cells or arrays can be empty if the
associated input is not transmitted on one or more codewords.

Examples

PUSCH Interleave

Interleave two PUSCH RBs worth of bits for QPSK modulation. Considering the REs reserved for
PUSCH DM-RS, there are 144 REs available for PUSCH data per RB. Therefore, two RBs contain 288
PUSCH symbols. This results in 2*288 bits to QPSK modulate after interleaving.

Initialize UE specific and UL-SCH related parameter structures. Generate data for QPSK modulation
of PUSCH symbols in two RBs. For QPSK, there are two bits per symbol. Perform interleaving and
symbol modulation.

ue.CyclicPrefixUL = 'Normal';
ue.Shortened = 0;

chs.Modulation = 'QPSK';
chs.NLayers = 1;

numRB = 2;
numREperRB = 144;
bitsPerSymbol = 2;

 lteULSCHInterleave

2-1337

numBits = numRB * numREperRB * bitsPerSymbol;
cdata = randi([0 1], numBits, 1);

interleaved = lteULSCHInterleave(ue, chs, cdata);
symbols = lteSymbolModulate(interleaved, 'QPSK');

Input Arguments
ue — UE-specific settings
structure

UE-specific settings, specified as a structure with the following fields.

CyclicPrefixUL — Cyclic prefix length
'Normal' (default) | optional | 'Extended'

Cyclic prefix length, specified as 'Normal' or 'Extended'.
Data Types: char | string

Shortened — Shorten subframe
0 (default) | optional | 1

Shorten subframe, specified as 0 or 1. If 1, the last symbol of the subframe is not used. It should be
set if the current subframe contains a possible SRS transmission.
Data Types: logical

Data Types: struct

chs — UL-SCH related parameters
scalar structure

UL-SCH related parameters, specified as a scalar structure with the following fields.

Modulation — Modulation format
'QPSK' | '16QAM' | '64QAM' | '256QAM' | cell array of these character vectors. | string array

Modulation format, specified as 'QPSK', '16QAM', '64QAM', or '256QAM'. Use double quotes for
string. It there are two blocks, use a cell array of character vectors or a string array. Each element of
the arrays is associated with a transport block.
Data Types: char | string

NLayers — Number of transmission layers (total or per codeword)
1 (default) | optional | 2 | 3 | 4

Number of transmission layers (total or per codeword), specified as 1, 2, 3, or 4.
Data Types: double

Data Types: struct

cdata — Encoded TrCH data
column vector | cell array of column vectors

Encoded TrCH data, specified as a column vector or a cell array of column vectors.

2 Functions

2-1338

Data Types: double | cell

ccqi — Encoded CQI
vector

Encoded CQI, specified as a vector.
Data Types: double

cri — Encoded RI
vector

Encoded RI, specified as a vector.
Data Types: double

cack — Encoded ACK
vector

Encoded ACK, specified as a vector.
Data Types: double

Output Arguments
out — Interleaved UL-SCH output
numeric column vector | cell array of numeric column vectors

Interleaved UL-SCH output, returned as a numeric column vector or a cell array of numeric column
vectors.
Data Types: double | cell

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel

coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteULSCHDeinterleave | lteULSCH | lteULSCHInfo | lteACKEncode | lteCQIEncode |
lteRIEncode | lteRateMatchTurbo

 lteULSCHInterleave

2-1339

https://www.3gpp.org

lteULScramble
PUSCH scrambling

Syntax
out = lteULScramble(in,nsubframe,cellid,rnti)
out = lteULScramble(ue,in)

Description
out = lteULScramble(in,nsubframe,cellid,rnti) performs PUSCH scrambling of bit vector,
in, for subframe number, nsubframe, cell identity, cellid, and specified RNTI, rnti. It performs
PUSCH scrambling according to TS 36.211, Section 5.3.1 [1]. Placeholder bits, denoted by x, are
represented by –1 in the input vector or cell array of vectors. Repetition placeholder bits, y, are
represented by –2. This function substitutes these placeholders as part of its scrambling operation.

in is a vector or a cell array containing one or two vectors corresponding to the number of
codewords to be scrambled.

out = lteULScramble(ue,in) performs PUSCH scrambling of the in according to UE-specific
settings in structure, ue.

Examples

Perform PUSCH Scrambling

Perform PUSCH scrambling for NCellID=100 and RNTI=61.

in = ones(10,1);
bits = lteULScramble(struct('NCellID',100,'NSubframe',0,'RNTI',61),in)

bits = 10x1 int8 column vector

 0
 1
 0
 0
 0
 1
 0
 0
 1
 1

Input Arguments
in — Bit input data
numeric column vector | cell array of numeric column vectors

2 Functions

2-1340

Bit input data, specified as a numeric column vector or cell array of numeric column vectors. This
argument contains one or two vectors corresponding to the number of codewords to be scrambled.
Data Types: double | cell
Complex Number Support: Yes

nsubframe — Subframe number
numeric scalar

Subframe number, specified as a numeric scalar.
Data Types: double

cellid — Physical layer cell identity
numeric scalar

Physical layer cell identity, specified as a numeric scalar.
Data Types: double

rnti — Radio Network Temporary Identifier (16-bit)
numeric scalar

Radio Network Temporary Identifier (16-bit). Specified as a numeric scalar.
Data Types: double

ue — UE-specific settings
structure

UE-specific settings, specified as a structure with the following fields.

NCellID — Physical layer cell identity
numeric scalar

Physical layer cell identity, specified as a numeric scalar.
Data Types: double

NSubframe — Subframe number
numeric scalar

Subframe number, specified as a numeric scalar.
Data Types: double

RNTI — Radio Network Temporary Identifier (16-bit)
numeric scalar

Radio Network Temporary Identifier (16-bit). Specified as a numeric scalar.
Data Types: double

Data Types: struct

 lteULScramble

2-1341

Output Arguments
out — PUSCH scrambled output bits
numeric column vector | cell array of numeric column vectors

PUSCH scrambled output bits, returned as a numeric column vector or a cell array of numeric
column vectors.

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and

Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

See Also
lteULDescramble | lteSymbolModulate | ltePUSCH

2 Functions

2-1342

https://www.3gpp.org

lteWarning
Enable and disable warnings for LTE Toolbox

Syntax
lteWarning('OFF',msgname)
lteWarning('ON',msgname)

Description
lteWarning('OFF',msgname) and lteWarning('ON',msgname) disable and enable the display
of any warning messages of type msgname, specific to the LTE Toolbox.

Examples

Toggle LTE Function Warnings

Disable and enable default value warnings for optional parameters.

Turn on the warning about default values.

lteWarning('on','DefaultValue')
bch = lteBCH(struct('CellRefP',1),ones(24,1));

Warning: Using default value for parameter field CyclicPrefix (Normal)

Notice a warning about default values is displayed when the same command is run to generate a
BCH.

Turn off the warning about default values.

lteWarning('off','DefaultValue')
bch = lteBCH(struct('CellRefP',1),ones(24,1));

Input Arguments
msgname — Message name
'defaultValue' | 'deprecated'

Message name, specified as 'defaultValue' or 'deprecated'.

Option Warning Message
'defaultValue' This warning occurs when an optional parameter value or parameter

structure field is not defined and the default value is used instead.

 lteWarning

2-1343

Option Warning Message
'deprecated' This warning occurs for deprecated functionality of the LTE Toolbox.

For example, it occurs when the user calls a function using a
deprecated syntax option. This warning indicates that the
functionality may be removed in a later release.

Data Types: char

Version History
Introduced in R2014a

See Also
warning

2 Functions

2-1344

umtsDownlinkReferenceChannels
UMTS downlink measurement channel definition

Syntax
config = umtsDownlinkReferenceChannels(rc)
config = umtsDownlinkReferenceChannels(rc,modulation)

Description
config = umtsDownlinkReferenceChannels(rc) uses the input reference channel, rc, to
produce a downlink reference channel definition structure, config. The configuration parameters
required by umtsDownlinkWaveformGenerator to generate a downlink reference channel
waveform are included in config.

For all syntaxes, umtsDownlinkReferenceChannels uses the input, rc, to initialize a configuration
data structure compliant with one of the reference channels defined in the following 3GPP standards:

• Downlink W-CDMA reference measurement channel (RMC) waveforms, as defined in TS 25.101,
Annex A3 [1]

• HSDPA fixed reference channel (FRC) H-Set waveforms, as defined in TS 25.101, Annex A7 [1]
• Downlink test model waveforms, as defined in TS 25.141, Section 6.1.1 [2]

config = umtsDownlinkReferenceChannels(rc,modulation) gives you the option of
changing the default modulation scheme when rc specifies initialization of an FRC H-Set
configuration. See the table of valid H-Set/modulation combinations in the description of the
modulation input.

Examples

UMTS Downlink Reference Channel Initialization

Initialize a 'QPSK' 'RMC12.2kbps' reference channel.

Generate the configuration structure, rmcStruct

rc = 'RMC12.2kbps';
modulation = 'QPSK';
rmcStruct = umtsDownlinkReferenceChannels(rc, modulation);

The output from umtsDownlinkReferenceChannels provides the input required to generate the
desired UMTS waveform corresponding to these settings.

Examine the DPCH field in rmcStruct. This field has a nested structure defining this physical channel
for the 'RMC12.2kbps' reference channel with 'QPSK' modulation.

rmcStruct

rmcStruct = struct with fields:
 TotFrames: 1

 umtsDownlinkReferenceChannels

2-1345

 PrimaryScramblingCode: 0
 FilterType: 'RRC'
 OversamplingRatio: 4
 NormalizedPower: 'Off'
 DPCH: [1x1 struct]
 PCCPCH: [1x1 struct]
 SCCPCH: [1x1 struct]
 PCPICH: [1x1 struct]
 SCPICH: [1x1 struct]
 PSCH: [1x1 struct]
 SSCH: [1x1 struct]
 PICH: [1x1 struct]
 HSDPA: [1x1 struct]
 OCNS: [1x1 struct]

rmcStruct.DPCH

ans = struct with fields:
 Enable: 'On'
 SlotFormat: 11
 SpreadingCode: 6
 NMulticodes: 1
 SecondaryScramblingCode: 1
 TimingOffset: 0
 Power: 0
 TPCData: 0
 TFCI: 0
 DataSource: 'CCTrCH'
 CCTrCH: [1x1 struct]

rmcStruct.DPCH.CCTrCH

ans = struct with fields:
 Name: 'DCH'
 DTXPosition: 'fixed'
 TrCH: [1x2 struct]

rmcStruct.DPCH.CCTrCH.TrCH(1)

ans = struct with fields:
 Name: 'DTCH'
 CRC: '16'
 CodingType: 'conv3'
 RMA: 256
 TTI: 20
 DataSource: 'PN9-ITU'
 ActiveDynamicPart: 1
 DynamicPart: [1x1 struct]

rmcStruct.DPCH.CCTrCH.TrCH(1).DynamicPart

ans = struct with fields:
 BlockSize: 244
 BlockSetSize: 244

2 Functions

2-1346

rmcStruct.DPCH.CCTrCH.TrCH(2)

ans = struct with fields:
 Name: 'DCCH'
 CRC: '12'
 CodingType: 'conv3'
 RMA: 256
 TTI: 40
 DataSource: 'PN9-ITU'
 ActiveDynamicPart: 1
 DynamicPart: [1x1 struct]

rmcStruct.DPCH.CCTrCH.TrCH(2).DynamicPart

ans = struct with fields:
 BlockSize: 100
 BlockSetSize: 100

Input Arguments
rc — Reference channel configuration
character vector | string scalar

Reference channel configuration, specified as a character vector or string scalar. rc identifies which
RMC, H-Set, or test model to configure. Values for rc when specified as a character vector include
(for string scalar use double quotes):

Parameter Field Requi
red or
Optio
nal

Values Description

rc Requir
ed

Reference Measurement Channels:

'RMC0kbps', 'RMC12.2kbps',
'RMC64kbps', 'RMC144kbps',
'RMC384kbps'

Reference channel identifying the W-
CDMA downlink RMC configuration,
as defined in TS 25.101, Annex A3 [1].

Fixed Reference Channel H-Sets:

'H-Set1', 'H-Set2', 'H-Set3', 'H-
Set4', 'H-Set5', 'H-Set6', 'H-
Set7', 'H-Set8', 'H-Set10', 'H-
Set12'.

Reference channel identifying the
HSDPA and HSPA+ FRC H-Set
configuration, as defined in TS
25.101, Annex A7 [1].

 umtsDownlinkReferenceChannels

2-1347

Parameter Field Requi
red or
Optio
nal

Values Description

Test Models:

'TM1_4DPCH', 'TM1_8DPCH',
'TM1_16DPCH', 'TM1_32DPCH',
'TM1_64DPCH', 'TM2_3DPCH',
'TM3_4DPCH', 'TM3_8DPCH',
'TM3_16DPCH', 'TM3_32DPCH',
'TM4', 'TM5_4DPCH_4HSPDSCH',
'TM5_6DPCH_2HSPDSCH',
'TM5_14DPCH_4HSPDSCH',
'TM5_30DPCH_8HSPDSCH',
'TM6_4DPCH_4HSPDSCH',
'TM6_30DPCH_8HSPDSCH'

Reference channel identifying the test
model physical channel configuration,
as defined in TS 25.141, Section 6.1.1
[2].

Data Types: char | string

modulation — Modulation scheme when FRC H-Set is configured
character vector | string scalar

Modulation scheme when FRC H-Set is configured, specified as a character vector or string scalar.
This argument applies only when rc specifies an FRC H-Set configuration. The table identifies valid
H-Set/Modulation combinations as character vectors (use double quotes for string). When
modulation is not specified, the default value is applied.

Valid Combinations modulation Default
modulation (if
not specified)rc 'QPSK' '16QAM' '64QAM'

'H-Set1' ✓ ✓ — 'QPSK'
'H-Set2' ✓ ✓ — 'QPSK'
'H-Set3' ✓ ✓ — 'QPSK'
'H-Set4' ✓ — — 'QPSK'
'H-Set5' ✓ — — 'QPSK'
'H-Set6' ✓ ✓ — 'QPSK'
'H-Set7' ✓ — — 'QPSK'
'H-Set8' — — ✓ '64QAM'
'H-Set10' ✓ ✓ — 'QPSK'
'H-Set12' ✓ — — 'QPSK'

Data Types: char | string

Output Arguments
config — Definition of the channels included for the waveform generator
structure

2 Functions

2-1348

Top-Level Parameters and Substructures

Definition of the channels included for the waveform generator, returned as a structure.

Parameter Field Require
d or
Optiona
l

Values Description

TotFrames Required Nonnegative scalar integer Total number of frames to be generated
PrimaryScramblingC
ode

Required Scalar integer from 0 to 511 Primary scrambling code index

FilterType Required 'RRC' (default), or 'Off' Enable the RRC filter
OversamplingRatio Required Nonnegative scalar integer Oversampling ratio
NormalizedPower Required Float (-inf to +inf) or 'Off'

to disable power
normalization

Overall waveform power in dBW relative to 1
ohm

DPCH Optional Not present, single structure,
or structure array

See DPCH Substructure.

PCCPCH Optional Not present or single
structure

See PCCPCH Substructure.

SCCPCH Optional Not present or single
structure

See SCCPCH Substructure.

PCPICH Optional Not present or single
structure

See PCPICH Substructure.

SCPICH Optional Not present or single
structure

See SCPICH Substructure.

PSCH Optional Not present or single
structure

See PSCH Substructure.

SSCH Optional Not present or single
structure

See SSCH Substructure.

PICH Optional Not present or single
structure

See PICH Substructure.

HSDPA Optional Not present or single
structure

See HSDPA Substructure

OCNS Optional Not present or single
structure

See OCNS Substructure.

DPCH Substructure

Include the DPCH substructure in the config structure to add dedicated physical channels to the
output structure. The DPCH substructure contains the following fields.

 umtsDownlinkReferenceChannels

2-1349

Parameter Field Require
d or
Optiona
l

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by setting
Enable to 'On' or 'Off', respectively.

SlotFormat Required Nonnegative integer DPCH slot format number, specified as a
nonnegative integer in the interval [0, 16].

SpreadingCode Required Nonnegative integer DPCH spreading code, specified as a
nonnegative integer in the interval [0, 512].
For multicode transmission,
SpreadingCode is the first DPCH code.

NMulticodes Required Positive integer Number of DPCHs, specified as 1, 2, 3, 4, 5,
or 6.

SecondaryScramblin
gCode

Required Nonnegative integer DPCH secondary scrambling code index,
specified as a nonnegative integer in the
interval [0, 15].

TimingOffset Required Nonnegative integer The timing offset in terms of the number of
chips (x256Tchip), specified as a
nonnegative integer in the interval [0, 149].

Power Required Float, –inf, inf Channel power in dB, specified as a float, –
inf, or inf.

TPCData Required Binary scalar, binary vector Transmit Power Control data, specified as a
binary scalar or a vector with binary entries.

TFCI Required Nonnegative integer Transport Format Combination Indicator
(TFCI), specified as a nonnegative integer in
the interval [0, 1023].

DataSource Required Binary scalar, binary vector,
character vector, cell array, or
string scalar

DPCH data source, specified as a binary
scalar, a vector with binary entries, a
character vector, a cell array, or a string
scalar.

When specifying DataSource as a cell
array, use standard PN sequences and a seed
value: {PN, seed}. PN options for character
vector or cell array are 'PN9-ITU', 'PN9',
'PN11', 'PN15', and 'PN23'. If no seed is
specified, the shift register is initialized with
all ones.

To enable transport channel coding, specify
DataSource as 'CCTrCH'.

CCTrCH Optional Structure See CCTrCH Substructure.

CCTrCH Substructure

Include a CCTrCH substructure instance individually for DPCH, PCCPCH, and/or SCCPCH substructures.
Separate instances of a coded composite transport channel are added to the output structures of the

2 Functions

2-1350

DPCH, P-CCPCH, and/or S-CCPCH physical channel definitions. When the CCTrCH substructure is
included, it contains the following fields.

Parameter Field Require
d or
Optiona
l

Values Description

Name Optional Character vector, string scalar

Default depends on the
physical channel specified

Name assigned to the CCTrCH, specified as
a character vector or a string scalar.
Functions do not use the Name field.
Therefore, you can redefine the content with
no consequence.

DTXPosition Required 'fixed', 'flexible' Specifies the DTX position, specified as
'fixed' or 'flexible'.

TrCH Required Structure, structure array Transport channels in the CCTrCH, specified
as a structure or a structure array.

  TrCH.Name Required Character vector, string scalar

Default depends on the
physical channel specified

Name assigned to the TrCH, specified as a
character vector or a string scalar. Functions
do not use the Name field. Therefore, you can
redefine the content with no consequence.

  TrCH.CRC Required Character vector, string scalar Cyclic redundancy check (CRC) polynomial
specifier, specified as one of these values:
'0', '8', '12', '16', or '24'.

  TrCH.TTI Required Positive integer Transmission time interval (TTI) in
milliseconds, specified as 10, 20, 40, or 80.

  TrCH.CodingType Required 'turbo', 'conv2', 'conv3' Channel coding type and rate, specified as
'turbo', 'conv2', or 'conv3'.

  TrCH.RMA Required Positive integer Rate matching attribute value, specified as a
positive integer in the interval [1, 256].

  TrCH.DataSource Required Binary scalar, binary vector,
character vector, cell array, or
string scalar

Transport channel data source, specified as
a binary scalar, a vector with binary entries,
a cell array, or a string scalar.

When defined as a cell array use standard
PN sequences and a seed value: {PN, seed}.
PN options for character vector or cell array
are 'PN9-ITU', 'PN9', 'PN11', 'PN15',
and 'PN23'.

If no seed is specified, the shift register is
initialized with all ones.

 umtsDownlinkReferenceChannels

2-1351

Parameter Field Require
d or
Optiona
l

Values Description

Examples for setting the DataSource field include:

• ...CCTrCH.TrCh(1).DataSource = [1 0 0 1] generates a sequence
of transport blocks by looping the vector [1 0 0 1].

• ...CCTrCH.TrCh(1).DataSource = 'PN9' generates a transport
channel data block with random seed = 511.

• ...CCTrCH.TrCh(1).DataSource = {'PN9',5} generates a transport
channel data block with seed = 5.

  
TrCH.ActiveDynamic
Part

Required Positive integer, vector Active dynamic part, specified as a positive
integer or a vector whose entries are
positive integers in the interval [1,
length(DynamicPart)].

The ActiveDynamicPart field indicates the DynamicPart array index for
the active transport format (BlockSize, BlockSetSize) from available
combinations defined in DynamicPart. The selected transport format is
used for data transmission in the current TTI.

  
TrCH.DynamicPart

Required Structure, structure array Size of each transport block, specified as a
structure or a structure array.

The DynamicPart fields, BlockSize and BlockSetSize, define the size
of each transport block and the total bits per transport block set. As a pair
(BlockSize, BlockSetSize) describe a transport format set.
DynamicPart defines one or multiple transport format sets.

  
TrCH.DynamicPart.B
lockSize

Required Positive integer Transport block length, specified as a
positive integer.

  
TrCH.DynamicPart.B
lockSetSize

Required Integer, multiple of
BlockSize

Total number of bits in the transport block
set. Implementation does not support
multiple transport blocks, so by definition
BlockSize is equal to BlockSetSize.

Note When configuring the output structure to transmit the RMC 0kbps, as defined in TS 25.101,
Section A.3.0 [1], a transport channel CRC is defined for transmission. The standard indicates DTCH
transport block size = 0 and transport block set size = 0. Our implementation requires signalling
transmission of a transport block to transmit a CRC. In the umtsDownlinkWaveformGenerator,
one transport block of size zero is signaled by setting either BlockSize or BlockSetSize to '0'.

In our implementation, setting both BlockSize and BlockSetSize to zero signals transmission of
zero transport blocks and a transport block size of zero and causes a transmission with no CRC.

PCCPCH Substructure

Include the PCCPCH substructure in the config structure to add the primary common control
physical channel to the output structure. The PCCPCH substructure contains the following fields.

2 Functions

2-1352

Parameter Field Require
d or
Optiona
l

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by specifying
Enable as 'On' or 'Off', respectively.

Power Required Float, –inf, inf PCCPCH power in dB, specified as a float, -
inf, or inf.

DataSource Required Binary scalar, binary vector,
character vector, cell array, or
string scalar

PCCPCH data source, specified as a binary
scalar, a vector with binary entries, a
character vector, a cell array, or a string
scalar.

When specifying DataSource as a cell
array, use standard PN sequences and a seed
value: {PN, seed}. PN options for character
vector or cell array are 'PN9-ITU', 'PN9',
'PN11', 'PN15', and 'PN23'. If no seed is
specified, the shift register is initialized with
all ones.

To enable BCH transport channel coding,
specify DataSource as 'CCTrCH'.

CCTrCH Optional Structure See CCTrCH Substructure.

SCCPCH Substructure

Include the SCCPCH substructure in the config structure to add the secondary common control
physical channel to the output structure. The SCCPCH substructure contains the following fields.

Parameter Field Require
d or
Optiona
l

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by specifying
Enable as 'On' or 'Off', respectively.

SlotFormat Required Nonnegative integer SCCPCH slot format number, specified as a
nonnegative integer in the interval [0, 17].

SpreadingCode Required Nonnegative integer

Valid range depends on slot
format

SCCPCH spreading code, specified as a
nonnegative integer in the interval [0, 255].

SecondaryScramblin
gCode

Required Nonnegative integer SCCPCH secondary scrambling code index,
specified as a nonnegative integer in the
interval [0, 15].

TimingOffset Required Nonnegative integer Timing offset in terms of the number of chips
(x256Tchip), specified as a nonnegative
integer in the interval [0, 149].

 umtsDownlinkReferenceChannels

2-1353

Parameter Field Require
d or
Optiona
l

Values Description

Power Required Float, -inf, inf SCCPCH power in dB, specified as a float, -
inf, or inf.

TFCI Required Nonnegative integer Transport format combination indicator,
specified as a nonnegative integer in the
interval [0, 1023].

DataSource Required Scalar, vector, character
vector, cell array, or string
scalar

SCCPCH data source, specified as a binary
scalar, a vector with binary entries, a
character vector, a cell array, or a string
scalar.

When defined as a cell array use standard
PN sequences and a seed value: {PN, seed}.
PN options for character vector or cell array
are 'PN9-ITU', 'PN9', 'PN11', 'PN15',
and 'PN23'. If no seed is specified, the shift
register is initialized with all ones.

To enable PCH/FACH transport channel
coding, specify DataSource as 'CCTrCH'.

CCTrCH Optional Structure See CCTrCH Substructure.

PCPICH Substructure

Include the PCPICH substructure in the config structure to add the primary common pilot channel
to the output structure. The PCPICH substructure contains the following fields.

Parameter Field Require
d or
Optiona
l

Values / Ranges / Notes Description

Enable Required 'On', 'Off' Enable or disable the channel by specifying
Enable as 'On' or 'Off', respectively.

Power Required Float, –inf, inf PCPICH power in dB, specified as a float, –
inf, or inf.

SCPICH Substructure

Include the SCPICH substructure in the config structure to add the secondary common pilot
channel to the output structure. The SCPICH substructure contains the following fields.

Parameter Field Require
d or
Optiona
l

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by specifying
Enable as 'On' or 'Off', respectively.

2 Functions

2-1354

Parameter Field Require
d or
Optiona
l

Values Description

SpreadingCode Required Nonnegative integer SCPICH spreading code, specified as a
nonnegative integer in the interval [0, 255].

SecondaryScramblin
gCode

Required Nonnegative integer SCPICH secondary scrambling code index,
specified as a nonnegative integer in the
interval [0, 15].

Power Required Float, –inf, inf SCPICH power in dB, specified as a float, –
inf, or inf.

PSCH Substructure

Include the PSCH substructure in the config structure to add the physical shared channel to the
output structure. The PSCH substructure contains the following fields.

Parameter Field Require
d or
Optiona
l

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by specifying
Enable as 'On' or 'Off', respectively.

Power Required Float, –inf, inf PSCH power in dB, specified as a float, –inf,
or inf.

SSCH Substructure

Include the SSCH substructure in the config structure to add the secondary synchronization channel
to the output structure. The SSCH substructure contains the following fields.

Parameter Field Require
d or
Optiona
l

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by specifying
Enable as 'On' or 'Off', respectively.

Power Required Float, –inf, inf SSCH power in dB, specified as a float, –inf,
or inf.

PICH Substructure

Include the PICH substructure in the config structure to add the page indicator channel to the
output structure. The PICH substructure contains the following fields.

 umtsDownlinkReferenceChannels

2-1355

Parameter Field Require
d or
Optiona
l

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by specifying
Enable as 'On' or 'Off', respectively.

SpreadingCode Required Nonnegative integer PICH spreading code, specified as a
nonnegative integer in the interval [0, 255].

TimingOffset Required Nonnegative integer Timing offset in terms of the number of chips
(x256Tchip), specified as a nonnegative
integer in the interval [0, 149].

Power Required Float, –inf, inf PICH power in dB, specified as a float, –inf,
or inf.

DataSource Required Scalar, vector, character
vector, cell array, or string
scalar

PICH data source, specified as a binary
scalar, a vector with binary entries, a
character vector, a cell array, or a string
scalar.

When defined as a cell array use standard
PN sequences and a seed value: {PN, seed}.
PN options for character vector or cell array
are 'PN9-ITU', 'PN9', 'PN11', 'PN15',
and 'PN23'. If no seed is specified, the shift
register is initialized with all ones.

To use paging data, specify DataSource as
'PagingData'.

Np Required Positive integer Number of paging indicators per frame,
specified as one of the values 18, 36, 72,
144.

HSDPA Substructure

To add high-speed downlink packet access (HSDPA) information and channels to the output structure,
include the HSDPA substructure in the config structure. The HSDPA substructure contains the
following fields.

Parameter Field Require
d or
Optiona
l

Values / Ranges / Notes Description

Enable Required 'On', 'Off' Enable or disable the HSDPA channels (HS-
PDSCHs and HS-SCCH) by specifying
Enable as 'On' or 'Off', respectively.

CodeGroup Required Positive integer Number of channelization codes used
simultaneously for HS-PDSCHs, specified as
a positive integer in the interval [1, 16].

2 Functions

2-1356

Parameter Field Require
d or
Optiona
l

Values / Ranges / Notes Description

CodeOffset Required Nonnegative integer Offset to the first channelization code to use
for HS-PDSCHs, specified as a nonnegative
integer in the interval [0, 15].

Modulation Required 'QPSK', '16QAM', '64QAM' Symbol modulation, specified as one of the
values 'QPSK', '16QAM', or '64QAM'.

VirtualBufferCapac
ity

Required Positive integer Number of soft channel bits (or soft metric
location) in a HARQ process for the H-Sets
as defined in TS 36.101 Annex A.7. Specify
VirtualBufferCapacity as a positive
integer. The number of soft channel bits
depends on the UE category as specified in
TS 25.306 Section 5.1. The value of this
parameter must match the number of soft
channel bits in a HARQ process used in the
test device or decoding software.

InterTTIDistance Required Positive integer Transmission time interval in subframes.
This interval is the distance between
different HARQ transmissions to the same
UE.

• A value of 1 indicates continuous HSDPA
transmissions in every subframe to the
UE under test.

• A value larger than 1 indicates the
presence of gap subframes with no data
transmission to the UE under test.

NHARQProcesses Required Positive integer Total number of HARQ processes, specified
as a positive integer in the interval [1, 8].

 umtsDownlinkReferenceChannels

2-1357

Parameter Field Require
d or
Optiona
l

Values / Ranges / Notes Description

XrvSequence Required Nonnegative integer, vector of
nonnegative integers

Redundancy and constellation version
coding sequence, specified as a nonnegative
integer, or a vector whose entries are
nonnegative integers, in the interval [0, 7].
XrvSequence encodes the redundancy
version parameters (r,s) and constellation
version as defined in TS 25.212 Section 4.6.
The encoding includes the constellation
version only if the modulation scheme is
16QAM/64QAM. The values are used by
each HARQ process for each transmission.

• A scalar indicates a single transmission.
• A vector indicates retransmissions. The

new data indicator bit signalled by HS-
SCCH stays the same and the
redundancy version changes to the value
encoded in the next element of
XrvSequence.

When a HARQ process completes all
transmissions corresponding to the
XrvSequence, the new data indicator bit
toggles between 0 and 1 indicating a new
transmission. For more information, see TS
25.321 Section 11.6.1.3.

For sequences used for HSDPA H-Sets, see
TS 25.101 Section 9.

UEId Required Nonnegative integer UE identity, specified as a nonnegative
integer in the interval [0, 216 – 1].

TransportBlockSize
Id

Required Nonnegative integer Transport block size index (xtbs) signaled on
the HS-SCCH as defined in TS 25.212
Section 4.6. The calculation is based on the
HSDSCH.BlockSize parameter used for
transmission as defined in TS 25.321 Section
9.2.3 Annex A. Specify
TransportBlockSizeID as a nonnegative
integer in the interval [0, 63].

HSSCCHSpreadingCod
e

Required Nonnegative integer HS-SCCH spreading code, specified as a
nonnegative integer in the interval [0, 127].

SecondaryScramblin
gCode

Required Nonnegative integer Secondary scrambling code index for HS-
PDSCH and HS-SCCH channels, specified as
a nonnegative integer in the interval [0, 15].

2 Functions

2-1358

Parameter Field Require
d or
Optiona
l

Values / Ranges / Notes Description

HSPDSCHPower Required Float, –inf, inf HS-PDSCH power in dB, specified as a float,
–inf, or inf.

HSSCCHPower Required Floatinf, inf HS-SCCH power in dB, specified as a float, –
inf, or inf.

DataSource Required Scalar, vector, character
vector, cell array, or string
scalar

HSDPA data source, specified as a binary
scalar, a vector with binary entries, a
character vector, a cell array, or a string
scalar.

When specifying DataSource as a cell
array, use standard PN sequences and a seed
value in the form {PN, seed}. PN options for
character vector or cell array are 'PN9-
ITU', 'PN9', 'PN11', 'PN15', and
'PN23'. If no seed is specified, the shift
register is initialized with all ones.

To enable HS-DSCH transport channel
coding, specify DataSource as 'HSDSCH'.

HSDSCH Optional Not present or a structure HS-DSCH transport channel configuration,
specified as a structure.

The following fields are required only if the HSDSCH substructure is present.
  
HSDSCH.BlockSize

Required Nonnegative integer Transport block size, specified as a
nonnegative integer.

  
HSDSCH.DataSource

Required Scalar, vector, character
vector, cell array, or string
scalar

HS-DSCH transport data source, specified as
a binary scalar, a vector with binary entries,
a cell array, or a string scalar.

When defined as a cell array use standard
PN sequences and a seed value: {PN, seed}.
PN options for character vector or cell array
are 'PN9-ITU', 'PN9', 'PN11', 'PN15',
and 'PN23'.

If no seed is specified, the shift register is
initialized with all ones.

In the generator, the HSPDA functionality creates continuous HS-PDSCH and HS-SCCH
transmissions. This functionality supports the HSPDA H-Set fixed reference channels where a multi-
HARQ reference transmission sequence is defined. The multi-HARQ reference transmission sequence
is masked with the same RNTI, directed at a single UE specified by the UEId parameter. The
NHARQProcesses and InterTTIDistance parameters define the reference transmission frequency
to the UE. Any gaps between the reference subframes are filled with additional HS-PDSCH/HS-SCCH
subframes. These subframes are masked with a complementary RNTI, directed at a different UE
defined as xor(UEId,65535). The NHARQProcesses parameter gives the numbers of HARQ
processes used in the reference transmission. The number of gap subframes between each transport

 umtsDownlinkReferenceChannels

2-1359

block transmission or retransmission for different HARQ processes is InterTTIDistance-1. Due to
the HARQ ACK-NACK feedback signaling requirements, the gap between the transmissions of the
same HARQ process should be no less than six subframes.

The HSDPA.DataSource parameter controls the data transmitted on the reference PDSCH and HS-
SCCH physical channels. If HSDPA.DataSource is set to 'HSDSCH', the reference PDSCH data
comes from an HS-DSCH transport channel and the HS-SCCH channel carries the associated control
information. In this case, the source to the HS-DSCH transport channel is parameterized by the fields
in the HSDSCH substructure data (transport block size and data stream). This reference data is also
used to fill the non-reference gap subframes:

• The gap HS-PDSCH subframes are filled with the same HS-DSCH encoded data used for reference
transmission. The encoded data is scrambled according to the subframe.

• The gap HS-SCCH subframes are filled with the encoded control information using the
complimentary RNTI.

The HS-SCCH transmission is aligned with the scrambling boundary. The HS-PDSCH transmission
begins 2×Tslot = 5120 chips after the start of the HS-SCCH (see TS 25.211 Section 7.8). To fill the
first two slots in the generated waveform, the HS-PDSCH wraps around for the last subframe.

The virtualBufferCapacity parameter must match the number of soft channel bits in a HARQ
process used in the test device or decoding software.

OCNS Substructure

Include the OCNS substructure in the config structure to add orthogonal channel noise source
information to the output structure. The OCNS substructure contains the following fields.

Parameter Field Require
d or
Optiona
l

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by specifying
Enable as 'On' or 'Off', respectively.

Power Required Float, –inf, or inf OCNS overall power in dB, specified as a
float, -inf, or inf.

2 Functions

2-1360

Parameter Field Require
d or
Optiona
l

Values Description

OCNSType Required Character vector or string
scalar

If OCNS is enabled, OCNSType specifies
which OCNS configuration to use. The OCNS
substructure and OCNSType field are used to
generate:

• DPCHs, defined as OCNS channels in TS
25.101.

• DPCHs, HS-PDSCHs, and HS-SCCHs,
defined for test models in TS 25.141,
Section 6.

For RMCs and H-Sets, specify OCNSType
as one of these values: 'RMC_16DPCH',
'H-Set_6DPCH', 'H-Set_4DPCH'

For Test Model DPCH and HS-
PDSCH/HS-SCCH sets, specify
OCNSType as one of these values:
'TM1_4DPCH', 'TM1_8DPCH',
'TM1_16DPCH', 'TM1_32DPCH',
'TM1_64DPCH', 'TM2_3DPCH',
'TM3_4DPCH', 'TM3_8DPCH',
'TM3_16DPCH', 'TM3_32DPCH',
'TM5_4DPCH_4HSPDSCH',
'TM5_6DPCH_2HSPDSCH',
'TM5_14DPCH_4HSPDSCH',
'TM5_30DPCH_8HSPDSCH',
'TM6_4DPCH_4HSPDSCH',
'TM6_30DPCH_8HSPDSCH'.

For test model generation, set the
corresponding channel configuration
Enable field to 'Off'.

Version History
Introduced in R2015a

References
[1] 3GPP TS 25.101. “Universal Mobile Telecommunications System (UMTS); User Equipment (UE)

Radio Transmission and Reception (FDD).” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 25.141. “Universal Mobile Telecommunications System (UMTS); Base Station (BS)
Conformance Testing (FDD).” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

 umtsDownlinkReferenceChannels

2-1361

https://www.3gpp.org
https://www.3gpp.org

[3] 3GPP TS 25.211. “Universal Mobile Telecommunications System (UMTS); Physical channels and
mapping of transport channels onto physical channels (FDD).” 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network. URL: https://www.3gpp.org.

[4] 3GPP TS 25.212. “Universal Mobile Telecommunications System (UMTS); Multiplexing and
channel coding (FDD).” 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network. URL: https://www.3gpp.org.

[5] 3GPP TS 25.306. “Universal Mobile Telecommunications System (UMTS); UE Radio Access
capabilities.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[6] 3GPP TS 25.321. “Universal Mobile Telecommunications System (UMTS); Medium Access Control
(MAC) protocol specification.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

[7] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)
Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

See Also
umtsDownlinkWaveformGenerator | umtsUplinkReferenceChannels |
umtsUplinkWaveformGenerator

Topics
“Downlink Reference Channel and Waveform Generation Parameter Structures”

2 Functions

2-1362

https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org

umtsDownlinkWaveformGenerator
UMTS downlink waveform generation

Syntax
waveform = umtsDownlinkWaveformGenerator(config)

Description
waveform = umtsDownlinkWaveformGenerator(config) returns the Universal Mobile
Telecommunications Service (UMTS) downlink waveform, waveform, defined by the configuration
structure, config. This function supports Wideband Code Division Multiple Access (W-CDMA), High-
Speed Downlink Packet Access (HSDPA), and Evolved High-Speed Packet Access (HSPA+) waveform
generation. The top-level parameters and lower-level substructures of config characterize the
waveform and channel properties of the umtsDownlinkWaveformGenerator function output. The
config input is generated using the umtsDownlinkReferenceChannels function; config
includes top-level parameters and substructures to describe the different channels to include in the
waveform. The top-level parameters of config are: TotFrames, PrimaryScramblingCode,
FilterType, OversamplingRatio, and NormalizedPower. To enable the specific channels, you
can add associated substructures: DPCH, PCCPCH, SCCPCH, PCPICH, SCPICH, PSCH, SSCH, PICH,
HSDPA, and OCNS.

Note Include an interfering downlink W-CDMA noise source by initializing the OCNS substructure.
Specify the orthogonal channel noise source (OCNS) parameters using the appropriate 3GPP
definition,

• RMC OCNS channels are defined in TS 25.101, Table C.6 [1]
• H-Set OCNS channels are defined in TS 25.141, Tables C.13, and C.13A [2]
• Test model DPCHs and HS-PDSCH/HS-SCCH channels are defined in TS 25.141, Section 6.1.1 [2]

Examples

UMTS Downlink Waveform Generation

Initialize a 'QPSK', 'H-Set1' FRC reference channel and generate the UMTS waveform that
corresponds to these settings.

Generate the configuration structure, frcStruct.

rc = 'H-Set1';
modulation = 'QPSK';
frcStruct = umtsDownlinkReferenceChannels(rc, modulation);

Generate the desired waveform using frcStruct as the input to the waveform generation function.
Create a spectrum analyzer object sampling at chiprate x OversamplingRatio. Plot the
waveform.

 umtsDownlinkWaveformGenerator

2-1363

waveform = umtsDownlinkWaveformGenerator(frcStruct);
saScope = spectrumAnalyzer(SampleRate=3.84e6*frcStruct.OversamplingRatio);
saScope(waveform);

Input Arguments
config — Definition of the channels included by waveform generator
structure

Top-Level Parameters and Substructures

Definition of the channels included by the waveform generator, specified as a structure.

Parameter Field Require
d or
Optiona
l

Values Description

TotFrames Required Nonnegative integer Total number of 10 ms frames to be
generated, specified as a nonnegative
integer. The default is 1.

PrimaryScramblingC
ode

Required Nonnegative integer Primary scrambling code index, specified as
a nonnegative integer in the interval [0,
511].

2 Functions

2-1364

Parameter Field Require
d or
Optiona
l

Values Description

FilterType Required 'RRC' (default), 'Off' Enable or disable the RRC filter by setting
FilterType to 'RRC' or 'off'.
respectively.

OversamplingRatio Required Nonnegative integer Oversampling ratio, specified as a
nonnegative integer.

NormalizedPower Required Float, –inf, inf,'Off' Overall waveform power in dBW relative to 1
ohm, specified as a float, –inf, inf, or
'Off'. Setting NormalizedPower to 'Off'
disables power normalization.

DPCH Optional Not present, structure, or
structure array

See DPCH Substructure.

PCCPCH Optional Not present or structure See PCCPCH Substructure.
SCCPCH Optional Not present or structure See SCCPCH Substructure.
PCPICH Optional Not present or structure See PCPICH Substructure.
SCPICH Optional Not present or structure See SCPICH Substructure.
PSCH Optional Not present or structure See PSCH Substructure.
SSCH Optional Not present or structure See SSCH Substructure.
PICH Optional Not present or structure See PICH Substructure.
HSDPA Optional Not present or structure See HSDPA Substructure.
OCNS Optional Not present or structure See OCNS Substructure.

DPCH Substructure

To add dedicated physical channels (DPCHs) to the output structure, include the DPCH substructure
in the config structure. The DPCH substructure contains the following fields.

Parameter Field Require
d or
Optiona
l

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by setting
Enable to 'On' or 'Off', respectively.

SlotFormat Required Nonnegative integer DPCH slot format number, specified as a
nonnegative integer in the interval [0, 16].

SpreadingCode Required Nonnegative integer DPCH spreading code, specified as a
nonnegative integer in the interval [0, 512].
For multicode transmission,
SpreadingCode is the first DPCH code.

NMulticodes Required Positive integer Number of DPCHs, specified as 1, 2, 3, 4, 5,
or 6.

 umtsDownlinkWaveformGenerator

2-1365

Parameter Field Require
d or
Optiona
l

Values Description

SecondaryScramblin
gCode

Required Nonnegative integer DPCH secondary scrambling code index,
specified as a nonnegative integer in the
interval [0, 15].

TimingOffset Required Nonnegative integer The timing offset in terms of the number of
chips (x256Tchip), specified as a
nonnegative integer in the interval [0, 149].

Power Required Float, –inf, inf Channel power in dB, specified as a float, –
inf, or inf.

TPCData Required Binary scalar, binary vector Transmit Power Control data, specified as a
binary scalar or a vector with binary entries.

TFCI Required Nonnegative integer Transport Format Combination Indicator
(TFCI), specified as a nonnegative integer in
the interval [0, 1023].

DataSource Required Binary scalar, binary vector,
character vector, cell array, or
string scalar

DPCH data source, specified as a binary
scalar, a vector with binary entries, a
character vector, a cell array, or a string
scalar.

When specifying DataSource as a cell
array, use standard PN sequences and a seed
value: {PN, seed}. PN options for character
vector or cell array are 'PN9-ITU', 'PN9',
'PN11', 'PN15', and 'PN23'. If no seed is
specified, the shift register is initialized with
all ones.

To enable transport channel coding, specify
DataSource as 'CCTrCH'.

CCTrCH Optional Structure See CCTrCH Substructure.

CCTrCH Substructure

Include a CCTrCH substructure instance individually for DPCH, PCCPCH, and/or SCCPCH substructures.
Separate instances of a coded composite transport channel (CCTrCH) are added to the output
structures of the DPCH, P-CCPCH, and/or S-CCPCH physical channel definitions. When the CCTrCH
substructure is included, it contains the following fields.

2 Functions

2-1366

Parameter Field Require
d or
Optiona
l

Values Description

Name Optional Character vector, string scalar

Default depends on the
physical channel specified

Name assigned to the CCTrCH, specified as
a character vector or a string scalar.
Functions do not use the Name field.
Therefore, you can redefine the content with
no consequence.

DTXPosition Required 'fixed', 'flexible' Specifies the DTX position, specified as
'fixed' or 'flexible'.

TrCH Required Structure, structure array Transport channels in the CCTrCH, specified
as a structure or a structure array.

  TrCH.Name Required Character vector, string scalar

Default depends on the
physical channel specified

Name assigned to the TrCH, specified as a
character vector or a string scalar. Functions
do not use the Name field. Therefore, you can
redefine the content with no consequence.

  TrCH.CRC Required Character vector, string scalar Cyclic redundancy check (CRC) polynomial
specifier, specified as one of these values:
'0', '8', '12', '16', or '24'.

  TrCH.TTI Required Positive integer Transmission time interval (TTI) in
milliseconds, specified as 10, 20, 40, or 80.

  TrCH.CodingType Required 'turbo', 'conv2', 'conv3' Channel coding type and rate, specified as
'turbo', 'conv2', or 'conv3'.

  TrCH.RMA Required Positive integer Rate matching attribute value, specified as a
positive integer in the interval [1, 256].

  TrCH.DataSource Required Binary scalar, binary vector,
character vector, cell array, or
string scalar

Transport channel data source, specified as
a binary scalar, a vector with binary entries,
a cell array, or a string scalar.

When defined as a cell array use standard
PN sequences and a seed value: {PN, seed}.
PN options for character vector or cell array
are 'PN9-ITU', 'PN9', 'PN11', 'PN15',
and 'PN23'.

If no seed is specified, the shift register is
initialized with all ones.

Examples for setting the DataSource field include:

• ...CCTrCH.TrCh(1).DataSource = [1 0 0 1] generates a sequence
of transport blocks by looping the vector [1 0 0 1].

• ...CCTrCH.TrCh(1).DataSource = 'PN9' generates a transport
channel data block with random seed = 511.

• ...CCTrCH.TrCh(1).DataSource = {'PN9',5} generates a transport
channel data block with seed = 5.

 umtsDownlinkWaveformGenerator

2-1367

Parameter Field Require
d or
Optiona
l

Values Description

  
TrCH.ActiveDynamic
Part

Required Positive integer, vector Active dynamic part, specified as a positive
integer or a vector whose entries are
positive integers in the interval [1,
length(DynamicPart)].

The ActiveDynamicPart field indicates the DynamicPart array index for
the active transport format (BlockSize, BlockSetSize) from available
combinations defined in DynamicPart. The selected transport format is
used for data transmission in the current TTI.

  
TrCH.DynamicPart

Required Structure, structure array Size of each transport block, specified as a
structure or a structure array.

The DynamicPart fields, BlockSize and BlockSetSize, define the size
of each transport block and the total bits per transport block set. As a pair
(BlockSize, BlockSetSize) describe a transport format set.
DynamicPart defines one or multiple transport format sets.

  
TrCH.DynamicPart.B
lockSize

Required Positive integer Transport block length, specified as a
positive integer.

  
TrCH.DynamicPart.B
lockSetSize

Required Integer, multiple of
BlockSize

Total number of bits in the transport block
set. Implementation does not support
multiple transport blocks, so by definition
BlockSize is equal to BlockSetSize.

Note When configuring the output structure to transmit the RMC 0kbps as defined in TS 25.101,
Section A.3.0 [1], a transport channel CRC is defined for transmission. The standard indicates DTCH
transport block size = 0 and transport block set size = 0. Our implementation requires signaling
transmission of a transport block to transmit a CRC. In the umtsDownlinkWaveformGenerator,
one transport block of size zero is signaled by setting either BlockSize or BlockSetSize to '0'.
Setting both BlockSize and BlockSetSize to '0' signals '0' transport block of size '0' and no
CRC is transmitted.

PCCPCH Substructure

To add the primary common control physical channel (PCCPCH) to the output structure, include the
PCCPCH substructure in the config structure. The PCCPCH substructure contains the following
fields.

Parameter Field Require
d or
Optiona
l

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by specifying
Enable as 'On' or 'Off', respectively.

2 Functions

2-1368

Parameter Field Require
d or
Optiona
l

Values Description

Power Required Float, –inf, inf PCCPCH power in dB, specified as a float, -
inf, or inf.

DataSource Required Binary scalar, binary vector,
character vector, cell array, or
string scalar

PCCPCH data source, specified as a binary
scalar, a vector with binary entries, a
character vector, a cell array, or a string
scalar.

When specifying DataSource as a cell
array, use standard PN sequences and a seed
value: {PN, seed}. PN options for character
vector or cell array are 'PN9-ITU', 'PN9',
'PN11', 'PN15', and 'PN23'. If no seed is
specified, the shift register is initialized with
all ones.

To enable BCH transport channel coding,
specify DataSource as 'CCTrCH'.

CCTrCH Optional Structure See CCTrCH Substructure.

SCCPCH Substructure

To add the secondary common control physical channel (SCCPCH) to the output structure, include
the SCCPCH substructure in the config structure. The SCCPCH substructure contains the following
fields.

Parameter Field Require
d or
Optiona
l

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by specifying
Enable as 'On' or 'Off', respectively.

SlotFormat Required Nonnegative integer SCCPCH slot format number, specified as a
nonnegative integer in the interval [0, 17].

SpreadingCode Required Nonnegative integer

Valid range depends on slot
format

SCCPCH spreading code, specified as a
nonnegative integer in the interval [0, 255].

SecondaryScramblin
gCode

Required Nonnegative integer SCCPCH secondary scrambling code index,
specified as a nonnegative integer in the
interval [0, 15].

TimingOffset Required Nonnegative integer Timing offset in terms of the number of chips
(x256Tchip), specified as a nonnegative
integer in the interval [0, 149].

Power Required Float, -inf, inf SCCPCH power in dB, specified as a float, -
inf, or inf.

 umtsDownlinkWaveformGenerator

2-1369

Parameter Field Require
d or
Optiona
l

Values Description

TFCI Required Nonnegative integer Transport format combination indicator,
specified as a nonnegative integer in the
interval [0, 1023].

DataSource Required Scalar, vector, character
vector, cell array, or string
scalar

SCCPCH data source, specified as a binary
scalar, a vector with binary entries, a
character vector, a cell array, or a string
scalar.

When defined as a cell array use standard
PN sequences and a seed value: {PN, seed}.
PN options for character vector or cell array
are 'PN9-ITU', 'PN9', 'PN11', 'PN15',
and 'PN23'. If no seed is specified, the shift
register is initialized with all ones.

To enable PCH/FACH transport channel
coding, specify DataSource as 'CCTrCH'.

CCTrCH Optional Structure See CCTrCH Substructure.

PCPICH Substructure

To add the primary common pilot channel to the output structure, include the PCPICH substructure in
the config structure. The PCPICH substructure contains the following fields.

Parameter Field Require
d or
Optiona
l

Values / Ranges / Notes Description

Enable Required 'On', 'Off' Enable or disable the channel by specifying
Enable as 'On' or 'Off', respectively.

Power Required Float, –inf, inf PCPICH power in dB, specified as a float, –
inf, or inf.

SCPICH Substructure

To add the secondary common pilot channel (SCPICH) to the output structure, include the SCPICH
substructure in the config structure. The SCPICH substructure contains the following fields.

Parameter Field Require
d or
Optiona
l

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by specifying
Enable as 'On' or 'Off', respectively.

SpreadingCode Required Nonnegative integer SCPICH spreading code, specified as a
nonnegative integer in the interval [0, 255].

2 Functions

2-1370

Parameter Field Require
d or
Optiona
l

Values Description

SecondaryScramblin
gCode

Required Nonnegative integer SCPICH secondary scrambling code index,
specified as a nonnegative integer in the
interval [0, 15].

Power Required Float, –inf, inf SCPICH power in dB, specified as a float, –
inf, or inf.

PSCH Substructure

To add the physical shared channel (PSCH) to the output structure, include the PSCH substructure in
the config structure. The PSCH substructure contains the following fields.

Parameter Field Require
d or
Optiona
l

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by specifying
Enable as 'On' or 'Off', respectively.

Power Required Float, –inf, inf PSCH power in dB, specified as a float, –inf,
or inf.

SSCH Substructure

To add the secondary synchronization channel (SSCH) to the output structure, include the SSCH
substructure in the config structure. The SSCH substructure contains the following fields.

Parameter Field Require
d or
Optiona
l

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by specifying
Enable as 'On' or 'Off', respectively.

Power Required Float, –inf, inf SSCH power in dB, specified as a float, –inf,
or inf.

PICH Substructure

To add the page indicator channel (PICH) to the output structure, include the PICH substructure in
the config structure. The PICH substructure contains the following fields.

Parameter Field Require
d or
Optiona
l

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by specifying
Enable as 'On' or 'Off', respectively.

 umtsDownlinkWaveformGenerator

2-1371

Parameter Field Require
d or
Optiona
l

Values Description

SpreadingCode Required Nonnegative integer PICH spreading code, specified as a
nonnegative integer in the interval [0, 255].

TimingOffset Required Nonnegative integer Timing offset in terms of the number of chips
(x256Tchip), specified as a nonnegative
integer in the interval [0, 149].

Power Required Float, –inf, inf PICH power in dB, specified as a float, –inf,
or inf.

DataSource Required Scalar, vector, character
vector, cell array, or string
scalar

PICH data source, specified as a binary
scalar, a vector with binary entries, a
character vector, a cell array, or a string
scalar.

When defined as a cell array use standard
PN sequences and a seed value: {PN, seed}.
PN options for character vector or cell array
are 'PN9-ITU', 'PN9', 'PN11', 'PN15',
and 'PN23'. If no seed is specified, the shift
register is initialized with all ones.

To use paging data, specify DataSource as
'PagingData'.

Np Required Positive integer Number of paging indicators per frame,
specified as one of the values 18, 36, 72,
144.

HSDPA Substructure

To add high-speed downlink packet access (HSDPA) information and channels to the output structure,
include the HSDPA substructure in the config structure. The HSDPA substructure contains the
following fields.

Parameter Field Require
d or
Optiona
l

Values / Ranges / Notes Description

Enable Required 'On', 'Off' Enable or disable the HSDPA channels (HS-
PDSCHs and HS-SCCH) by specifying
Enable as 'On' or 'Off', respectively.

CodeGroup Required Positive integer Number of channelization codes used
simultaneously for HS-PDSCHs, specified as
a positive integer in the interval [1, 16].

CodeOffset Required Nonnegative integer Offset to the first channelization code to use
for HS-PDSCHs, specified as a nonnegative
integer in the interval [0, 15].

2 Functions

2-1372

Parameter Field Require
d or
Optiona
l

Values / Ranges / Notes Description

Modulation Required 'QPSK', '16QAM', '64QAM' Symbol modulation, specified as one of the
values 'QPSK', '16QAM', or '64QAM'.

VirtualBufferCapac
ity

Required Positive integer Number of soft channel bits (or soft metric
location) in a HARQ process for the H-Sets
as defined in TS 36.101 Annex A.7. Specify
VirtualBufferCapacity as a positive
integer. The number of soft channel bits
depends on the UE category as specified in
TS 25.306 Section 5.1. The value of this
parameter must match the number of soft
channel bits in a HARQ process used in the
test device or decoding software.

InterTTIDistance Required Positive integer Transmission time interval in subframes.
This interval is the distance between
different HARQ transmissions to the same
UE.

• A value of 1 indicates continuous HSDPA
transmissions in every subframe to the
UE under test.

• A value larger than 1 indicates the
presence of gap subframes with no data
transmission to the UE under test.

NHARQProcesses Required Positive integer Total number of HARQ processes, specified
as a positive integer in the interval [1, 8].

 umtsDownlinkWaveformGenerator

2-1373

Parameter Field Require
d or
Optiona
l

Values / Ranges / Notes Description

XrvSequence Required Nonnegative integer, vector of
nonnegative integers

Redundancy and constellation version
coding sequence, specified as a nonnegative
integer, or a vector whose entries are
nonnegative integers, in the interval [0, 7].
XrvSequence encodes the redundancy
version parameters (r,s) and constellation
version as defined in TS 25.212 Section 4.6.
The encoding includes the constellation
version only if the modulation scheme is
16QAM/64QAM. The values are used by
each HARQ process for each transmission.

• A scalar indicates a single transmission.
• A vector indicates retransmissions. The

new data indicator bit signalled by HS-
SCCH stays the same and the
redundancy version changes to the value
encoded in the next element of
XrvSequence.

When a HARQ process completes all
transmissions corresponding to the
XrvSequence, the new data indicator bit
toggles between 0 and 1 indicating a new
transmission. For more information, see TS
25.321 Section 11.6.1.3.

For sequences used for HSDPA H-Sets, see
TS 25.101 Section 9.

UEId Required Nonnegative integer UE identity, specified as a nonnegative
integer in the interval [0, 216 – 1].

TransportBlockSize
Id

Required Nonnegative integer Transport block size index (xtbs) signaled on
the HS-SCCH as defined in TS 25.212
Section 4.6. The calculation is based on the
HSDSCH.BlockSize parameter used for
transmission as defined in TS 25.321 Section
9.2.3 Annex A. Specify
TransportBlockSizeID as a nonnegative
integer in the interval [0, 63].

HSSCCHSpreadingCod
e

Required Nonnegative integer HS-SCCH spreading code, specified as a
nonnegative integer in the interval [0, 127].

SecondaryScramblin
gCode

Required Nonnegative integer Secondary scrambling code index for HS-
PDSCH and HS-SCCH channels, specified as
a nonnegative integer in the interval [0, 15].

2 Functions

2-1374

Parameter Field Require
d or
Optiona
l

Values / Ranges / Notes Description

HSPDSCHPower Required Float, –inf, inf HS-PDSCH power in dB, specified as a float,
–inf, or inf.

HSSCCHPower Required Floatinf, inf HS-SCCH power in dB, specified as a float, –
inf, or inf.

DataSource Required Scalar, vector, character
vector, cell array, or string
scalar

HSDPA data source, specified as a binary
scalar, a vector with binary entries, a
character vector, a cell array, or a string
scalar.

When specifying DataSource as a cell
array, use standard PN sequences and a seed
value in the form {PN, seed}. PN options for
character vector or cell array are 'PN9-
ITU', 'PN9', 'PN11', 'PN15', and
'PN23'. If no seed is specified, the shift
register is initialized with all ones.

To enable HS-DSCH transport channel
coding, specify DataSource as 'HSDSCH'.

HSDSCH Optional Not present or a structure HS-DSCH transport channel configuration,
specified as a structure.

The following fields are required only if the HSDSCH substructure is present.
  
HSDSCH.BlockSize

Required Nonnegative integer Transport block size, specified as a
nonnegative integer.

  
HSDSCH.DataSource

Required Scalar, vector, character
vector, cell array, or string
scalar

HS-DSCH transport data source, specified as
a binary scalar, a vector with binary entries,
a cell array, or a string scalar.

When defined as a cell array use standard
PN sequences and a seed value: {PN, seed}.
PN options for character vector or cell array
are 'PN9-ITU', 'PN9', 'PN11', 'PN15',
and 'PN23'.

If no seed is specified, the shift register is
initialized with all ones.

In the generator, the HSPDA functionality creates continuous HS-PDSCH and HS-SCCH
transmissions. This functionality supports the HSPDA H-Set fixed reference channels where a multi-
HARQ reference transmission sequence is defined. The multi-HARQ reference transmission sequence
is masked with the same RNTI, directed at a single UE specified by the UEId parameter. The
NHARQProcesses and InterTTIDistance parameters define the reference transmission frequency
to the UE. Any gaps between the reference subframes are filled with additional HS-PDSCH/HS-SCCH
subframes. These subframes are masked with a complementary RNTI, directed at a different UE
defined as xor(UEId,65535). The NHARQProcesses parameter gives the numbers of HARQ
processes used in the reference transmission. The number of gap subframes between each transport

 umtsDownlinkWaveformGenerator

2-1375

block transmission or retransmission for different HARQ processes is InterTTIDistance-1. Due to
the HARQ ACK-NACK feedback signaling requirements, the gap between the transmissions of the
same HARQ process should be no less than six subframes.

The HSDPA.DataSource parameter controls the data transmitted on the reference PDSCH and HS-
SCCH physical channels. If HSDPA.DataSource is set to 'HSDSCH', the reference PDSCH data
comes from an HS-DSCH transport channel and the HS-SCCH channel carries the associated control
information. In this case, the source to the HS-DSCH transport channel is parameterized by the fields
in the HSDSCH substructure data (transport block size and data stream). This reference data is also
used to fill the non-reference gap subframes:

• The gap HS-PDSCH subframes are filled with the same HS-DSCH encoded data used for reference
transmission. The encoded data is scrambled according to the subframe.

• The gap HS-SCCH subframes are filled with the encoded control information using the
complimentary RNTI.

The HS-SCCH transmission is aligned with the scrambling boundary. The HS-PDSCH transmission
begins 2×Tslot = 5120 chips after the start of the HS-SCCH (see TS 25.211 Section 7.8). To fill the
first two slots in the generated waveform, the HS-PDSCH wraps around for the last subframe.

The virtualBufferCapacity parameter must match the number of soft channel bits in a HARQ
process used in the test device or decoding software.

OCNS Substructure

To add orthogonal channel noise source (OCNS) information to the output structure, include the OCNS
substructure in the config structure. The OCNS substructure contains the following fields.

Parameter Field Require
d or
Optiona
l

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by specifying
Enable as 'On' or 'Off', respectively.

Power Required Float, –inf, or inf OCNS overall power in dB, specified as a
float, -inf, or inf.

2 Functions

2-1376

Parameter Field Require
d or
Optiona
l

Values Description

OCNSType Required Character vector or string
scalar

If OCNS is enabled, OCNSType specifies
which OCNS configuration to use. The OCNS
substructure and OCNSType field are used to
generate:

• DPCHs, defined as OCNS channels in TS
25.101.

• DPCHs, HS-PDSCHs, and HS-SCCHs,
defined for test models in TS 25.141,
Section 6.

For RMCs and H-Sets, specify OCNSType
as one of these values: 'RMC_16DPCH',
'H-Set_6DPCH', 'H-Set_4DPCH'

For Test Model DPCH and HS-
PDSCH/HS-SCCH sets, specify
OCNSType as one of these values:
'TM1_4DPCH', 'TM1_8DPCH',
'TM1_16DPCH', 'TM1_32DPCH',
'TM1_64DPCH', 'TM2_3DPCH',
'TM3_4DPCH', 'TM3_8DPCH',
'TM3_16DPCH', 'TM3_32DPCH',
'TM5_4DPCH_4HSPDSCH',
'TM5_6DPCH_2HSPDSCH',
'TM5_14DPCH_4HSPDSCH',
'TM5_30DPCH_8HSPDSCH',
'TM6_4DPCH_4HSPDSCH',
'TM6_30DPCH_8HSPDSCH'.

For test model generation, set the
corresponding channel configuration
Enable field to 'Off'.

Output Arguments
waveform — Modulated baseband waveform containing the UMTS physical channels
complex vector array

Modulated baseband waveform containing the UMTS physical channels, returned as a complex vector
array, sampled at (3.84 × config.OversamplingRatio) MHz.
Data Types: double

Version History
Introduced in R2015a

 umtsDownlinkWaveformGenerator

2-1377

References
[1] 3GPP TS 25.101. “Universal Mobile Telecommunications System (UMTS); User Equipment (UE)

Radio Transmission and Reception (FDD).” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 25.141. “Universal Mobile Telecommunications System (UMTS); Base Station (BS)
Conformance Testing (FDD).” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

[3] 3GPP TS 25.211. “Universal Mobile Telecommunications System (UMTS); Physical channels and
mapping of transport channels onto physical channels (FDD).” 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network. URL: https://www.3gpp.org.

[4] 3GPP TS 25.212. “Universal Mobile Telecommunications System (UMTS); Multiplexing and
channel coding (FDD).” 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network. URL: https://www.3gpp.org.

[5] 3GPP TS 25.306. “Universal Mobile Telecommunications System (UMTS); UE Radio Access
capabilities.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[6] 3GPP TS 25.321. “Universal Mobile Telecommunications System (UMTS); Medium Access Control
(MAC) protocol specification.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

[7] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)
Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

See Also
umtsDownlinkReferenceChannels | umtsUplinkReferenceChannels |
umtsUplinkWaveformGenerator

Topics
“Downlink Reference Channel and Waveform Generation Parameter Structures”

2 Functions

2-1378

https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org

umtsUplinkReferenceChannels
UMTS uplink measurement channel definition

Syntax
config = umtsUplinkReferenceChannels(rc)

Description
config = umtsUplinkReferenceChannels(rc) returns a structure containing the configuration
parameters for the UMTS uplink reference channel defined by rc. The output structure, config,
contains the configuration parameters required by umtsUplinkWaveformGenerator to generate an
uplink reference channel waveform. umtsUplinkReferenceChannels uses, rc, to initialize a
configuration data structure that is compliant with one of the reference channels defined in the
following 3GPP standards:

• Uplink RMC configurations are defined in TS 25.101, Annex A.2 [1].
• Uplink E-DPDCH FRC configurations are as defined in TS 25.141, Annex 10 [2].

Examples

UMTS Uplink Reference Channel Initialization

Initialize a 'RMC12.2kbps' reference channel.

Generate the configuration structure, config.

rc = 'RMC12.2kbps';
config = umtsUplinkReferenceChannels(rc);

The output from umtsUplinkReferenceChannels provides the input required to generate the
desired UMTS waveform corresponding to these settings.

Examine the DPDCH field in config. This field uses a nested structure to define this physical channel
for the 'RMC12.2kbps' reference channel.

config

config = struct with fields:
 TotFrames: 1
 ScramblingCode: 1
 FilterType: 'RRC'
 OversamplingRatio: 4
 NormalizedPower: 'Off'
 DPDCH: [1x1 struct]
 DPCCH: [1x1 struct]
 HSUPA: [1x1 struct]
 HSDPCCH: [1x1 struct]

config.DPDCH

 umtsUplinkReferenceChannels

2-1379

ans = struct with fields:
 Enable: 'On'
 SlotFormat: 2
 CodeCombination: 64
 Power: 0
 DataSource: 'CCTrCH'
 CCTrCH: [1x1 struct]

config.DPDCH.CCTrCH

ans = struct with fields:
 Name: 'DCH'
 TrCH: [1x2 struct]

config.DPDCH.CCTrCH.TrCH(1)

ans = struct with fields:
 Name: 'DTCH'
 CRC: '16'
 CodingType: 'conv3'
 RMA: 256
 TTI: 20
 DataSource: 'PN9-ITU'
 ActiveDynamicPart: 1
 DynamicPart: [1x1 struct]

config.DPDCH.CCTrCH.TrCH(1).DynamicPart

ans = struct with fields:
 BlockSize: 244
 BlockSetSize: 244

config.DPDCH.CCTrCH.TrCH(2)

ans = struct with fields:
 Name: 'DCCH'
 CRC: '12'
 CodingType: 'conv3'
 RMA: 256
 TTI: 40
 DataSource: 'PN9-ITU'
 ActiveDynamicPart: 1
 DynamicPart: [1x1 struct]

config.DPDCH.CCTrCH.TrCH(2).DynamicPart

ans = struct with fields:
 BlockSize: 100
 BlockSetSize: 100

2 Functions

2-1380

Input Arguments
rc — Reference channel configuration
character vector | string scalar

Reference channel configuration, specified as a character vector or string scalar. rc identifies which
RMC or E-DPDCH FRC to configure. Values for rc when specified as a character vector include (for
string scalar use double quotes):

Parameter Field Requi
red or
Optio
nal

Values Description

rc Requir
ed

Reference measurement channels:

'RMC12.2kbps', 'RMC64kbps',
'RMC144kbps', 'RMC384kbps'

Reference channel identifying the W-
CDMA uplink RMC configuration set-
up as defined in TS 25.101, Annex A.2
[1].

E-DPDCH Fixed Reference Channels:

'FRC1', 'FRC2', 'FRC3', 'FRC4',
'FRC5', 'FRC6', 'FRC7', 'FRC8'

Reference channel identifying the E-
DPDCH FRC configuration as defined
in TS 25.141, Annex A.10 [2].

Note Additional standards-based reference channels can be configured by executing
lteUplinkReferenceChannels and then adjusting parameters to match configurations defined in
TS 25.141 [2]. For example:

• To generate the HS-DPCCH RMC, use 'RMC12.2kbps' and set HSDPCCH.Enable = 'On'.
• To generate the 12.2 kbps RMC defined in TS 25.141 [2], use 'RMC12.2kbps'. Using this value

the function initializes config to generate the TS 25.101 [1] 12.2 kbps RMC). After config is
generated, adjust the DPDCH and DPCCH parameters to align with the settings in TS 25.141 [2].

Data Types: char | string

Output Arguments
config — Definition of the channels included for the waveform generator
structure

Top-Level Parameters and Substructures

Definition of the channels included for the waveform generator, returned as a structure.

Parameter Field Required or
Optional

Values Description

TotFrames Required Positive scalar integer Total number of frames to be generated
ScramblingCode Required Scalar integer

0− 224− 1

Scrambling code index used by UE

 umtsUplinkReferenceChannels

2-1381

Parameter Field Required or
Optional

Values Description

FilterType Required 'RRC', or 'Off' Enable the RRC filter
OversamplingRatio Required Positive scalar integer Oversampling ratio
NormalizedPower Required Float (-inf to +inf) or

'Off' to disable power
normalization

Overall waveform power in dBW relative
to 1 ohm

DPDCH Optional Not present or single
structure

See DPDCH Substructure.

DPCCH Optional Not present or single
structure

See DPCCH Substructure.

HSUPA Optional Not present or single
structure

See HSUPA Substructure.

HSDPCCH Optional Not present or single
structure

See HSDPCCH Substructure.

DPDCH Substructure

Include the DPDCH substructure in the config structure to add the dedicated physical data channel
to the output structure. The DPDCH substructure contains the following fields.

Parameter Field Required
or Optional

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by
specifying Enable as 'On' or 'Off,
respectively.

SlotFormat Required Nonnegative integer DPDCH slot format number, specified as
0, 1, 2, 3, 4, 5, or 6.

CodeCombination Required Nonnegative integer,
vector

Valid spreading factors, specified as a
power of two or a vector of powers of
two in the interval [4, 256].

Power Required Float, –inf, inf Channel power in dB, specified as a
float, –inf, or inf.

DataSource Required Scalar, vector, character
vector, cell array, string
scalar

DPDCH data source, specified as a
scalar, vector, cell array, or string scalar.

When defined as a cell array, use
standard PN sequences and a seed
value: {PN, seed}. PN options for
character vector or cell array are 'PN9-
ITU', 'PN9', 'PN11', 'PN15', and
'PN23'. If no seed is specified, the shift
register is initialized with all ones.

To enable transport channel coding,
specify DataSource as 'CCTrCH'.

CCTrCH Optional Structure See CCTrCH Substructure.

2 Functions

2-1382

CCTrCH Substructure

The CCTrCH substructure is associated with the DPDCH physical channel definition substructures.
The CCTrCH substructure contains the following fields.

Parameter Field Required
or Optional

Values Description

Name Optional Character vector, string
scalar

Default depends on the
physical channel specified

Name assigned to the CCTrCH, specified
as a character vector or a string scalar.
Functions do not use the Name field.
Therefore, you can redefine the content
with no consequence.

TrCH Required Structure, structure array Transport channels in the CCTrCH,
specified as a structure or a structure
array.

  TrCH.Name Required Character vector or string
scalar

Default depends on the
physical channel specified

Name assigned to the TrCH, specified as
a character vector or a string scalar.
Functions do not use the Name field.
Therefore, you can redefine the content
with no consequence.

  TrCH.CRC Required Character vector, string
scalar

Cyclic redundancy check (CRC)
polynomial specifier, specified as one of
these values: '0', '8', '12', '16', or
'24'.

  TrCH.TTI Required Positive integer Transmission Time Interval (TTI) in ms,
specified as 10, 20, 40, or 80.

  TrCH.CodingType Required 'turbo', 'conv2',
'conv3'

Channel coding type and rate, specified
as 'turbo', 'conv2', or 'conv3'.

  TrCH.RMA Required Positive integer Rate matching attribute value, specified
as a positive integer in the interval [1,
256].

  TrCH.DataSource Required Binary scalar, binary
vector, character vector,
cell array, or string scalar

Transport channel data source, specified
as a binary scalar, a vector with binary
entries, a cell array, or a string scalar.

When defined as a cell array use
standard PN sequences and a seed value:
{PN, seed}. PN options for character
vector or cell array are 'PN9-ITU',
'PN9', 'PN11', 'PN15', and 'PN23'. If
no seed is specified, the shift register is
initialized with all ones.

 umtsUplinkReferenceChannels

2-1383

Parameter Field Required
or Optional

Values Description

Examples for setting the DataSource field include:

• ...CCTrCH.TrCh(1).DataSource = [1 0 0 1], generates a
sequence of transport blocks by looping the vector [1 0 0 1].

• ...CCTrCH.TrCh(1).DataSource = 'PN9', generates a
physical channel data block with random seed = 511.

• ...CCTrCH.TrCh(1).DataSource = {'PN9',5}, generates a
physical channel data block with seed = 5.

  
TrCH.ActiveDynamicPa
rt

Required Positive integer, vector Active dynamic part, specified as a
positive integer or a vector whose entries
are positive integers in the interval [1,
length(DynamicPart)].

The ActiveDynamicPart field indicates the DynamicPart array
index for the active transport format (BlockSize,
BlockSetSize) from available combinations defined in
DynamicPart. The selected transport format is used for data
transmission in the current TTI.

  TrCH.DynamicPart Required Structure, structure array Size of each transport block, specified as
a structure or a structure array.

The DynamicPart fields, BlockSize and BlockSetSize, define the
size of each transport block and the total bits per transport block set.
As a pair (BlockSize, BlockSetSize) describe a transport
format set. DynamicPart defines one or multiple transport format
sets.

  
TrCH.DynamicPart.Blo
ckSize

Required Positive integer Transport block length, specified as a
positive integer.

  
TrCH.DynamicPart.Blo
ckSetSize

Required Integer, multiple of
BlockSize

Total number of bits in the transport
block set. Implementation does not
support multiple transport blocks, so by
definition BlockSize is equal to
BlockSetSize.

DPCCH Substructure

Include the DPCCH substructure in the config structure to add the dedicated physical control
channel to the output structure. The DPCCH substructure contains the following fields.

Parameter Field Required
or Optional

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by setting
Enable to 'On' or 'Off', respectively.

SlotFormat Required Nonnegative integer DPCCH slot format number, specified as
0, 1, 2, 3, 4, or 5.

Power Required Float, –inf, inf DPCCH power in dB, specified as a float,
–inf, or inf.

2 Functions

2-1384

Parameter Field Required
or Optional

Values Description

TPCData Required Binary scalar, binary
vector

Transmit power control data, specified as
a binary scalar or a vector with binary
entries.

TFCI Required Nonnegative integer Transport format combination indicator,
specified as a nonnegative integer in the
interval [0, 1023].

FBIData Required Binary scalar, binary
vector

Feedback information data, specified as a
binary scalar or a vector with binary
entries.

HSUPA Substructure

Include the HSUPA substructure in the config structure to add the high speed uplink packet access
information and channels to the output structure. The HSUPA substructure contains the following
fields.

Parameter Field Required
or Optional

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by
specifying Enable as 'On' or 'Off',
respectively.

CodeCombination Required Positive integer, vector Valid one-code combinations for BPSK
modulation are: 2, 4, 8, 16, 32, 64, 128,
and 256.

Valid two-code combinations for BPSK
modulation are [2 2] and [4 4].

The valid four-code combination for
BPSK and 4PAM modulation is [2 2 4 4].

EDPDCHPower Required Float, –inf, inf E-DPDCH channel power in dB, specified
as a float, –inf, or inf.

EDPCCHPower Required Float, –inf, inf E-DPCCH channel power in dB, specified
as a float, –inf, or inf.

RSNSequence Required Vector Retransmission sequence numbers,
specified as a vector whose entries are 0,
1, 2, or 3. The length of this vector
determines the number of
retransmissions.

ETFCI Required Nonnegative integer E-TFCI value, specified as a nonnegative
integer in the interval [0, 127].

HappyBit Required 0 or 1 Happy bit, specified as 0 or 1.

 umtsUplinkReferenceChannels

2-1385

Parameter Field Required
or Optional

Values Description

DataSource Required Scalar, vector, character
vector, cell array, or string
scalar

E-DPDCH data source, specified as a
binary scalar, a vector with binary
entries, a character vector, a cell array,
or a string scalar.

When specifying DataSrouce as a cell
array, use standard PN sequences and a
seed value: {PN, seed}. PN options for
character vector or cell array are 'PN9-
ITU', 'PN9', 'PN11', 'PN15', and
'PN23'. If no seed is specified, the shift
register is initialized with all ones.

To enable transport channel coding,
specify DataSource as 'EDCH'.

EDCH Required Structure Enhanced dedicated channel (EDCH),
specified as a structure.

  EDCH.BlockSize Required Nonnegative integer Transport block size, specified as a
nonnegative integer.

  EDCH.TTI Required 2, 10 Transmission Time Interval (TTI), in ms,
specified as 2 or 10.

  EDCH.Modulation Required 'BPSK', '4PAM' Modulation scheme, specified as 'BPSK'
or '4PAM'.

  EDCH.DataSource Required Scalar, vector, character
vector, cell array, or string
scalar

E-DCH transport data source, specified
as a binary scalar, a vector with binary
entries, a character vector, a cell array,
or a string scalar.

When specifying DataSource as a cell
array, use standard PN sequences and a
seed value: {PN, seed}. PN options for
character vector or cell array are 'PN9-
ITU', 'PN9', 'PN11', 'PN15', and
'PN23'. If no seed is specified, the shift
register is initialized with all ones.

HSDPCCH Substructure

Include HSDPCCH substructure in config structure to add the high speed dedicated physical control
channel to the output structure. The HSDPCCH substructure contains the following fields.

Parameter Field Required
or Optional

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by
specifying Enable as 'On' or 'Off',
respectively.

2 Functions

2-1386

Parameter Field Required
or Optional

Values Description

Power Required Float, –inf, inf HS-DPCCH channel power in dB,
specified as a float, –inf, or inf.

CQI Required Nonnegative integer,
vector

CQI values, specified as a nonnegative
integer or a vector whose entries are
nonnegative integers in the interval [0,
30].

HARQACK Required Nonnegative integer,
vector

HARQACK messages, specified as a
nonnegative integer or a vector whose
entries are nonnegative integers in the
interval [0, 3].

UEMIMO Required 0, 1 Flag to indicate MIMO mode, specified as
0 or 1.

Version History
Introduced in R2015a

References
[1] 3GPP TS 25.101. “Universal Mobile Telecommunications System (UMTS); User Equipment (UE)

Radio Transmission and Reception (FDD).” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 25.141. “Universal Mobile Telecommunications System (UMTS); Base Station (BS)
Conformance Testing (FDD).” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

See Also
umtsUplinkWaveformGenerator | umtsDownlinkReferenceChannels |
umtsDownlinkWaveformGenerator

Topics
“Uplink Reference Channel and Waveform Generation Parameter Structures”

 umtsUplinkReferenceChannels

2-1387

https://www.3gpp.org
https://www.3gpp.org

umtsUplinkWaveformGenerator
UMTS uplink waveform generation

Syntax
waveform = umtsUplinkWaveformGenerator(config)

Description
waveform = umtsUplinkWaveformGenerator(config) returns the Universal Mobile
Telecommunications Service (UMTS) uplink waveform defined by the configuration structure,
config. This function supports Wideband Code Division Multiple Access (W-CDMA), High-Speed
Uplink Packet Access (HSUPA), and Evolved High-Speed Uplink Packet Access (HSPA+) waveform
generation. The top-level parameters and lower-level substructures of config characterize the
waveform and channel properties of the umtsUplinkWaveformGenerator function output. The
config input is generated using the umtsUplinkReferenceChannels function; config includes
top-level parameters and substructures to describe the different channels to include in the waveform.
The top-level parameters of config are: TotFrames, ScramblingCode, FilterType,
OversamplingRatio, and NormalizedPower. To enable the specific channels, you can add
associated substructures: DPDCH, DPCCH, HSUPA, and HSDPCCH.

Examples

UMTS Uplink Waveform Generation

Initialize an 'RMC384kbps' reference channel and generate the UMTS waveform that corresponds to
these settings.

Generate the configuration structure, config.

rc = 'RMC384kbps';
config = umtsUplinkReferenceChannels(rc);

Generate the desired waveform using config as the input to the waveform generation function.
Create a spectrum analyzer object sampling at chiprate x OversamplingRatio. Plot the
waveform.

waveform = umtsUplinkWaveformGenerator(config);
saScope = spectrumAnalyzer(SampleRate=3.84e6*config.OversamplingRatio);
saScope(waveform);

2 Functions

2-1388

Input Arguments
config — Definition of the channels included for the waveform generator
structure

Top-Level Parameters and Substructures

Definition of the channels included by the waveform generator, specified as a structure.

Parameter Field Required or
Optional

Values Description

TotFrames Required Positive integer Total number of frames to be generated,
specified as a positive integer.

ScramblingCode Required Nonnegative integer Scrambling code index used by user
equipment (UE), specified as a
nonnegative integer in the interval [0,
224–1].

FilterType Required 'RRC' (default), or 'Off' Enable or disable the RRC Filter by
specifying FilterType as 'RRC' or
'Off', respectively.

OversamplingRatio Required Positive integer Oversampling ratio, specified as a
positive integer.

 umtsUplinkWaveformGenerator

2-1389

Parameter Field Required or
Optional

Values Description

NormalizedPower Required Float, –inf, inf, 'Off' Overall waveform power in dBW relative
to 1 ohm, specified as a float, –inf, inf,
or 'Off'. Disable power normalization
by specifying NormalizedPower as
'Off'.

DPDCH Optional Not present or structure See DPDCH Substructure.
DPCCH Optional Not present or structure See DPCCH Substructure.
HSUPA Optional Not present or structure See HSUPA Substructure.
HSDPCCH Optional Not present or structure See HSDPCCH Substructure.

DPDCH Substructure

To add the dedicated physical data channel (DPDCH) to the output structure, include the DPDCH
substructure in the config structure. The DPDCH substructure contains the following fields.

Parameter Field Required
or Optional

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by
specifying Enable as 'On' or 'Off,
respectively.

SlotFormat Required Nonnegative integer DPDCH slot format number, specified as
0, 1, 2, 3, 4, 5, or 6.

CodeCombination Required Nonnegative integer,
vector

Valid spreading factors, specified as a
power of two or a vector of powers of
two in the interval [4, 256].

Power Required Float, –inf, inf Channel power in dB, specified as a
float, –inf, or inf.

DataSource Required Scalar, vector, character
vector, cell array, string
scalar

DPDCH data source, specified as a
scalar, vector, cell array, or string scalar.

When defined as a cell array, use
standard PN sequences and a seed
value: {PN, seed}. PN options for
character vector or cell array are 'PN9-
ITU', 'PN9', 'PN11', 'PN15', and
'PN23'. If no seed is specified, the shift
register is initialized with all ones.

To enable transport channel coding,
specify DataSource as 'CCTrCH'.

CCTrCH Optional Structure See CCTrCH Substructure.

CCTrCH Substructure

The CCTrCH substructure is associated with the DPDCH physical channel definition substructures.
The CCTrCH substructure contains the following fields.

2 Functions

2-1390

Parameter Field Required
or Optional

Values Description

Name Optional Character vector, string
scalar

Default depends on the
physical channel specified

Name assigned to the CCTrCH, specified
as a character vector or a string scalar.
Functions do not use the Name field.
Therefore, you can redefine the content
with no consequence.

TrCH Required Structure, structure array Transport channels in the CCTrCH,
specified as a structure or a structure
array.

  TrCH.Name Required Character vector or string
scalar

Default depends on the
physical channel specified

Name assigned to the TrCH, specified as
a character vector or a string scalar.
Functions do not use the Name field.
Therefore, you can redefine the content
with no consequence.

  TrCH.CRC Required Character vector, string
scalar

Cyclic redundancy check (CRC)
polynomial specifier, specified as one of
these values: '0', '8', '12', '16', or
'24'.

  TrCH.TTI Required Positive integer Transmission Time Interval (TTI) in ms,
specified as 10, 20, 40, or 80.

  TrCH.CodingType Required 'turbo', 'conv2',
'conv3'

Channel coding type and rate, specified
as 'turbo', 'conv2', or 'conv3'.

  TrCH.RMA Required Positive integer Rate matching attribute value, specified
as a positive integer in the interval [1,
256].

  TrCH.DataSource Required Binary scalar, binary
vector, character vector,
cell array, or string scalar

Transport channel data source, specified
as a binary scalar, a vector with binary
entries, a cell array, or a string scalar.

When defined as a cell array use
standard PN sequences and a seed value:
{PN, seed}. PN options for character
vector or cell array are 'PN9-ITU',
'PN9', 'PN11', 'PN15', and 'PN23'. If
no seed is specified, the shift register is
initialized with all ones.

Examples for setting the DataSource field include:

• ...CCTrCH.TrCh(1).DataSource = [1 0 0 1], generates a
sequence of transport blocks by looping the vector [1 0 0 1].

• ...CCTrCH.TrCh(1).DataSource = 'PN9', generates a
physical channel data block with random seed = 511.

• ...CCTrCH.TrCh(1).DataSource = {'PN9',5}, generates a
physical channel data block with seed = 5.

 umtsUplinkWaveformGenerator

2-1391

Parameter Field Required
or Optional

Values Description

  
TrCH.ActiveDynamicPa
rt

Required Positive integer, vector Active dynamic part, specified as a
positive integer or a vector whose entries
are positive integers in the interval [1,
length(DynamicPart)].

The ActiveDynamicPart field indicates the DynamicPart array
index for the active transport format (BlockSize,
BlockSetSize) from available combinations defined in
DynamicPart. The selected transport format is used for data
transmission in the current TTI.

  TrCH.DynamicPart Required Structure, structure array Size of each transport block, specified as
a structure or a structure array.

The DynamicPart fields, BlockSize and BlockSetSize, define the
size of each transport block and the total bits per transport block set.
As a pair (BlockSize, BlockSetSize) describe a transport
format set. DynamicPart defines one or multiple transport format
sets.

  
TrCH.DynamicPart.Blo
ckSize

Required Positive integer Transport block length, specified as a
positive integer.

  
TrCH.DynamicPart.Blo
ckSetSize

Required Integer, multiple of
BlockSize

Total number of bits in the transport
block set. Implementation does not
support multiple transport blocks, so by
definition BlockSize is equal to
BlockSetSize.

DPCCH Substructure

To add the dedicated physical control channel (DPCCH) to the output structure, include the DPCCH
substructure in the config structure. The DPCCH substructure contains the following fields.

Parameter Field Required
or Optional

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by setting
Enable to 'On' or 'Off', respectively.

SlotFormat Required Nonnegative integer DPCCH slot format number, specified as
0, 1, 2, 3, 4, or 5.

Power Required Float, –inf, inf DPCCH power in dB, specified as a float,
–inf, or inf.

TPCData Required Binary scalar, binary
vector

Transmit power control data, specified as
a binary scalar or a vector with binary
entries.

TFCI Required Nonnegative integer Transport format combination indicator,
specified as a nonnegative integer in the
interval [0, 1023].

2 Functions

2-1392

Parameter Field Required
or Optional

Values Description

FBIData Required Binary scalar, binary
vector

Feedback information data, specified as a
binary scalar or a vector with binary
entries.

HSUPA Substructure

To add the high-speed uplink packet access (HSUPA) information and channels to the output
structure, include the HSUPA substructure in the config structure. The HSUPA substructure contains
the following fields.

Parameter Field Required
or Optional

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by
specifying Enable as 'On' or 'Off',
respectively.

CodeCombination Required Positive integer, vector Valid one-code combinations for BPSK
modulation are: 2, 4, 8, 16, 32, 64, 128,
and 256.

Valid two-code combinations for BPSK
modulation are [2 2] and [4 4].

The valid four-code combination for
BPSK and 4PAM modulation is [2 2 4 4].

EDPDCHPower Required Float, –inf, inf E-DPDCH channel power in dB, specified
as a float, –inf, or inf.

EDPCCHPower Required Float, –inf, inf E-DPCCH channel power in dB, specified
as a float, –inf, or inf.

RSNSequence Required Vector Retransmission sequence numbers,
specified as a vector whose entries are 0,
1, 2, or 3. The length of this vector
determines the number of
retransmissions.

ETFCI Required Nonnegative integer E-TFCI value, specified as a nonnegative
integer in the interval [0, 127].

HappyBit Required 0 or 1 Happy bit, specified as 0 or 1.

 umtsUplinkWaveformGenerator

2-1393

Parameter Field Required
or Optional

Values Description

DataSource Required Scalar, vector, character
vector, cell array, or string
scalar

E-DPDCH data source, specified as a
binary scalar, a vector with binary
entries, a character vector, a cell array,
or a string scalar.

When specifying DataSrouce as a cell
array, use standard PN sequences and a
seed value: {PN, seed}. PN options for
character vector or cell array are 'PN9-
ITU', 'PN9', 'PN11', 'PN15', and
'PN23'. If no seed is specified, the shift
register is initialized with all ones.

To enable transport channel coding,
specify DataSource as 'EDCH'.

EDCH Required Structure Enhanced dedicated channel (EDCH),
specified as a structure.

  EDCH.BlockSize Required Nonnegative integer Transport block size, specified as a
nonnegative integer.

  EDCH.TTI Required 2, 10 Transmission Time Interval (TTI), in ms,
specified as 2 or 10.

  EDCH.Modulation Required 'BPSK', '4PAM' Modulation scheme, specified as 'BPSK'
or '4PAM'.

  EDCH.DataSource Required Scalar, vector, character
vector, cell array, or string
scalar

E-DCH transport data source, specified
as a binary scalar, a vector with binary
entries, a character vector, a cell array,
or a string scalar.

When specifying DataSource as a cell
array, use standard PN sequences and a
seed value: {PN, seed}. PN options for
character vector or cell array are 'PN9-
ITU', 'PN9', 'PN11', 'PN15', and
'PN23'. If no seed is specified, the shift
register is initialized with all ones.

HSDPCCH Substructure

Include HSDPCCH substructure in config structure To add the high speed dedicated physical control
channel (HS-DPCCH) to the output structure. The HSDPCCH substructure contains the following
fields.

Parameter Field Required
or Optional

Values Description

Enable Required 'On', 'Off' Enable or disable the channel by
specifying Enable as 'On' or 'Off',
respectively.

2 Functions

2-1394

Parameter Field Required
or Optional

Values Description

Power Required Float, –inf, inf HS-DPCCH channel power in dB,
specified as a float, –inf, or inf.

CQI Required Nonnegative integer,
vector

CQI values, specified as a nonnegative
integer or a vector whose entries are
nonnegative integers in the interval [0,
30].

HARQACK Required Nonnegative integer,
vector

HARQACK messages, specified as a
nonnegative integer or a vector whose
entries are nonnegative integers in the
interval [0, 3].

UEMIMO Required 0, 1 Flag to indicate MIMO mode, specified as
0 or 1.

Output Arguments
waveform — Modulated baseband waveform containing the UMTS physical channels
complex vector array

Modulated baseband waveform containing the UMTS physical channels, returned as a complex vector
array, sampled at (3.84 × config.OversamplingRatio) MHz.
Data Types: double

Version History
Introduced in R2015a

References
[1] 3GPP TS 25.101. “Universal Mobile Telecommunications System (UMTS); User Equipment (UE)

Radio Transmission and Reception (FDD).” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 25.141. “Universal Mobile Telecommunications System (UMTS); Base Station (BS)
Conformance Testing (FDD).” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

See Also
umtsUplinkReferenceChannels | umtsDownlinkReferenceChannels |
umtsDownlinkWaveformGenerator

Topics
“Uplink Reference Channel and Waveform Generation Parameter Structures”

 umtsUplinkWaveformGenerator

2-1395

https://www.3gpp.org
https://www.3gpp.org

getPathFilters
Get path filter impulse response for 3-D MIMO fading channel

Syntax
pathFilters = getPathFilters(lte3d)

Description
pathFilters = getPathFilters(lte3d) returns path filter impulse responses for the 3-D multi-
input/multi-output (MIMO) fading channel object specified by lte3d. You can use this information,
along with the pathGains output argument returned by the channel object, to reconstruct a perfect
channel estimate.

Examples

Reconstruct Channel Impulse Response Using 3-D Channel Path Filters

Reconstruct the channel impulse response and perform timing offset estimation using path filters of
an lte3DChannel System object.

Configure a channel for delay profile CDL-B from TR 38.901 Section 7.7.1, with 1000 ns delay spread,
2 transmit antennas, and 1 receive antenna.

lte3d = lte3DChannel.makeCDL('CDL-B',1000e-9);
lte3d.Seed = 11;
lte3d.TransmitAntennaArray.Size = [1 1 2];
lte3d.ReceiveAntennaArray.Size = [1 1 1];

Create an LTE waveform for reference measurement channel (RMC) R.10 (10MHz, QPSK, R=1/3, 2
CRS ports).

rmc = lteRMCDL('R.10');
rmc.TotSubframes = 1;
data = [1; 0; 0; 1];
[txWaveform,~,txInfo] = lteRMCDLTool(rmc,data);
lte3d.SampleRate = txInfo.SamplingRate;

Pass the waveform through the channel.

[rxWaveform,pathGains] = lte3d(txWaveform);

Perform timing offset estimation using cell-specific reference signals.

corrcfg.CellRS = 'On';
offset = lteDLFrameOffset(rmc,rxWaveform,corrcfg)

offset = 15

Obtain the path filters used in channel filtering.

pathFilters = getPathFilters(lte3d);

2 Functions

2-1396

Reconstruct the channel impulse response using the path filters and path gains. Take the average of
path gains across all time samples (first dimension). Construct the impulse response, h, for each
transmit and receive antenna. Sum the responses for each transmit antenna.

[~,Np,P,R] = size(pathGains);
Nh = size(pathFilters,1);
h = zeros([Nh P R]);
pathGains = permute(mean(pathGains,1),[2 3 4 1]);
for np = 1:Np
 h = h + pathFilters(:,np) .* pathGains(np,:,:);
end
h = permute(sum(h,2),[1 3 2]);
mag = abs(h);

Plot the magnitude of the channel impulse response.

plot(mag,'o:')
title('Magnitude of Channel Impulse Response')
xlabel('Samples')
ylabel('Magnitude')

Estimate the timing offset by finding the peak of the impulse response magnitude.

offset_ref = find(mag==max(mag)) - 1

offset_ref = 15

 getPathFilters

2-1397

Input Arguments
lte3d — MIMO fading channel
lte3DChannel System object

MIMO fading channel, specified as an lte3DChannel System object. This object implements the TR
36.873 link-level MIMO fading channel.

Output Arguments
pathFilters — Path filter impulse response
Nh-by-Np real matrix

Path filter impulse response, returned as an Nh-by-Np real matrix, where:

• Nh is the number of impulse response samples.
• Np is the number of paths.

Each column of the matrix contains the filter impulse response for each path of the delay profile.
Data Types: double

Version History
Introduced in R2018a

See Also
lte3DChannel

2 Functions

2-1398

info
Get characteristic information about 3-D MIMO fading channel

Syntax
channelInfo = info(lte3d)

Description
channelInfo = info(lte3d) returns characteristic information about the 3-D multi-input/multi-
output (MIMO) fading channel object specified by lte3d.

Examples

Get Characteristic Information About MIMO Fading Channel

Create an lte3DChannel System object.

lte3d = lte3DChannel('PathDelays',[0 500e-9], ...
 'AveragePathGains',[-13.4 3.0], ...
 'AnglesAoD',[-178.1 -4.2], ...
 'AnglesAoA',[51.3 -152.7], ...
 'AnglesZoD',[50.2 93.2], ...
 'AnglesZoA',[125.4 91.3], ...
 'NumStrongestClusters',1);

To get characteristic information about the channel, call the info function on the object.

channelInfo = info(lte3d)

channelInfo = struct with fields:
 KFactorFirstCluster: -Inf
 ClusterTypes: {1x4 cell}
 PathDelays: [5.0000e-07 5.0500e-07 5.1000e-07 0]
 AveragePathGains: [-0.0103 -2.2288 -3.9897 -13.4000]
 AnglesAoD: [-4.2000 -4.2000 -4.2000 -178.1000]
 AnglesAoA: [-152.7000 -152.7000 -152.7000 51.3000]
 AnglesZoD: [93.2000 93.2000 93.2000 50.2000]
 AnglesZoA: [91.3000 91.3000 91.3000 125.4000]
 NumTransmitAntennas: 8
 NumInputSignals: 8
 NumReceiveAntennas: 2
 NumOutputSignals: 2
 ChannelFilterDelay: 7
 MaximumChannelDelay: 23

 info

2-1399

Input Arguments
lte3d — MIMO fading channel
lte3DChannel System object

MIMO fading channel, specified as an lte3DChannel System object. This object implements the TR
36.873 link-level MIMO fading channel.

Output Arguments
channelInfo — Characteristic information about MIMO fading channel
structure

Characteristic information about MIMO fading channel, returned as a structure containing the
following fields:

Parameter Field Value Description
PathDelays Numeric row vector Delays of discrete channel paths for

each cluster, returned in seconds.
These values include the effects of
DelaySpread scaling, and
KFactor scaling (when enabled).

ClusterTypes Cell array of character vectors Type of each cluster in the delay
profile, returned as a cell array of
character vectors. Cluster types can
be 'LOS', 'SubclusteredNLOS',
or 'NLOS'. The PathDelays,
AveragePathGains, AnglesAoA,
AnglesAoD, AnglesZoA, and
AnglesZoD properties define the
delay profile.

AveragePathGains Numeric row vector Average path gains of the discrete
path or clusters in dB. These values
include the effect of K-factor scaling
if enabled. For more information,
see the KFactor property.

AnglesAoD Numeric row vector Azimuth of departure angles of the
clusters in degrees.

AnglesAoA Numeric row vector Azimuth of arrival angles of the
clusters in degrees.

AnglesZoD Numeric row vector Zenith of departure angles of the
clusters in degrees.

AnglesZoA Numeric row vector Zenith of arrival angles of the
clusters in degrees.

2 Functions

2-1400

Parameter Field Value Description
KFactorFirstCluster Numeric scalar K-factor of first cluster of delay

profile in dB. If the first cluster of
the delay profile follows a Laplacian
instead of a Rician distribution,
KFactorFirstCluster is -Inf.

NumTransmitAntennas Numeric scalar Number of transmit antennas.
NumInputSignals Numeric scalar Number of input signals.
NumReceiveAntennas Numeric scalar Number of receive antennas.
NumOutputSignals Numeric scalar Number of output signals.
ChannelFilterDelay Numeric scalar Channel filter delay in samples.
Note

• The step of splitting the strongest clusters into subclusters, described in TR 36.873 [1], Section 7.3,
requires sorting of the clusters by their average power. Therefore if the NumStrongestClusters property
is nonzero, the fields of the information structure are sorted by average power. That is, the
AveragePathGains, ClusterTypes, PathDelays, AnglesAoD, AnglesAoA, AnglesZoD, and
AnglesZoA fields are presented in descending order of the average gain.

• If the HasLOSCluster property is set to true, the NLOS (Laplacian) part of that cluster, and the LOS
cluster, are not necessarily next to each other. However, the KFactorFirstCluster field still indicates the
appropriate K-factor scaling.

Version History
Introduced in R2018a

References
[1] 3GPP TR 36.873. “Study on 3D channel model for LTE.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

See Also
lte3DChannel

 info

2-1401

https://www.3gpp.org

Apps

3

LTE Throughput Analyzer
Generate throughput curves for physical downlink shared channel (PDSCH) conformance test
analysis

Description
The LTE Throughput Analyzer app performs PDSCH demodulation performance testing. TS 36.101
[1], Annex A.3 specifies RMCs for UE performance testing.

The app also performs analysis and testing for custom user-defined measurement channels settings.
For an example, see “LTE Throughput Analyzer User-Defined Testing” on page 3-8. This approach
can also be used for simulating transmission modes 7–10, specifically, when the transmission scheme
(TxScheme) is 'Port5', 'Port7-8', 'Port8', or 'Port7-14'where DM-RS based channel
estimation is required for PDSCH demodulation. In this case, the precoding matrix W is randomly
defined per subframe according to TS 36.101 [1], Table 8.3.1-1 for FDD and Table 8.3.2-1 for TDD.

Dialog Box Inputs and Outputs

In the LTE PDSCH Conformance Testing user interface, you can set these parameters:

3 Apps

3-2

Parameter
(Equivalent Field)

Values Description

Reference channel
(RC)

'R0' (default), 'R1', 'R2',
'R3', 'R4', 'R5', 'R6',
'R7', 'R8', 'R9', 'R10',
'R11', 'R12', 'R13', 'R14',
'R6-27RB', 'R12-9RB',
'R11-45RB', User defined

Reference measurement channel (RMC)
number or type, as specified in TS 36.101,
Annex A.3.

• To facilitate the transmission of system
information blocks (SIB), normally no user
data is scheduled on subframe 5.
However, 'R.31-3A' and 'R.31-4' are
sustained data rate RMCs and have user
data in subframe 5.

• 'R.6-27RB', 'R.12-9RB', and
'R.11-45RB' are custom RMCs
configured for non-standard bandwidths
that maintain the same code rate as the
standardized versions defined in TS
36.101, Annex A.3.

To define your own reference channel, select
User defined. The User-defined
configuration dialog box opens. For
Configuration structure variable name,
type the name of an RC parameter structure
variable in the MATLAB workspace.

The tool expects this variable to be present in
the MATLAB base workspace. Create the
basic configuration structure with the
function lteRMCDL by choosing a closely
matched RMC and modifying to meet your
requirements. Use this approach to simulate
transmission modes 7–10. Specifically, when
TxScheme = 'Port5', 'Port7-8',
'Port8', or 'Port7-14', where DM-RS
based channel estimation is required for
PDSCH demodulation. In this case, the
precoding matrix, W, is randomly defined per
subframe according to TS 36.101, Table
8.3.1-1, or Table 8.3.2-1.

Duplex mode
(DuplexMode)

'FDD' (default), 'TDD' Duplexing mode, specified as either:

• 'FDD' for Frequency Division Duplex
• 'TDD' for Time Division Duplex

 LTE Throughput Analyzer

3-3

Parameter
(Equivalent Field)

Values Description

Transmission
scheme (TxScheme)

'Port0', 'TxDiversity',
'CDD', 'SpatialMux',
'MultiUser', 'Port5',
'Port7-8', 'Port8',
'Port7-14'.

PDSCH transmission scheme, specified as
one of the following options.

Transmission scheme Description
'Port0' Single antenna port, port 0
'TxDiversity' Transmit diversity
'CDD' Large delay cyclic delay

diversity scheme
'SpatialMux' Closed loop spatial

multiplexing
'MultiUser' Multi-user MIMO
'Port5' Single-antenna port, port 5
'Port7-8' Single-antenna port, port

7, when NLayers = 1.
Dual layer transmission,
ports 7 and 8, when
NLayers = 2.

'Port8' Single-antenna port, port 8
'Port7-14' Up to eight layer

transmission, ports 7–14

PDSCH Rho (dB)
(Rho)

0 (default), numeric scalar PDSCH resource element power allocation, in
dB

Propagation Model
(DelayProfile)

'Off', 'EPA' (default),
'EVA', 'ETU', 'HST'

Delay profile model. For more information,
see “Propagation Channel Models”.

Doppler (Hz)
(DopplerFreq)

'5', '70', '300', '750' Maximum Doppler frequency, in Hz.

Antenna
Correlation
(MIMOCorrelation)

'Low', 'Medium', 'High' Correlation between UE and eNodeB
antennas

No of receive
antennas (NRxAnts)

Nonnegative scalar integer Number of receive antennas

SNR (dB) Numeric vector SNR values, in dB
Simulation length
(frames)

Positive scalar integer Simulation length, in frames

Number of HARQ
processes
(NHARQProcesses)

1, 2, 3, 4, 5, 6, 7, or 8 Number of HARQ processes per component
carrier

Perfect channel
estimator

'Yes', 'No' Channel estimator provides a perfect channel
estimate when setting is 'Yes'. For more
information, see
lteDLPerfectChannelEstimate.

3 Apps

3-4

Parameter
(Equivalent Field)

Values Description

PMI mode
(PMIMode)

'Wideband' (default),
'Subband'

PMI reporting mode. PMIMode='Wideband'
corresponds to PUSCH reporting Mode 1-2 or
PUCCH reporting Mode 1-1 (PUCCH Report
Type 2) and PMIMode='Subband'
corresponds to PUSCH reporting Mode 3-1.

Simulation results Variable name beginning with
an alphabetical character and
containing alphanumeric
characters.

Simulation results output variable name.
When you click Generate waveform, a new
variable with this name is created in the
MATLAB workspace.

Open the LTE Throughput Analyzer App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, select the

LTE Throughput Analyzer app icon.

 LTE Throughput Analyzer

3-5

• MATLAB command prompt: Enter lteThroughputAnalyzer.

Examples

Perform 4-by-2 Transmit Diversity Conformance Test

Use the LTE Throughput Analyzer app to run a conformance test for a single codeword RMC
R.12-9RB for the transmit diversity transmission scheme with EPA-5 fading.

Open the LTE Throughput Analyzer app.

Adjust default runtime parameter settings:

• Set Reference channel to R.12-9RB.
• For SNR (dB), enter [-3.0 -1.0 1.0 3.0].
• For Simulation length (frames), enter 20.

Select Start simulation. The app provides the Estimated time remaining. When the simulation
finishes, the dialog box shows performance curves.

3 Apps

3-6

The simulation result for a 20-frame run is displayed in the MATLAB Command Window.

Result for -3 dB SNR
Throughput: 47.65%

Result for -1 dB SNR
Throughput: 87.65%

Result for 1 dB SNR
Throughput: 95.59%

Result for 3 dB SNR
Throughput: 100.00%

In addition, the simResults variable now appears in the MATLAB workspace. View its contents.

simResults

simResults =

1x4 struct array with fields:

 LTE Throughput Analyzer

3-7

 throughput
 tpPerFrame
 rawBER

LTE Throughput Analyzer User-Defined Testing

Open the LTE throughput analyzer app and run a user-defined measurement channel. Define a
custom measurement channel. You can select any RMC and change any settings, though care must be
taken not to define an invalid configuration.

For this example, start with an R.3 RMC, and adjust the number of resource blocks from 50 to 30.

cmc = lteRMCDL('R.3');
cmc.NDLRB = 30

cmc = struct with fields:
 RC: 'R.3'
 NDLRB: 30
 CellRefP: 1
 NCellID: 0
 CyclicPrefix: 'Normal'
 CFI: 2
 PCFICHPower: 0
 Ng: 'Sixth'
 PHICHDuration: 'Normal'
 HISet: [112x3 double]
 PHICHPower: 0
 NFrame: 0
 NSubframe: 0
 TotSubframes: 10
 Windowing: 0
 DuplexMode: 'FDD'
 PDSCH: [1x1 struct]
 OCNGPDCCHEnable: 'Off'
 OCNGPDCCHPower: 0
 OCNGPDSCHEnable: 'Off'
 OCNGPDSCHPower: 0
 OCNGPDSCH: [1x1 struct]
 Nfft: []

Open the LTE throughput analyzer app.

lteThroughputAnalyzer

3 Apps

3-8

Choose the Reference channel dropdown menu and select User defined.

 LTE Throughput Analyzer

3-9

At the prompt, enter the custom measurement channel configuration structure name, cmc.

To tun this user-defined configuration, click Start simulation.

• “Analyze Throughput for PDSCH Demodulation Performance Test”

Version History
Introduced in R2014a

References
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

3 Apps

3-10

https://www.3gpp.org

See Also
Apps
LTE Waveform Generator

Functions
lteRMCDL

Topics
“Analyze Throughput for PDSCH Demodulation Performance Test”

 LTE Throughput Analyzer

3-11

LTE Waveform Generator
Create, impair, visualize, and export LTE waveforms

Description
The LTE Waveform Generator app enables you to create, impair, visualize, and export LTE
waveforms.

The app provides these capabilities by using the Wireless Waveform Generator app configured for
LTE waveform generation. Using the app, you can:

• Generate LTE test model (E-TM) waveforms, as defined in section 6 of TS 36.141 [1].
• Generate LTE downlink reference measurement channel (RMC) waveforms for user equipment

(UE) performance testing, as defined in Annex A.3 of TS 36.101 [2].
• Generate LTE uplink RMC waveforms for base station (BS) performance testing, as defined in

Annex A of TS 36.104 [3].
• Export the LTE waveform to your workspace or to a .mat or a .bb file.
• Export LTE waveform generation parameters to a runnable MATLAB script or a Simulink block.

• Use the exported script to generate your waveform without the app from the command line.
• Use the exported block as a waveform source in a Simulink model. For more information, see

Waveform From Wireless Waveform Generator App.
• Visualize the LTE waveform in constellation diagram, spectrum analyzer, OFDM grid, 3D

spectrogram, time scope, and complementary cumulative distribution function (CCDF) plots.
• Distort the LTE waveform by adding RF impairments, such as AWGN, phase offset, frequency
offset, DC offset, IQ imbalance, and memoryless cubic nonlinearity.

• Generate an LTE waveform that you can transmit using a connected radio or lab test instrument.

• To transmit a waveform by using an SDR, connect one of the supported SDRs (ADALM-Pluto,
USRP™, USRP embedded series, and Xilinx® Zynq-based radios) to your computer and have
the associated add-on installed. For more information, see “Transmit Using SDR”.

• To transmit a waveform by using lab test instrument, connect one of the instruments supported
by the rfsiggen function to your computer. For more information, see “Quick-Control RF
Signal Generator Requirements” (Instrument Control Toolbox). This feature requires
“Instrument Control Toolbox”.

• To transmit your waveforms over the air at full radio device rates, use the Wireless Testbench™
software and connect a supported radio to your computer. For a list of radios that support full
device rates, see “Supported Radio Devices” (Wireless Testbench). This feature requires
“Wireless Testbench”. For an example, see “Transmit App-Generated Wireless Waveform Using
Radio Transmitters” on page 3-15.

To create, impair, visualize, and export waveforms other than waveforms, you must reconfigure the
app. For a full list of features, see the Wireless Waveform Generator app.

For more information, see “Create Waveforms Using Wireless Waveform Generator App”.

3 Apps

3-12

Open the LTE Waveform Generator App
MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the app

icon.

MATLAB Command Prompt: Enter wirelessWaveformGenerator. This command opens the
Wireless Waveform Generator app. To configure the app for LTE waveform generation, in the
Waveform Type section, select one of the options under LTE (4G).

Examples

App-Based LTE Waveform Generation

This example shows how to generate LTE test model (E-TM) and reference measurement channel
(RMC) waveforms by using the LTE Waveform Generator app.

 LTE Waveform Generator

3-13

Open LTE Waveform Generator App

On the Apps tab of the MATLAB® toolstrip, select the LTE Waveform Generator app icon under
Signal Processing and Communications. This section opens the Wireless Waveform Generator
app configured for LTE waveform generation.

Select LTE Waveform

Choose the waveform you want to generate by selecting one of the options under LTE (4G) in the
Waveform Type section of the app toolstrip. The app supports these waveforms.

• Downlink RMC
• Uplink RMC
• Test Models

Generate LTE Waveform

Set the parameters for the selected waveform by specifying options in the Waveform tab on the left
pane of the app. Add impairments and select visualization tools by specifying options in the
Generation section of the app toolstrip. To visualize the waveform, click Generate.

For example, this figure shows the visualization results of a downlink RMC waveform with default
parameters.

3 Apps

3-14

Export Generated Waveform

You can export the generated waveform and its parameters by clicking Export. You can export the
waveform to:

• A MATLAB script with a .m extension, which you can run to generate the waveform without the
app

• A file with a .bb or .mat extension
• Your MATLAB workspace as a structure
• A Simulink® block, which you can use to generate the waveform in a Simulink model without the

app

Transmit LTE Waveform

This feature requires “Instrument Control Toolbox”™ software. To transmit a generated waveform,
click the Transmitter tab on the app toolstrip and configure the instruments. You can use any
instrument supported by the rfsiggen (Instrument Control Toolbox) function.

Transmit App-Generated Wireless Waveform Using Radio Transmitters

This example shows how to use the NI™ USRP™ N310, USRP N320, USRP N321, and USRP X310
radio transmitters available in the Wireless Waveform Generator app to transmit an app-generated
waveform over the air (requires Wireless Testbench™). These radio transmitters enable you to
transmit up to 2 GB of contiguous data over the air at full radio device rate.

Introduction

The Wireless Waveform Generator app is an interactive tool for creating, impairing, visualizing, and
transmitting waveforms. Using the USRP N310, USRP N320, USRP N321, and USRP X310 radio
transmitters available in the app, you can transmit your generated waveform repeatedly over the air.
You can also export the waveform generation and transmission parameters to a runnable MATLAB®
script. This example shows how to configure these radio transmitters.

Although this example shows how to transmit an OFDM waveform, the same process applies for all
waveform types that you can generate with the app.

Set Up for Radio Transmission

To use the radio transmitters in the app, you need to install the Wireless Testbench Support Package
for NI USRP Radios add-on and set up your radio outside the app. For more information, see
“Connect and Set Up NI USRP Radios” (Wireless Testbench).

Generate Waveform for Transmission

Open the Wireless Waveform Generator app by clicking the app icon on the Apps tab, under
Signal Processing and Communications. Alternatively, enter wirelessWaveformGenerator at
the MATLAB command prompt.

In the Waveform Type section, select an OFDM waveform by clicking OFDM. In the leftmost pane of
the app, adjust any configuration parameters for the selected waveform. Then generate the
configuration by clicking Generate in the app toolstrip.

 LTE Waveform Generator

3-15

Configure Radio Transmitter

Select the Transmitter tab from the app toolstrip. In the transmitter gallery, select the USRP N310,
USRP N320, USRP N321, or USRP X310 radio transmitter.

In the leftmost pane of the app, select the name of a radio setup configuration that you saved using
the Radio Setup wizard. For more information, see “Connect and Set Up NI USRP Radios” (Wireless
Testbench).

Set the center frequency, gain, and antennas configuration parameters. The app automatically sets
the waveform sample rate based on the waveform that you generated earlier. The radio transmitter
uses onboard data buffering to ensure contiguous data transmission at up to the full hardware sample
rate. If necessary, to achieve the specified sample rate, the radio uses a Farrow rate converter. Use
this list as a reference when setting the sample rate:

• USRP N310 — 120,945 Hz to 76.8 MHz, or one of: 122.88 MHz, 125 MHz, or 153.6 MHz
• USRP N320 — 196,851 Hz to 125 MHz, or one of: 200 MHz, 245.76 MHz or 250 MHz
• USRP N321 — 196,851 Hz to 125 MHz, or one of: 200 MHz, 245.76 MHz or 250 MHz
• USRP X310 — 181,418 Hz to 100 MHz, or one of: 184.32 MHz or 200 MHz

3 Apps

3-16

Transmit Waveform

To transmit the waveform continuously, click Transmit. To end the continuous transmission, click
Stop transmission. To export the waveform generation and transmission parameters to a runnable
MATLAB script, click Export MATLAB script.

Version History
Introduced in R2019a

References
[1] 3GPP TS 36.141. “Base Station (BS) conformance testing.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). https://www.3gpp.org.

[2] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)
radio transmission and reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. https://www.3gpp.org.

[3] 3GPP TS 36.104. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio
transmission and reception.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. https://www.3gpp.org.

 LTE Waveform Generator

3-17

https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org

See Also
Apps
Wireless Waveform Generator

Topics
“Create Waveforms Using Wireless Waveform Generator App”

3 Apps

3-18

System Objects

4

lte3DChannel

Filter signal through 3-D MIMO fading channel

Description
The lte3DChannel System object filters an input signal through the TR 36.873 link-level multiple-
input/multiple-output (MIMO) fading channel to obtain the channel-impaired signal. The object
implements these channel processing steps defined in TR 36.873 [1], Section 7.3:

• Step 7: Adding ray offset angles
• Step 8: Coupling of rays
• Step 9: Generating cross-polarization power ratios (XPRs)
• Step 10: Drawing random initial phases
• Step 11: Generating channel coefficients for each cluster

To filter an input signal using the TR 36.873 link-level MIMO fading channel:

1 Create the lte3DChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
lte3d = lte3DChannel
lte3d = lte3DChannel(Name,Value)

lte3d = lte3DChannel.makeCDL(DelayProfile)
lte3d = lte3DChannel.makeCDL(DelayProfile,DelaySpread)
lte3d = lte3DChannel.makeCDL(DelayProfile,DelaySpread,KFactor)

Description

lte3d = lte3DChannel creates a TR 36.873 link-level MIMO System object.

lte3d = lte3DChannel(Name,Value) creates the object with properties set by using one or more
name-value pairs. Enclose the property name inside quotes, followed by the specified value.
Unspecified properties take default values.
Example: lte3d =
lte3DChannel('PathDelays',2e-6,'HasLOSCluster',true,'KFactorFirstCluster',12)
creates the channel object with a path delay of two microseconds, the LOS cluster of the delay profile
enabled, and a K-factor of 12 dB for the first cluster of the delay profile.

4 System Objects

4-2

lte3d = lte3DChannel.makeCDL(DelayProfile) creates the object with the specified CDL
delay profile from TR 38.901 [2] Section 7.7.1, and a delay spread of 30 ns.

lte3d = lte3DChannel.makeCDL(DelayProfile,DelaySpread) creates the object with the
specified CDL delay profile and delay spread.

lte3d = lte3DChannel.makeCDL(DelayProfile,DelaySpread,KFactor) creates the object
with the specified CDL delay profile, delay spread, and K-factor scaling.

Input Arguments

DelayProfile — Delay profile
'CDL-A' | 'CDL-B' | 'CDL-C' | 'CDL-D' | 'CDL-E'

Delay profile, specified as one of 'CDL-A', 'CDL-B', 'CDL-C', 'CDL-D', or 'CDL-E'.

DelaySpread — Delay spread in ns
30 (default) | numeric scalar

Delay spread in ns, specified as a numeric scalar.
Data Types: double

KFactor — K-factor scaling
numeric scalar

K-factor scaling, specified as a numeric scalar. K-factor scaling applies only when you specify
DelayProfile as 'CDL-D' or 'CDL-E'.
Data Types: double

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

PathDelays — Discrete path delays in seconds
0 (default) | numeric scalar | row vector

Discrete path delays in seconds, specified as a numeric scalar or row vector. AveragePathGains
and PathDelays must have the same size.
Data Types: double

AveragePathGains — Average path gains in dB
0 (default) | numeric scalar | row vector

Average path gains in dB, specified as a numeric scalar or row vector. AveragePathGains and
PathDelays must have the same size.
Data Types: double

 lte3DChannel

4-3

AnglesAoA — Azimuth of arrival angle in degrees
0 (default) | numeric scalar | row vector

Azimuth of arrival angle in degrees, specified as a numeric scalar or row vector. The vector elements
specify the angles for each cluster.
Data Types: double

AnglesAoD — Azimuth of departure angle
0 (default) | numeric scalar | row vector

Azimuth of departure angle in degrees, specified as a numeric scalar or row vector. The vector
elements specify the angles for each cluster.
Data Types: double

AnglesZoA — Zenith of arrival angle
0 (default) | numeric scalar | row vector

Zenith of arrival angle in degrees, specified as a numeric scalar or row vector. The vector elements
specify the angles for each cluster.
Data Types: double

AnglesZoD — Zenith of departure angle
0 (default) | numeric scalar | row vector

Zenith of departure angle in degrees, specified as a numeric scalar or row vector. The vector
elements specify the angles for each cluster.
Data Types: double

HasLOSCluster — Line of sight cluster of the delay profile
false (default) | true

Line of sight (LOS) cluster of the delay profile, specified as false or true. The PathDelays,
AveragePathGains, AnglesAoA, AnglesAoD, AnglesZoA, and AnglesZoD properties define the
delay profile. To enable the LOS cluster of the delay profile, set this property to true.
Data Types: logical

KFactorFirstCluster — K-factor of first cluster of delay profile in dB
13.3 (default) | numeric scalar

K-factor of the first cluster of the delay profile in dB, specified as a numeric scalar.

Dependencies

To enable this property, set HasLOSCluster to true.
Data Types: double

AngleSpreads — Cluster-wise RMS angle spreads
[5.0 11.0 3.0 3.0] (default) | row vector

Cluster-wise root mean square (RMS) angle spreads, in degrees, for scaling ray offset angles within a
cluster. Specify this property as a row vector of the form [CAoD CAoA CZoD CZoA], where:

4 System Objects

4-4

• CAoD is the cluster-wise RMS azimuth spread of departure angles within a cluster
• CAoA is the cluster-wise RMS azimuth spread of arrival angles within a cluster
• CZoD is the cluster-wise RMS zenith spread of departure angles within a cluster
• CZoA is the cluster-wise RMS zenith spread of arrival angles within a cluster

Data Types: double

XPR — Cross-polarization power ratio in dB
10 (default) | numeric scalar

Cross-polarization power ratio, in dB, specified as a numeric scalar.

Dependencies

To enable this property, set HasLOSCluster to true.
Data Types: double

CarrierFrequency — Carrier frequency in Hz
4e9 (default) | numeric scalar

Carrier frequency in Hz, specified as a numeric scalar.
Data Types: double

MaximumDopplerShift — Maximum Doppler shift in Hz
5 (default) | nonnegative numeric scalar

Maximum Doppler shift in Hz, specified as a nonnegative numeric scalar. This property applies to all
channel paths. When the maximum Doppler shift is set to 0, the channel remains static for the entire
input. To generate a new channel realization, reset the object by calling the reset function.
Data Types: double

UTDirectionOfTravel — User terminal direction of travel in degrees
[0; 90] (default) | two-element column vector

User terminal (UT) direction of travel in degrees, specified as a two-element column vector. The
vector elements specify the azimuth and the elevation components: [azimuth; elevation].
Data Types: double

SampleRate — Sample rate of input signal in Hz
30.72e6 (default) | positive numeric scalar

Sample rate of input signal in Hz, specified as a positive numeric scalar.
Data Types: double

TransmitAntennaArray — Transmit antenna array characteristics
structure

Transmit antenna array characteristics, specified as a structure that contains the following fields:

 lte3DChannel

4-5

Parameter Field Values Description
Size [2 2 2] (default),

row vector

Size of antenna array, specified as a row vector of
the form [M N P].

• M and N are the number of rows and columns
in the antenna array, respectively.

• P is the number of polarizations (1 or 2).

The antenna array elements are mapped to the
input waveform channels (columns) in the order
that a 3-D array of size M-by-N-by-P is linearly
indexed across the first dimension to the last.

For example, an antenna array of size [4 8 2]
has the first M = 4 channels mapped to the first
column of the first polarization angle. The next M
= 4 antennas are mapped to the next column, and
so on. Following this pattern, the first M×N = 32
channels are mapped to the first polarization angle
of the complete antenna array. Similarly, the
remaining 32 channels are mapped to the second
polarization angle of the complete antenna array.
For an antenna array with multiple panels, specify
the size as a row vector of the form [M N P Mg Ng],
where Mg and Ng are the number of row and
column array panels, respectively.

The antenna array elements are mapped panel-
wise to the waveform channels in the order that a
5-D array of size M-by-N-by-P-by-Mg-by-Ng is
linearly indexed across the first dimension to the
last. Subsequent sets of M×N×P= 64 channels are
mapped to consecutive panels, taking panel rows
first, then panel columns.

ElementSpacing [0.5 0.5] (default),

row vector

Element spacing in wavelengths, specified as a
row vector of the form [λv λh], representing the
vertical and horizontal element spacing.
For an antenna array with multiple panels, specify
the spacing as a row vector of the form [λv λh dgv
dgh], where dgv and dgh are the vertical and
horizontal panel spacing, respectively.

PolarizationAngles [45 -45] (default),

row vector

Polarization angles in degrees, specified as a row
vector of the form [θ ρ]. Polarization angles apply
only when the number of polarizations is 2.

Orientation [0; 0; 0] (default),

column vector

Mechanical orientation of the array, in degrees,
specified as a column vector of the form [α; β; γ]
describing bearing, downtilt, and slant. The default
value indicates that the broadside direction of the
array points to the positive x-axis.

4 System Objects

4-6

Parameter Field Values Description
Element '36.873' (default),

'isotropic'

Antenna element radiation pattern. See TR 36.873
[1], Section 7.1.1.

PolarizationModel 'Model-2' (default),

'Model-1'

Model that determines the radiation field patterns
based on a defined radiation power pattern. See
TR 36.873 [1], Section 7.1.1.

Data Types: struct

ReceiveAntennaArray — Receive antenna array characteristics
structure

Receive antenna array characteristics, specified as a structure that contains the following fields:

Parameter Field Values Description
Size [2 2 2] (default),

row vector

Size of antenna array, specified as a row vector of
the form [M N P].

• M and N are the number of rows and columns
in the antenna array.

• P is the number of polarizations (1 or 2).

The antenna array elements are mapped to the
input waveform channels (columns) in the order
that a 3-D array of size M-by-N-by-P is linearly
indexed across the first dimension to the last.

For example, an antenna array of size [4 8 2]
has the first M = 4 channels mapped to the first
column of the first polarization angle. The next M
= 4 antennas are mapped to the next column, and
so on. Following this pattern, the first M×N = 32
channels are mapped to the first polarization angle
of the complete antenna array. Similarly, the
remaining 32 channels are mapped to the second
polarization angle of the complete antenna array.
For an antenna array with multiple panels, you can
specify the size as a row vector of the form [M N P
Mg Ng], where Mg and Ng are the number of row
and column array panels, respectively.

The antenna array elements are mapped panel-
wise to the waveform channels in the order that a
5-D array of size M-by-N-by-P-by-Mg-by-Ng is
linearly indexed across the first dimension to the
last. Subsequent sets of M×N×P= 64 channels are
mapped to consecutive panels, taking panel rows
first, then panel columns.

 lte3DChannel

4-7

Parameter Field Values Description
ElementSpacing [0.5 0.5] (default),

row vector

Element spacing in wavelengths, specified as a a
row vector of the form [λv λh] representing the
vertical and horizontal element spacing,
respectively.
For an antenna array with multiple panels, you can
specify the spacing as a row vector of the form [λv
λh dgv dgh], where dgv and dgh are the vertical and
horizontal panel spacing, respectively.

PolarizationAngles [0 90] (default),

row vector

Polarization angles in degrees, specified as a row
vector of the form [θ ρ]. Polarization angles apply
only when the number of polarizations is 2.

Orientation [0; 0; 0] (default),

column vector

Mechanical orientation of the array, in degrees,
specified as a column vector of the form [α; β; γ]
describing bearing, downtilt, and slant,
respectively. The default value indicates that the
broadside direction of the array points to the
positive x-axis.

Element 'isotropic' (default),

'36.873'

Antenna element radiation pattern. See TR 36.873
[1], Section 7.1.1.

PolarizationModel 'Model-2' (default),

'Model-1'

Model that determines the radiation field patterns
based on a defined radiation power pattern. See
TR 36.873 [1], Section 7.1.1.

Data Types: structure

SampleDensity — Number of time samples per half wavelength
64 (default) | Inf | numeric scalar

Number of time samples per half wavelength, specified as a numeric scalar. The SampleDensity and
MaximumDopplerShift properties control the coefficient generation sampling rate, Fcg:

Fcg = MaximumDopplerShift × 2 × SampleDensity.

Setting SampleDensity to Inf assigns Fcg the value of the SampleRate property.
Data Types: double

NormalizePathGains — Normalize path gains
true (default) | false

Normalize path gains, specified as true or false. Use this property to normalize the fading
processes. When this property is set to true, the total power of the path gains, averaged over time, is
0 dB. When this property is set to false, the path gains are not normalized. The
AveragePathGains property specifies the average powers of the path gains.
Data Types: logical

InitialTime — Start time of fading process in seconds
0.0 (default) | numeric scalar

Start time of fading process in seconds, specified as a numeric scalar.

4 System Objects

4-8

Tunable: Yes
Data Types: double

NumStrongestClusters — Number of strongest clusters to split into subclusters
0 (default) | numeric scalar

Number of strongest clusters to split into subclusters, specified as a numeric scalar. See TR 36.873
[1], Section 7.3, Step 11.
Data Types: double

ClusterDelaySpread — Cluster delay spread in seconds
3.90625e-9 (default) | nonnegative scalar

Cluster delay spread in seconds, specified as a nonnegative scalar. Use this property to specify the
delay offset between subclusters for clusters split into subclusters. See TR 36.873 [1], Section 7.3,
Step 11.

Dependencies

To enable this property, set NumStrongestClusters to a value greater than zero.
Data Types: double

RandomStream — Source of random number stream
'mt19937ar with seed' (default) | 'Global stream'

Source of random number stream, specified as one of the following:

• 'mt19937ar with seed' — The object uses the mt19937ar algorithm for normally distributed
random number generation. Calling the reset function resets the filters and reinitializes the
random number stream to the value of the Seed property.

• 'Global stream' — The object uses the current global random number stream for normally
distributed random number generation. Calling the reset function resets only the filters.

Seed — Initial seed of mt19937ar random number stream
73 (default) | nonnegative numeric scalar

Initial seed of mt19937ar random number stream, specified as a nonnegative numeric scalar.

Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'. When calling the reset
function, the seed reinitializes the mt19937ar random number stream.
Data Types: double

ChannelFiltering — Filter input signal
true (default) | false

Filter input signal, specified as true or false. When this property is set to false, the object takes
no input signal, and the path gains and sample times are the only outputs. In this case, the
NumTimeSamples property controls the duration of the fading process realization at a sampling rate
given by the SampleRate property.
Data Types: logical

 lte3DChannel

4-9

NumTimeSamples — Number of time samples
30720 (default) | positive integer

Number of time samples, specified as a positive integer. Use this property to set the duration of the
fading process realization.

Tunable: Yes
Dependencies

To enable this property, set ChannelFiltering to false.
Data Types: double

NormalizeChannelOutputs — Normalize channel outputs by the number of receive
antennas
true (default) | false

Normalize channel outputs by the number of receive antennas, specified as true or false.
Dependencies

To enable this property, set ChannelFiltering to true.
Data Types: double

Usage

Syntax
signalOut = lte3d(signalIn)
[signalOut,pathGains] = lte3d(signalIn)
[signalOut,pathGains,sampleTimes] = lte3d(signalIn)

pathGains = lte3d()
[pathGains,sampleTimes] = lte3d()

Description

signalOut = lte3d(signalIn) filters the input signal through a TR 36.873 link-level MIMO
fading channel System object lte3d and returns the channel-impaired signal.

[signalOut,pathGains] = lte3d(signalIn) also returns the MIMO channel path gains of the
underlying fading process.

[signalOut,pathGains,sampleTimes] = lte3d(signalIn) also returns the sample times of
the channel snapshots of pathGains (first-dimension elements).

pathGains = lte3d() returns only the path gains. In this case, the NumTimeSamples property
determines the duration of the fading process. The object acts as a source of path gains without
filtering an input signal.

To use this syntax, you must set the ChannelFiltering property of lte3d to false.

[pathGains,sampleTimes] = lte3d() also returns the sample times. The object acts as a source
of the path gains and sample times without filtering an input signal.

4 System Objects

4-10

To use this syntax, you must set the ChannelFiltering property of lte3d to false.

Input Arguments

signalIn — Input signal
complex scalar | vector | NS-by-NT matrix

Input signal, specified as a complex scalar, vector, or NS-by-NT matrix, where:

• NS is the number of samples.
• NT is the number of transmit antennas.

Data Types: single | double
Complex Number Support: Yes

Output Arguments

signalOut — Output signal
complex scalar | vector | NS-by-NR matrix

Output signal, returned as a complex scalar, vector, or NS-by-NR matrix, where:

• NS is the number of samples.
• NR is the number of receive antennas.

The output signal data type is of the same precision as the input signal data type.
Data Types: single | double
Complex Number Support: Yes

pathGains — MIMO channel path gains of fading process
NCS-by-NP-by-NT-by-NR complex matrix

MIMO channel path gains of the fading process, returned as a NCS-by-NP-by-NT-by-NR complex matrix,
where:

• NCS is the number of channel snapshots, controlled by the SampleDensity property.
• NP is the number of paths, given by the size of the PathDelays property.
• NT is the number of transmit antennas.
• NR is the number of receive antennas.

The path gains data type is of the same precision as the input signal data type.
Data Types: single | double
Complex Number Support: Yes

sampleTimes — Sample times of channel snapshots
NCS-by-1 column vector

Sample times of channel snapshots, returned as an NCS-by-1 column vector, where NCS is the number
of channel snapshots, controlled by the SampleDensity property.
Data Types: double

 lte3DChannel

4-11

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to lte3DChannel
displayChannel Visualize and explore 3-D MIMO fading channel model characteristics
getPathFilters Get path filter impulse response for 3-D MIMO fading channel
info Get characteristic information about 3-D MIMO fading channel

Common to All System Objects
step Run System object algorithm
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Transmission over 3-D Channel with Delay Profile CDL-D

Transmit an LTE waveform through a 3-D channel with delay profile CDL-D from TR 38.901 Section
7.7.1.

Define the transmission waveform configuration structure, initialized to reference measurement
channel (RMC) R.50, TDD (10MHz, QPSK, R=1/3, 1 layer, 8 CSI-RS ports), and one subframe.

rmc = lteRMCDL('R.50','TDD');
rmc.TotSubframes = 1;
data = [1; 0; 0; 1];
[txWaveform,~,txInfo] = lteRMCDLTool(rmc,data);

Define the channel configuration structure using an lte3DChannel System object. Use delay profile
CDL-D from TR 38.901 Section 7.7.1, a delay spread of 10 ns, and UT velocity of 15 km/h:

v = 15.0; % UT velocity in km/h
fc = 4e9; % carrier frequency in Hz
c = physconst('lightspeed'); % speed of light in m/s
fd = (v*1000/3600)/c*fc; % UT max Doppler frequency in Hz

lte3d = lte3DChannel.makeCDL('CDL-D',10e-9);
lte3d.CarrierFrequency = fc;
lte3d.MaximumDopplerShift = fd;
lte3d.SampleRate = txInfo.SamplingRate;

Configure the transmit array as [M N P] = [2 2 2], representing a 2-by-2 antenna array (M=2, N=2)
and P=2 polarization angles. Configure the receive antenna array as [M N P] = [1 1 2], representing
a single pair of cross-polarized co-located antennas.

4 System Objects

4-12

lte3d.TransmitAntennaArray.Size = [2 2 2];
lte3d.ReceiveAntennaArray.Size = [1 1 2];

Call the 3-D channel object on the input waveform.

rxWaveform = lte3d(txWaveform);

Explore Effect of SampleDensity Property on Channel Output

Plot channel output and path gain snapshots for various sample density values while using an
lte3DChannel System object.

Configure a 3-D channel for SISO operation and delay profile CDL-B from TR 38.901 Section 7.7.1.
Set the maximum Doppler shift to 300 Hz and the channel sampling rate to 10 kHz.

lte3d = lte3DChannel.makeCDL('CDL-B');
lte3d.MaximumDopplerShift = 300.0;
lte3d.SampleRate = 10e3;
lte3d.Seed = 19;

Configure transmit and receive antenna arrays.

lte3d.TransmitAntennaArray.Size = [1 1 1];
lte3d.ReceiveAntennaArray.Size = [1 1 1];

Create an input waveform with a length of 40 samples.

T = 40;
in = ones(T,1);

Plot the step response of the channel (displayed as lines) and the corresponding path gain snapshots
(displayed circles) for various values of the SampleDensity property. The sample density property
controls how often the channel snapshots are taken relative to the Doppler frequency.

• When SampleDensity = Inf, a channel snapshot is taken for every input sample.
• When SampleDensity = X, a channel snapshot is taken at a rate of Fcs =

2*X*MaximumDopplerShift.

The lte3DChannel object applies the channel snapshots to the input waveform by means of zero-
order hold interpolation. The object takes an extra snapshot beyond the end of the input. Some of the
final output samples use this extra value to minimize the interpolation error. The channel output
contains a transient (and a delay) due to the filters that implement the path delays.

s = [Inf 5 2]; % sample densities

legends = {};
figure; hold on;
SR = lte3d.SampleRate;

for i = 1:length(s)

 % call channel with chosen sample density
 release(lte3d); lte3d.SampleDensity = s(i);
 [out,pathgains,sampletimes] = lte3d(in);

 lte3DChannel

4-13

 chInfo = info(lte3d); tau = chInfo.ChannelFilterDelay;

 % plot channel output against time
 t = lte3d.InitialTime + ((0:(T-1)) - tau).' / SR;
 h = plot(t,abs(out),'o-'); h.MarkerSize = 2; h.LineWidth = 1.5;
 desc = ['Sample Density=' num2str(s(i))];
 legends = [legends ['Output, ' desc]];
 disp([desc ', Ncs=' num2str(length(sampletimes))]);

 % plot path gains against sample times
 h2 = plot(sampletimes - tau/SR,abs(sum(pathgains,2)),'o');
 h2.Color = h.Color; h2.MarkerFaceColor = h.Color;
 legends = [legends ['Path Gains, ' desc]];

end

Sample Density=Inf, Ncs=40
Sample Density=5, Ncs=13
Sample Density=2, Ncs=6

xlabel('Time (s)');
title('Channel Output and Path Gains versus Sample Density');
ylabel('Channel Magnitude');
legend(legends,'Location','NorthWest');

4 System Objects

4-14

Waveform Spectrum of 3-D Channel Filtered LTE OFDM Modulation

Display waveform spectrum of an LTE OFDM modulation waveform passed through a 40-by-2 channel
using the lte3DChannel System object.

Create a resource grid for 40 antennas.

enb.NDLRB = 25;
enb.CyclicPrefix = 'Normal';
grid = lteDLResourceGrid(enb,40);

Fill the grid with QPSK symbols and perform LTE OFDM modulation.

grid(:) = lteSymbolModulate(randi([0 1],numel(grid)*2,1),'QPSK');
[txWaveform,txInfo] = lteOFDMModulate(enb,grid);

Create an lte3DChannel System object with specific properties.

lte3d = lte3DChannel('PathDelays',[0 500e-9], ...
 'AveragePathGains',[-13.4 3.0], ...
 'AnglesAoD',[-178.1 -4.2], ...
 'AnglesAoA',[51.3 -152.7], ...
 'AnglesZoD',[50.2 93.2], ...
 'AnglesZoA',[125.4 91.3], ...
 'NumStrongestClusters',1, ...
 'SampleRate',txInfo.SamplingRate);

Configure transmit and receive antenna arrays.

lte3d.TransmitAntennaArray.Size = [10 2 2];
lte3d.ReceiveAntennaArray.Size = [1 1 2];

The antenna array elements are mapped to the waveform channels (columns) using linear indexing of
TransmitAntennaArray.Size or ReceiveAntennaArray.Size across the first dimension to the
last. See the TransmitAntennaArray or ReceiveAntennaArray properties of the lte3DChannel
System object for more details.

Pass the LTE OFDM modulation waveform through the 40-by-2 3-D channel.

rxWaveform = lte3d(txWaveform);

Plot the received waveform spectrum.

analyzer = spectrumAnalyzer(SampleRate=lte3d.SampleRate);
analyzer.Title = 'Received Signal Spectrum';
analyzer(rxWaveform);

 lte3DChannel

4-15

Version History
Introduced in R2018a

References
[1] 3GPP TR 36.873. “Study on 3D channel model for LTE.” 3rd Generation Partnership Project;

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio
Access (E-UTRA). URL: https://www.3gpp.org.

[2] 3GPP TR 38.901. “Study on channel model for frequencies from 0.5 to 100 GHz.” 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network. URL: https://
www.3gpp.org.

See Also
lteFadingChannel

4 System Objects

4-16

https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org

Resource Grid and Block Diagrams

• “Downlink Physical Channels Grid” on page 5-2
• “Downlink Physical Signals Grid” on page 5-4
• “Uplink Physical Channels and Signals Grid” on page 5-6
• “DCI Processing Functions” on page 5-9
• “UCI Processing Functions” on page 5-11
• “PDCCH Processing Functions” on page 5-13
• “PUCCH Format 1 Processing Functions” on page 5-15
• “PUCCH Format 2 Processing Functions” on page 5-17
• “PUCCH Format 3 Processing Functions” on page 5-19
• “DL-SCH Processing Functions” on page 5-20
• “UL-SCH Processing Functions” on page 5-22
• “PDSCH Processing Functions” on page 5-24
• “PUSCH Processing Functions” on page 5-26
• “CFI Processing Functions” on page 5-28
• “PCFICH Processing Functions” on page 5-29
• “PRACH Processing Functions” on page 5-31
• “BCH Processing Functions” on page 5-32
• “PBCH Processing Functions” on page 5-33
• “PHICH Processing Functions” on page 5-34
• “Downlink Receiver Functions” on page 5-35
• “Uplink Receiver Functions” on page 5-36
• “OFDM Modulation and Propagation Channel Models” on page 5-38
• “SC-FDMA Modulation and Propagation Channel Models” on page 5-39

5

Downlink Physical Channels Grid

The downlink physical channels, their associated functions, and their locations on the resource grid
are shown in the following figure.

• Control Information

• Coding

• lteDCIEncode
• lteDCIDecode

• Modulation

• ltePDCCH
• ltePDCCHDecode

• Resource Indices — ltePDCCHIndices
• Hybrid ARQ Indicator

5 Resource Grid and Block Diagrams

5-2

• Coding

• ltePHICH
• ltePHICHDecode

• Resource Indices — ltePHICHIndices
• Control Format Indicator

• Coding

• lteCFI
• lteCFIDecode

• Modulation

• ltePCFICH
• ltePCFICHDecode

• Resource Indices — ltePCFICHIndices
• Broadcast Channel

• Transport

• lteBCH
• lteBCHDecode

• Modulation

• ltePBCH
• ltePBCHDecode

• Resource Indices — ltePBCHIndices
• Shared Channel

• Transport

• lteDLSCH
• lteDLSCHDecode

• Modulation

• ltePDSCH
• ltePDSCHDecode

• Resource Indices — ltePDSCHIndices
• General

• lteDLResourceGrid
• lteDLResourceGridSize
• lteOFDMModulate
• lteOFDMDemodulate

 Downlink Physical Channels Grid

5-3

Downlink Physical Signals Grid

The downlink physical signals, their associated functions, and their locations on the resource grid are
shown in the following figure.

• Primary Synchronization Signal (PSS)

• ltePSS
• ltePSSIndices

• Secondary Synchronization Signal (SSS)

• lteSSS
• lteSSSIndices

• Cell-specific Reference Signal (CRS)

• lteCellRS
• lteCellRSIndices

5 Resource Grid and Block Diagrams

5-4

• Positioning Reference Signal (PRS)

• ltePRS
• ltePRSIndices

• Channel State Information Reference Signal (CSI-RS)

• lteCSIRS
• lteCSIRSIndices

• Demodulation Reference Signal (DMRS)

• lteDMRS
• lteDMRSIndices

• General

• lteDLResourceGrid
• lteDLResourceGridSize
• lteOFDMModulate

 Downlink Physical Signals Grid

5-5

Uplink Physical Channels and Signals Grid

The uplink physical channels and signals, their associated functions, and their locations on the
resource grid are shown in the following figure.

5 Resource Grid and Block Diagrams

5-6

• Control Channel Format 1

• Modulation

• ltePUCCH1
• ltePUCCH1Decode

• Resource Indices — ltePUCCH1Indices
• Control Channel Format 2

• Coding

• lteUCIEncode
• lteUCIDecode

• Modulation

• ltePUCCH2
• ltePUCCH2Decode

• Resource Indices — ltePUCCH2Indices
• Control Channel Format 3

• Coding

• lteUCI3Encode
• lteUCI3Decode

• Modulation

• ltePUCCH3
• ltePUCCH3Decode

• Resource Indices — ltePUCCH3Indices
• Random Access Channel

• Modulation

• ltePRACH
• ltePRACHDetect

• General — ltePRACHInfo
• Shared Channel

• Transport

• lteULSCH
• lteULSCHDecode

• Modulation

• ltePUSCH
• ltePUSCHDecode

• Resource Indices

• ltePUSCHIndices

 Uplink Physical Channels and Signals Grid

5-7

• Control Channel Format 1 Demodulation Reference Signal

• Modulation — ltePUCCH1DRS
• Resource Indices — ltePUCCH1DRSIndices

• Control Channel Format 2 Demodulation Reference Signal

• Modulation

• ltePUCCH2DRS
• ltePUCCH2DRSDecode

• Resource Indices — ltePUCCH2DRSIndices
• Control Channel Format 3 Demodulation Reference Signal

• Modulation — ltePUCCH3DRS
• Resource Indices — ltePUCCH3DRSIndices

• Sounding Reference Signal

• Modulation — lteSRS
• Resource Indices — lteSRSIndices
• General — lteSRSInfo

• Shared Channel Demodulation Reference Signal

• Modulation — ltePUSCHDRS
• Resource Indices — ltePUSCHDRSIndices

• General

• lteULResourceGrid
• lteULResourceGridSize
• lteSCFDMAModulate
• lteSCFDMADemodulate

5 Resource Grid and Block Diagrams

5-8

DCI Processing Functions

The complete downlink control information process and associated low-level and mid-level DCI
functions are shown in the following block diagram.

• Cyclic redundancy check (CRC)

• CRC calculation and appending — lteCRCEncode
• CRC decoding and removal — lteCRCDecode

• Convolutional channel coding

• Channel encoding — lteConvolutionalEncode
• Channel decoding — lteConvolutionalDecode

• Rate matching and recovery

• Rate matching — lteRateMatchConvolutional
• Rate recovery — lteRateRecoverConvolutional

• Complete DCI processing

• Encoding

• lteDCIEncode
• lteDCI

• Decoding — lteDCIDecode
• General — lteDCIInfo

See Also

Related Examples
• “Model DCI and PDCCH”

 DCI Processing Functions

5-9

More About
• “Downlink Control Channel”

5 Resource Grid and Block Diagrams

5-10

UCI Processing Functions

The uplink control information process for PUCCH format 1, 2, and 3 and associated mid-level UCI
functions are shown in the following block diagram.

• PUCCH format 2 complete UCI processing

 UCI Processing Functions

5-11

• lteUCIEncode
• lteUCIDecode

• PUCCH format 3 complete UCI processing

• lteUCI3Encode
• lteUCI3Decode

See Also

Related Examples
• “Model PUCCH Format 2”

More About
• “Uplink Control Channel Format 1”
• “Uplink Control Channel Format 2”

5 Resource Grid and Block Diagrams

5-12

PDCCH Processing Functions

The complete physical downlink control channel process and associated low-level and mid-level
PDCCH functions are shown in the following block diagram.

• Multiplexing and scrambling

• Scrambling — ltePDCCHPRBS
• Multiplexing

• ltePDCCHInterleave
• ltePDCCHDeinterleave

• Symbol modulation and demodulation

• Modulation — lteSymbolModulate
• Demodulation — lteSymbolDemodulate

• Layer mapper and de-mapper

• Layer mapping — lteLayerMap
• Layer demapping — lteLayerDemap

• Precoding and deprecoding

• Precoding — lteDLPrecode
• Deprecoding — lteDLDeprecode

• Resource element mapper

• Resource indices — ltePDCCHIndices
• Complete PDCCH processing

• Encoding — ltePDCCH
• Decoding — ltePDCCHDecode
• General — ltePDCCHInfo

 PDCCH Processing Functions

5-13

See Also

Related Examples
• “Model DCI and PDCCH”

More About
• “Downlink Control Channel”

5 Resource Grid and Block Diagrams

5-14

PUCCH Format 1 Processing Functions

The complete physical uplink control channel format 1 process and associated low-level and mid-level
PUCCH format 1 functions are shown in the following block diagram.

• Demodulation reference signal (DRS) generation

• Demodulation reference signals — ltePUCCH1DRS
• Resource element mapper

• Resource indices — ltePUCCH1Indices
• DRS resource indices — ltePUCCH1DRSIndices

• SC-FDMA signal generation

• SC-FDMA modulation — lteSCFDMAModulate
• SC-FDMA demodulation — lteSCFDMADemodulate

• Complete PUCCH format 1 processing

• Encoding — ltePUCCH1
• Decoding — ltePUCCH1Decode

See Also

Related Examples
• “Model PUCCH Format 1”
• “PUCCH1a ACK Missed Detection Probability Conformance Test”

 PUCCH Format 1 Processing Functions

5-15

• “PUCCH1a Multi User ACK Missed Detection Probability Conformance Test”

More About
• “Uplink Control Channel Format 1”

5 Resource Grid and Block Diagrams

5-16

PUCCH Format 2 Processing Functions

The complete physical uplink control channel format 2 process and associated low-level and mid-level
PUCCH format 2 functions are shown in the following block diagram.

• Scrambling

• Pseudo-random binary sequence (PRBS) — ltePUCCH2PRBS
• Demodulation reference signal (DRS) generation

• Demodulation reference signals — ltePUCCH2DRS
• Demodulation reference signal decoding — ltePUCCH2DRSDecode

• Resource element mapper

• Resource indices — ltePUCCH2Indices
• DRS resource indices — ltePUCCH2DRSIndices

• SC-FDMA signal generation

• SC-FDMA modulation — lteSCFDMAModulate
• SC-FDMA demodulation — lteSCFDMADemodulate

• Complete PUCCH format 2 processing

• Encoding — ltePUCCH2
• Decoding — ltePUCCH2Decode

 PUCCH Format 2 Processing Functions

5-17

See Also

Related Examples
• “Model PUCCH Format 2”

More About
• “Uplink Control Channel Format 2”

5 Resource Grid and Block Diagrams

5-18

PUCCH Format 3 Processing Functions

The complete physical uplink control channel format 3 process and associated low-level and mid-level
PUCCH format 3 functions are shown in the following block diagram.

• Scrambling

• Pseudo-random binary sequence (PRBS) — ltePUCCH3PRBS
• Demodulation reference signal (DRS) generation

• Demodulation reference signals — ltePUCCH3DRS
• Resource element mapper

• Resource indices — ltePUCCH3Indices
• DRS resource indices — ltePUCCH3DRSIndices

• SC-FDMA signal generation

• SC-FDMA modulation — lteSCFDMAModulate
• SC-FDMA demodulation — lteSCFDMADemodulate

• Complete PUCCH format 3 processing

• Encoding — ltePUCCH3
• Decoding — ltePUCCH3Decode

 PUCCH Format 3 Processing Functions

5-19

DL-SCH Processing Functions

The complete downlink shared channel process and associated low-level and mid-level DL-SCH
functions are shown in the following block diagram.

• Transport block cyclic redundancy check (CRC)

• CRC calculation and appending — lteCRCEncode
• CRC decoding and removal — lteCRCDecode

• Block segmentation and CRC

• Block segmentation and CRC attachment — lteCodeBlockSegment
• Block desegmentation and CRC decoding — lteCodeBlockDesegment

• Turbo encoding and decoding

• lteTurboEncode
• lteTurboDecode

• Rate matching and recovery

• Rate matching — lteRateMatchTurbo
• Rate recovery — lteRateRecoverTurbo

• Complete DL-SCH processing

• Encoding — lteDLSCH
• Decoding — lteDLSCHDecode
• General — lteDLSCHInfo

5 Resource Grid and Block Diagrams

5-20

See Also

Related Examples
• “Model DL-SCH and PDSCH”
• “DL-SCH HARQ Modeling”

More About
• “Downlink Shared Channel”

 DL-SCH Processing Functions

5-21

UL-SCH Processing Functions

The complete uplink shared channel process and associated low-level and mid-level UL-SCH functions
are shown in the following block diagram.

• Transport block cyclic redundancy check (CRC)

• CRC calculation and appending — lteCRCEncode
• CRC decoding and removal — lteCRCDecode

• Block segmentation and CRC

• Block segmentation and CRC attachment — lteCodeBlockSegment
• Block desegmentation and CRC decoding — lteCodeBlockDesegment

• Turbo encoding and decoding

• lteTurboEncode
• lteTurboDecode

• Rate matching and recovery

• Rate matching — lteRateMatchTurbo
• Rate recovery — lteRateRecoverTurbo

5 Resource Grid and Block Diagrams

5-22

• Uplink control information (UCI)

• Channel quality information (CQI) block code

• CQI encoding — lteCQIEncode
• CQI decoding — lteCQIDecode

• Rank indicator (RI) block code

• RI encoding — lteRIEncode
• RI decoding — lteRIDecode

• Acknowledgement (ACK) or Negative acknowledgement (NACK) block code

• ACK encoding — lteACKEncode
• ACK decoding — lteACKDecode

• Channel interleaver

• Interleaver — lteULSCHInterleave
• Deinterleaver — lteULSCHDeinterleave

• Complete UL-SCH processing

• Encoding — lteULSCH
• Decoding — lteULSCHDecode

See Also

Related Examples
• “Model UL-SCH and PUSCH”

More About
• “Uplink Shared Channel”

 UL-SCH Processing Functions

5-23

PDSCH Processing Functions

The complete physical downlink shared channel process and associated low-level and mid-level
PDSCH functions are shown in the following block diagram.

• Scrambling — ltePDSCHPRBS
• Symbol modulation and demodulation

• Modulation — lteSymbolModulate
• Demodulation — lteSymbolDemodulate

• Layer mapping

• Layer mapping — lteLayerMap
• Layer demapping — lteLayerDemap

• Precoding and deprecoding

• Precoding — lteDLPrecode
• Deprecoding — lteDLDeprecode

• Downlink precoding matrix indication (PMI)

• ltePMISelect
• ltePMIInfo
• lteCSICodebook

• Resource mapping

5 Resource Grid and Block Diagrams

5-24

• Resource indices — ltePDSCHIndices
• Complete PDSCH processing

• Encoding — ltePDSCH
• Decoding — ltePDSCHDecode

See Also

Related Examples
• “Model DL-SCH and PDSCH”
• “PDSCH Bit Error Rate Curve Generation”

More About
• “Downlink Shared Channel”

 PDSCH Processing Functions

5-25

PUSCH Processing Functions

The complete physical uplink shared channel process and associated low-level and mid-level PUSCH
functions are shown in the following block diagram.

• Scrambling

• Scrambling — lteULScramble
• Descrambling — lteULDescramble

• Symbol modulation and demodulation

• Modulation — lteSymbolModulate
• Demodulation — lteSymbolDemodulate

• Layer mapping

• Layer mapping — lteLayerMap
• Layer demapping — lteLayerDemap

• Transform precoding and deprecoding

• Transform precoding — lteULPrecode
• Transform deprecoding — lteULDeprecode

• Multiple-input multiple-output (MIMO) precoding and deprecoding

• MIMO precoding — ltePUSCHPrecode
• MIMO deprecoding — ltePUSCHDeprecode

• Uplink (UL) precoding matrix indication (PMI)

• lteULPMISelect

5 Resource Grid and Block Diagrams

5-26

• lteULPMIInfo
• Resource mapping

• Resource indices — ltePUSCHIndices
• Complete PUSCH processing

• Encoding — ltePUSCH
• Decoding — ltePUSCHDecode

See Also

Related Examples
• “Model UL-SCH and PUSCH”

More About
• “Uplink Shared Channel”

 PUSCH Processing Functions

5-27

CFI Processing Functions

The complete control format information process and associated low-level and mid-level CFI functions
are shown in the following block diagram.

• Complete CFI processing

• Encoding — lteCFI
• Decoding — lteCFIDecode

See Also

Related Examples
• “Model CFI and PCFICH”

More About
• “Control Format Indicator (CFI) Channel”

5 Resource Grid and Block Diagrams

5-28

PCFICH Processing Functions

The complete physical downlink control format indicator channel process and associated low-level
and mid-level PCFICH functions are shown in the following block diagram.

• Scrambling — ltePCFICHPRBS
• Symbol modulation and demodulation

• Modulation — lteSymbolModulate
• Demodulation — lteSymbolDemodulate

• Layer mapper and demapper

• Layer mapping — lteLayerMap
• Layer demapping — lteLayerDemap

• Precoding and deprecoding

• Precoding — lteDLPrecode
• Deprecoding — lteDLDeprecode

• Resource element mapper

• Resource indices — ltePCFICHIndices
• Complete PCFICH processing

• Encoding — ltePCFICH
• Decoding — ltePCFICHDecode
• General — ltePCFICHInfo

See Also

Related Examples
• “Model CFI and PCFICH”

 PCFICH Processing Functions

5-29

More About
• “Control Format Indicator (CFI) Channel”

5 Resource Grid and Block Diagrams

5-30

PRACH Processing Functions

The random access channel process and associated PRACH functions are shown in the following
block diagram.

• Complete PRACH processing

• Encoding — ltePRACH
• Decoding — ltePRACHDetect
• General — ltePRACHInfo

See Also

Related Examples
• “PRACH False Alarm Probability Conformance Test”
• “PRACH Detection Conformance Test”

More About
• “Random Access Channel”

 PRACH Processing Functions

5-31

BCH Processing Functions

The complete broadcast channel process and associated low-level and mid-level BCH functions are
shown in the following block diagram.

• Cyclic redundancy check (CRC)

• CRC calculation and appending — lteCRCEncode
• CRC decoding and removal — lteCRCDecode

• Convolutional channel encoding and decoding

• lteConvolutionalEncode
• lteConvolutionalDecode

• Rate matching and recovery

• Rate matching — lteRateMatchConvolutional
• Rate recovery — lteRateRecoverConvolutional

• MIB processing — lteMIB
• Complete BCH processing

• Encoding — lteBCH
• Decoding — lteBCHDecode

5 Resource Grid and Block Diagrams

5-32

PBCH Processing Functions

The complete physical broadcast channel process and associated low-level and mid-level PBCH
functions are shown in the following block diagram.

• Scrambling — ltePBCHPRBS
• Symbol modulation and demodulation

• Modulation — lteSymbolModulate
• Demodulation — lteSymbolDemodulate

• Layer mapper and demapper

• Layer mapping — lteLayerMap
• Layer demapping — lteLayerDemap

• Precoding and deprecoding

• Precoding — lteDLPrecode
• Deprecoding — lteDLDeprecode

• Resource element mapper

• Resource indices — ltePBCHIndices
• Complete PBCH processing

• Encoding — ltePBCH
• Decoding — ltePBCHDecode

 PBCH Processing Functions

5-33

PHICH Processing Functions

The complete physical hybrid automatic repeat request (HARQ) indicator channel process and
associated low-level and mid-level PHICH functions are shown in the following block diagram.

• Scrambling — ltePHICHPRBS
• Layer mapper and demapper

• Layer mapping — lteLayerMap
• Layer demapping — lteLayerDemap

• Precoding and deprecoding

• Precoding — ltePHICHPrecode
• Deprecoding — ltePHICHDeprecode

• Resource element mapper

• Resource indices — ltePHICHIndices
• Complete PBCH processing

• Encoding — ltePHICH
• Decoding — ltePHICHDecode
• General — ltePHICHInfo

See Also

Related Examples
• “Model HARQ Indicator and PHICH”

More About
• “HARQ Indicator (HI) Channel”

5 Resource Grid and Block Diagrams

5-34

Downlink Receiver Functions

The complete downlink (DL) receiver process and associated functions are shown in the following
block diagram.

• Synchronization

• lteDLFrameOffset
• lteFrequencyOffset
• lteFrequencyCorrect
• lteCellSearch

• OFDM demodulation — lteOFDMDemodulate
• Channel estimation

• lteDLChannelEstimate
• lteDLPerfectChannelEstimate

• Equalization

• lteEqualizeZF
• lteEqualizeMMSE

See Also

Related Examples
• “LTE Downlink Channel Estimation and Equalization”

More About
• “Channel Estimation”

 Downlink Receiver Functions

5-35

Uplink Receiver Functions

The complete uplink (UL) receiver process and associated functions are shown in the following block
diagram.

• Synchronization

• lteULFrameOffset
• lteULFrameOffsetPUCCH1
• lteULFrameOffsetPUCCH2
• lteULFrameOffsetPUCCH3
• lteFrequencyOffset
• lteFrequencyCorrect

• SC-FDMA demodulation — lteSCFDMADemodulate
• Channel estimation

• lteULChannelEstimate
• lteULChannelEstimatePUCCH1
• lteULChannelEstimatePUCCH2
• lteULChannelEstimatePUCCH3
• lteULPerfectChannelEstimate

• Equalization

• lteEqualizeZF
• lteEqualizeMMSE

5 Resource Grid and Block Diagrams

5-36

See Also

Related Examples
• “PUCCH2 CQI BLER Conformance Test”

More About
• “Channel Estimation”

 Uplink Receiver Functions

5-37

OFDM Modulation and Propagation Channel Models

The orthogonal frequency-division multiplexing (OFDM) modulation process, propagation channel
models, and their associated functions are shown in the following block diagram.

• OFDM modulation

• lteOFDMModulate
• lteOFDMInfo

• LTE propagation channel models

• lteFadingChannel
• lteMovingChannel
• lteHSTChannel

See Also

Related Examples
• “Simulate Propagation Channels”
• “Find Channel Impulse Response”

More About
• “Propagation Channel Models”

5 Resource Grid and Block Diagrams

5-38

SC-FDMA Modulation and Propagation Channel Models

The single-carrier frequency-division multiple access (SC-FDMA) modulation process, propagation
channel models, and their associated functions are shown in the following block diagram.

• SC-FDMA modulation

• lteSCFDMAModulate
• lteSCFDMADemodulate

• LTE propagation channel models

• lteFadingChannel
• lteMovingChannel
• lteHSTChannel

See Also

Related Examples
• “Simulate Propagation Channels”
• “Find Channel Impulse Response”

More About
• “Propagation Channel Models”

 SC-FDMA Modulation and Propagation Channel Models

5-39

Selected Bibliography
[1] 3GPP TS 36.101. “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE)

Radio Transmission and Reception.” 3rd Generation Partnership Project; Technical
Specification Group Radio Access Network. URL: https://www.3gpp.org.

[2] 3GPP TS 36.104. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio
Transmission and Reception.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

[3] 3GPP TS 36.141. “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS)
Conformance Testing.” 3rd Generation Partnership Project; Technical Specification Group
Radio Access Network. URL: https://www.3gpp.org.

[4] 3GPP TS 36.211. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and
Modulation.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[5] 3GPP TS 36.212. “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel
coding.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[6] 3GPP TS 36.213. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer
procedures.” 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network. URL: https://www.3gpp.org.

[7] 3GPP TS 36.214. “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer;
Measurements.” 3rd Generation Partnership Project; Technical Specification Group Radio
Access Network. URL: https://www.3gpp.org.

[8] 3GPP TS 36.321. “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control
(MAC) protocol Specification.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

[9] 3GPP TS 36.331. “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control
(RRC); Protocol specification.” 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network. URL: https://www.3gpp.org.

[10] 3GPP TR 21.905. “Digital cellular telecommunications system (Phase 2+) (GSM); Universal
Mobile Telecommunications System (UMTS); LTE; Vocabulary for 3GPP Specifications.” 3rd
Generation Partnership Project; Technical Specification Group Services. URL: https://
www.3gpp.org.

[11] Chu, D. C. “Polyphase codes with good periodic correlation properties.” IEEE Trans. Inf. Theory.
Vol. 18, Number 4, July 1972, pp. 531–532.

[12] Dahlman, E., Parkvall, S., and Sköld, J.. 4G LTE / LTE-Advanced for Mobile Broadband.
Kidlington, Oxford: Academic Press, 2011. p. 112.

A

https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org
https://www.3gpp.org

[13] Dent, P., G. E. Bottomley, and T. Croft. “Jakes Fading Model Revisited.” Electronics Letters. Vol.
29, 1993, Number 13, pp. 1162–1163.

[14] Nohrborg, Magdalena, for 3GPP. “LTE Overview.” 3GPP, A Global Initiative, THE Mobile
Broadband Standard, August 2013. https://www.3gpp.org/LTE.

[15] Pätzold, Matthias, Cheng-Xiang Wang, and Bjørn Olav Hogstad. “Two New Sum-of-Sinusoids-
Based Methods for the Efficient Generation of Multiple Uncorrelated Rayleigh Fading
Waveforms.” IEEE Transactions on Wireless Communications. Vol. 8, 2009, Number 6, pp.
3122–3131.

[16] Strang, Gilbert. Linear Algebra and Its Application. Academic Press, 1980. 2nd Edition.

A SC-FDMA Modulation and Propagation Channel Models

A-2

https://www.3gpp.org/LTE

	Blocks
	Waveform From Wireless Waveform Generator App

	Functions
	displayChannel
	lteACKDecode
	lteACKEncode
	lteBCH
	lteBCHDecode
	lteCFI
	lteCFIDecode
	lteCQIDecode
	lteCQIEncode
	lteCQISelect
	lteCRCDecode
	lteCRCEncode
	lteCSICodebook
	lteCSIRS
	lteCSIRSIndices
	lteCellRS
	lteCellRSIndices
	lteCellSearch
	lteCodeBlockDesegment
	lteCodeBlockSegment
	lteConvolutionalDecode
	lteConvolutionalEncode
	lteDCI
	lteDCIDecode
	lteDCIInfo
	lteDCIEncode
	lteDCIResourceAllocation
	lteDLChannelEstimate
	lteDLConformanceTestTool
	lteDLDeprecode
	lteDLFrameOffset
	lteDLPerfectChannelEstimate
	lteDLPrecode
	lteDLResourceGrid
	lteDLResourceGridSize
	lteDLSCH
	lteDLSCHDecode
	lteDLSCHInfo
	lteDMRS
	lteDMRSIndices
	lteDuplexingInfo
	lteEPDCCH
	lteEPDCCHDMRS
	lteEPDCCHDMRSIndices
	lteEPDCCHDecode
	lteEPDCCHSearch
	lteEPDCCHSpace
	lteEPDCCHIndices
	lteEPDCCHPRBS
	lteEVM
	lteEqualizeMIMO
	lteEqualizeMMSE
	lteEqualizeULMIMO
	lteEqualizeZF
	lteExtractResources
	lteFadingChannel
	lteFrequencyCorrect
	lteFrequencyOffset
	lteHSTChannel
	lteLayerDemap
	lteLayerMap
	lteMCS
	lteMIB
	lteMovingChannel
	lteNBDLFrameOffset
	lteNBResourceGrid
	lteNDLSCH
	lteNDLSCHDecode
	lteNPBCH
	lteNPBCHDecode
	lteNPDCCH
	lteNPDCCHDecode
	lteNPDCCHIndices
	lteNPDSCH
	lteNPDSCHDecode
	lteNPBCHIndices
	lteNPDSCHIndices
	lteNPRACH
	lteNPRACHInfo
	lteNPSS
	lteNPSSIndices
	lteNPUSCH
	lteNPUSCHDecode
	lteNPUSCHDRS
	lteNPUSCHDRSIndices
	lteNPUSCHIndices
	lteNULSCH
	lteNULSCHDecode
	lteNRS
	lteNRSIndices
	lteNSSS
	lteNSSSIndices
	lteOFDMDemodulate
	lteOFDMModulate
	lteOFDMInfo
	ltePBCH
	ltePBCHDecode
	ltePBCHIndices
	ltePBCHPRBS
	ltePCFICH
	ltePCFICHDecode
	ltePCFICHIndices
	ltePCFICHInfo
	ltePCFICHPRBS
	ltePDCCH
	ltePDCCHDecode
	ltePDCCHDeinterleave
	ltePDCCHIndices
	ltePDCCHInfo
	ltePDCCHInterleave
	ltePDCCHPRBS
	ltePDCCHSearch
	ltePDCCHSpace
	ltePDSCH
	ltePDSCHDecode
	ltePDSCHIndices
	ltePDSCHPRBS
	ltePHICH
	ltePHICHDecode
	ltePHICHDeprecode
	ltePHICHIndices
	ltePHICHInfo
	ltePHICHPRBS
	ltePHICHPrecode
	ltePHICHTransmitDiversityDecode
	ltePMIInfo
	ltePMISelect
	ltePRACH
	ltePRACHDetect
	ltePRACHInfo
	ltePRBS
	ltePRS
	ltePRSIndices
	ltePSBCH
	ltePSBCHDecode
	ltePSBCHDRS
	ltePSBCHDRSIndices
	ltePSBCHIndices
	ltePSBCHPRBS
	ltePSCCH
	ltePSCCHDecode
	ltePSCCHDRS
	ltePSCCHDRSIndices
	ltePSCCHIndices
	ltePSCCHPRBS
	ltePSSCH
	ltePSSCHDecode
	ltePSSCHDRS
	ltePSSCHDRSIndices
	ltePSSCHIndices
	ltePSSCHPRBS
	ltePSS
	ltePSSIndices
	ltePSSS
	ltePSSSIndices
	ltePUCCH1
	ltePUCCH1Decode
	ltePUCCH1DRS
	ltePUCCH1DRSIndices
	ltePUCCH1Indices
	ltePUCCH2
	ltePUCCH2DRS
	ltePUCCH2DRSDecode
	ltePUCCH2DRSIndices
	ltePUCCH2Decode
	ltePUCCH2Indices
	ltePUCCH2PRBS
	ltePUCCH3
	ltePUCCH3Decode
	ltePUCCH3DRS
	ltePUCCH3DRSIndices
	ltePUCCH3Indices
	ltePUCCH3PRBS
	ltePUSCH
	ltePUSCHDecode
	ltePUSCHDeprecode
	ltePUSCHDRS
	ltePUSCHDRSIndices
	ltePUSCHIndices
	ltePUSCHPrecode
	lteRIDecode
	lteRIEncode
	lteRMCDL
	lteRISelect
	lteRMCDLTool
	lteRMCUL
	lteRMCULTool
	lteRateMatchConvolutional
	lteRateMatchTurbo
	lteRateRecoverConvolutional
	lteRateRecoverTurbo
	lteResourceGrid
	lteResourceGridSize
	lteSCFDMADemodulate
	lteSCFDMAModulate
	lteSCFDMAInfo
	lteSCI
	lteSCIDecode
	lteSCIEncode
	lteSCIInfo
	lteSCIResourceAllocation
	lteSLBCH
	lteSLBCHDecode
	lteSLChannelEstimatePSBCH
	lteSLChannelEstimatePSCCH
	lteSLChannelEstimatePSSCH
	lteSLFrameOffsetPSBCH
	lteSLFrameOffsetPSCCH
	lteSLFrameOffsetPSSCH
	lteSLMIB
	lteSLResourceGrid
	lteSLResourceGridSize
	lteSLSCFDMADemodulate
	lteSLSCFDMAInfo
	lteSLSCFDMAModulate
	lteSLSCH
	lteSLSCHDecode
	lteSRS
	lteSRSIndices
	lteSRSInfo
	lteSSS
	lteSSSIndices
	lteSSSS
	lteSSSSIndices
	lteSymbolDemodulate
	lteSymbolModulate
	lteTBS
	lteTestModel
	lteTestModelTool
	lteTurboDecode
	lteTurboEncode
	lteTransmitDiversityDecode
	lteUCI3Decode
	lteUCI3Encode
	lteUCIDecode
	lteUCIEncode
	lteULChannelEstimate
	lteULChannelEstimateNPUSCH
	lteULChannelEstimatePUCCH1
	lteULChannelEstimatePUCCH2
	lteULChannelEstimatePUCCH3
	lteULDeprecode
	lteULDescramble
	lteULFrameOffset
	lteULFrameOffsetNPUSCH
	lteULFrameOffsetPUCCH1
	lteULFrameOffsetPUCCH2
	lteULFrameOffsetPUCCH3
	lteULPMIInfo
	lteULPMISelect
	lteULPerfectChannelEstimate
	lteULPrecode
	lteULResourceGrid
	lteULResourceGridSize
	lteULSCH
	lteULSCHDecode
	lteULSCHDeinterleave
	lteULSCHInfo
	lteULSCHInterleave
	lteULScramble
	lteWarning
	umtsDownlinkReferenceChannels
	umtsDownlinkWaveformGenerator
	umtsUplinkReferenceChannels
	umtsUplinkWaveformGenerator
	getPathFilters
	info

	Apps
	LTE Throughput Analyzer
	LTE Waveform Generator

	System Objects
	lte3DChannel

	Resource Grid and Block Diagrams
	Downlink Physical Channels Grid
	Downlink Physical Signals Grid
	Uplink Physical Channels and Signals Grid
	DCI Processing Functions
	UCI Processing Functions
	PDCCH Processing Functions
	PUCCH Format 1 Processing Functions
	PUCCH Format 2 Processing Functions
	PUCCH Format 3 Processing Functions
	DL-SCH Processing Functions
	UL-SCH Processing Functions
	PDSCH Processing Functions
	PUSCH Processing Functions
	CFI Processing Functions
	PCFICH Processing Functions
	PRACH Processing Functions
	BCH Processing Functions
	PBCH Processing Functions
	PHICH Processing Functions
	Downlink Receiver Functions
	Uplink Receiver Functions
	OFDM Modulation and Propagation Channel Models
	SC-FDMA Modulation and Propagation Channel Models

	Selected Bibliography

